ほしぞloveログ

天体観測始めました。

タグ:drizzle

少し間が空いてしまいましたが、SWAgTiで撮影したパックマン星雲について補足です。


実は上の記事にする前に、画像処理ははるか以前に終わっていたんです。でもダーク補正の有り無しで比較した時のノイズの大きさが、理論と全然合わなくて、ずっと検証していました。その結果、かなり面白い考察となったので、その経緯を書いておきます。


ダーク補正ありなしの、数値的な比較

前回示した記事の繰り返しですが見た目ではダーク補正の有り無しは差がわからないようです。

comp_dark

ちなみに左がダーク補正無し、右がダーク補正ありですが、差はあったとしても本当にごくわずかでしょう。でも、ノイズを実際に測定しても同じくらいなのでしょうか?数値で見てみましょう。

ノイズの測定には、いつものようにPixInsightのImageInspectionのStatisticsを使います。各画像で「プレビュー」で
  1. 恒星が入っていない
  2. 背景に近い一番暗い部分
を、小さな領域でいいので選びます。そのプレビュー画面をStatistics上で選択肢、「stdDev」を見ます。stdDevなど、見たい情報の項目が出ていない場合は、スパナマークのアイコンを押して必要な項目を選択してください。その際、左上の単位がきちんとカメラと合っているか確認してください。今回の場合、カメラが14bitなので、「14bit [0,16383]」を選びます。単位は [ct] すなわち、ADCのカウントになります。コンバージョンファクターがわかっていれば、これを電荷の[e]に変換することができます。

上のエリアを選ぶ二つのことは、ノイズを正確に、安定に測定するために必要な条件です。

恒星が入っていると、恒星は飛び抜けて明るいので、バラツキ(=ノイズそのもの)が大きくなり、本来より大きなノイズの値が出てしまいます。

一番暗い部分を選ばないということは、何らかの天体などの明るさを測定していることになります。明るさがあると、そのバラツキからくるショットノイズが大きくなり、本来見たいダークノイズや読み出しノイズが隠れてしまう可能性があります。

これらのことは基本なのですが、その他にも注意すべきことがあります。今回の測定中にやらかした失敗も含めて、反省の意味も込めて今後の測定のために細かく書いておきます。


撮影と画像処理の条件

前の記事の繰り返しになりますが、一応撮影と画像処理の条件も書いておきます。

撮影はRedCat51+DBPでカメラはUranus-C Proで-10℃に冷やしています。架台はSWAgTi (SWAT350 V-SPEC PremiumにAZ-GTiを載せたもの)で、撮影ソフトはNINA。ガイドは無しで、NINAの特殊機能のガイド無しディザーで最初のうちだけ1枚に一回、途中から3枚に1回ディザリングしています。

ライトフレームは露光時間が1枚当たり3分で、カメラのゲインは100、オフセットは40で撮影しています。94枚画像処理に回したので、合計282分 = 4時間42分ぶんです。この間、NINAでも順調に動いて、特にSWAgTiの長時間撮影で縞ノイズを避けるために必須であるディザリングも問題なく動いていました。ライトフレームは10月9日に合計139枚撮影しそのうち94枚を使い、ダーク補正比較のためのダークフレームは後日77枚撮影して使いました。
がそう処理は、SWAgTiの簡単撮影の特徴を活かすために、バイアス補正、フラット補正などは無しです。解像度を上げたいので、drizzle x2を選択しておきます。

というような条件で、この記事ではダーク補正の有り無しを比較します。


測定失敗1

「Bayer配列画像はノイズ測定に用いるべきではない。」

  1. まず正しくスタックされているかどうか確かめるために、ライトフレームのRAW画像1枚のノイズを測定します。結果は12.5 [ct]でした。
  2. 次に、スタック後のダーク補正なしのマスターライト画像のノイズを測定します。予測だと94枚スタックした場合、ノイズが1/√94 = 0.103倍に近い値の12.5 x 0.103 = 1.29程度になるはずです。でも実際測定してみると、1.08 [ct]と予想よりかなり小さい値になってしまいます。
でもこれはすぐに気づきました。1枚画像はBayer配列のままなので、RGGBでそれぞれ平均値が違ってしまっているために、その平均値のばらつきでノイズが大きいと勘違いしてしまっているのです。解決策としては、Debayerしてからノイズを測ります。PIでDebayerして、再度Statisticで恒星のない部分のノイズを測定すると、6.44[ct]となり、これを0.103倍すると0.663[ct]となります。でもまだマスターライトファイルのノイズ1.08[ct]とはかけ離れています。


測定失敗2

「Drizzle画像はノイズ測定に用いるべきではない。」

Debayer同士で比べているのに、なぜスタック後のノイズが予想より大きすぎるのか?これも少し考えてすぐにわかりました。Drizzleした画像は微妙にずらして重ねたりして解像度を増やしているので、そもそもノイズがどうなっているのかよくわかりません。ここはDrizzle前の画像で評価すべきでしょう。Drizzleはオプションなので、Drizzle前のマスターファイルもきちんと保存されています。Drizzle前のマスターファイルのノイズを測定すると、0.620[ct]で、今度は予測値の0.663[ct]とほぼ一致しました。

これで少なくともダーク補正なしで1枚画像を94枚スタックした場合、ノイズが理論通りの1/√94 = 0.103倍に近い値になることがわかりました。


ダーク補正でノイズは数値でどうなるか

さて、いよいよ別途77枚のダークファイルで作ったマスターダークファイルを使って、各ライトフレームをダーク補正して、WBPPでスタックまでしてマスターライトファイルのノイズを測定します。今回は最初からDrizzleされていない方を選び、Preview機能で恒星がない部分のノイズを測定します。結果は、目で見て比べた時と同様に、ノイズの値はダーク補正がない時の0.620[ct]と比べて、ダーク補正ありだと0.625[ct]となり、ほとんど同じなのでものの見事に一致したと言っていいでしょう。

結論としては、ダーク補正ありでも無しでも、ノイズはほとんど変わらないというのが今回の結果から言えることです。

見た目でダーク有無でほとんど差がないのが、数値でも同様に、ほとんど差がないと示されたわけです。


本当にダーク補正の影響はないの?
.
.
.
え???
.
.
.
でも、

なんでここまで同じなの?ダーク補正の影響は全くないの?

ランダムノイズであるダークノイズを持つ画像で補正しているわけです。ランダムなので引こうが足そうが、補正すればノイズは必ず2乗和のルートで「増える」はずでは?何も増えないのは少なくともおかしいのでは?

とここから長い迷走が始まりました。


スカイノイズが大きいのでダーク補正のノイズ増加が無視できる?

パッと考えられることは、明るい環境で撮っているので、スカイノイズが大きすぎてダークノイズが無視でき、たとえダーク補正してもほとんど影響がないというシナリオです。でも今回はサイトロンのDBPを使っているので、光害はかなり軽減されているはずで、スカイショットのいずの影響は少ないはずです。もしかして、DBPを入れていてもスカイノイズが大きすぎるくらい明るい環境なのでしょうか?

こちらも定量的にきちんと比較してみましょう。そのためにはライトフレームの背景領域の全ノイズに比べて、ダークノイズがどれくらい貢献しているかを比較すればわかるはずです。簡単のために、1枚撮影したファイルで比較します。

まずはダークフレームのノイズですが、今回もきちんとDebayerすることを忘れずに、これまでと同様にPreviewで領域を選択して、Statisticで測定します。結果は5.30[ct]でした。ここにはダークノイズと、バイスノイズ(読み出しノイズ)が含まれていることに注意です。

一方、ライトフレームの1枚画像のノイズは上の測定でわかっていて、6.44[ct] 程度です。

5.30[ct] と6.44[ct] なので、少なくともダークノイズと読み出しノイズが含まれたものは、ライトフレームに含まれるスカイノイズ(+ダークノイズ+読み出しノイズ)に比べて、無視できるくらい小さなものではないことがわかります。

ライトフレームは94枚、ダークノイズは77枚でスタックするので、予測では
  1. ダーク補正無しだと6.44 x1/√94 = 6.44 x 0.103 = 0.663[ct]というノイズと、
  2. ダークフレームの5.30 x 1/√77= 5.30 x 0.114 = 0.60のノイズが2乗和のルートで加わるため、
  3. sqrt(0.663^2 + 0.60^2) = 0.90[ct]
程度になるはずです。でも実測は0.625[ct]と、予想の0.90[ct]1.5分の1くらいで、これは有意に小さすぎます。この矛盾を見つけるのに、相当な時間がかかってしまいました。


なぜダークノイズは増加しない?

1週間以上考えていたでしょうか。答えがわかったあとは、まあ当たり前のことでしたが、これまであまり考えたことはありませんでした。いや、概念としてはおそらく考えていましたが、どう適用するとか、数値で確かめるというようなことは全くしてきませんでした。他に同じようなことを考えた例はないかと思って検索しましたが、定量的な評価はおろか、それに関する記述も見つけることができませんでした。

さてここでクイズです。

今回、なぜダーク補正しても
背景のノイズが増えなかったのでしょうか?

一見不思議ですが、きちんと説明することができます。答えは下の方に書いていますので、自分で考えてみたい方は、ここでスクロールするのを一旦止めてください。答えに必要な条件は上の「撮影と画像処理の条件」のところに全て書いてあります。

答えがまとまった、もしくは答えを見てみたい場合は、下に進んでください。
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
と、答えに行く前に、一つヒントを出します。ヒントはディザリングです。これで答えに辿り着きますでしょうか?

答えがまとまったら、さらにスクロールしてみてください。
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

はい、もうわかりましたでしょうか?答えは「マスターダークファイルも、ディザリングでノイズが散らされる」からですよね。

まだ、ちょっと言葉足らずかもしれません。そもそも今回はPIのWBPP処理に則っているので、先にマスターダークファイルを作って、それを各1枚1枚のライトフレームにおいてそれぞれダーク補正しています。マスターダークファイルを使っての補正の効果は、個々のライトフレームで補正してから重ね合わせても、ライトフレームを(位置がズレることなく)重ね合わせてからマスターダークファイルで補正しても、数学的には同じことです。証明はここ


「ダーク補正の定量的な扱い」あたりから読んでもらえるとわかるかと思います。

ところが実際の撮影では、それぞれのライトフレームは、ディザーをしてライトフレーム時に画面を少し散らして撮影しているので、画像処理の際に「星の位置が合うように」重ね合わると、当然背景はディザーの分だけ散らして重ね合わせられます。個々に補正したマスターダークファイルが、全く位置をずらさずに重ね合わせられるなら、先ほどいった数学的な証明の通り、マスターダークファイルのノイズが2乗和のルートで増えます。ところが、マスターダークファイルがディザーの効果でずれて重ねあってしまうと、個々のライトフレームで補正されたマスターダークファイルのノイズはコヒーレントに重なることはなく、ランダムに重なってしまうことになります。そのため、個々のライトフレームに対して、マスターダークファイル1枚(元のダークノイズの)のノイズ分増加したものが、ライトフレームの枚数のルート分軽減されてしまうのと同じことにになるので、今回の場合さらに1/√94 = 0.103倍となり、ほぼ無視できてしまうというわけです。

実際に、マスターダークファイルで補正した個々のライトフレームを、星の位置合わせをせずに、重ねただけの画像を示します。
integration

小さな揺れが見えることからディザーはされているのはわかりますが、7時間にわたる長時間露光なので、一方向にドリフトしていっている様子も伺えます。この画像の恒星の無いところの背景ノイズを測定してみると、0.938 [ct]となり、見事に予測値の0.90[ct]とかなり近い値で一致します。


結論

というわけで、「ディザーをしているために、マスターダークファイルを使ったダーク補正では、マスターダークファイルの相関のある部分が散らされすために、補正後のダークノイズが増えることはない」というのが今回の結論です。

また、そもそものダーク補正の目的であるホットピクセルですが、
  • Uranus-C ProはDPS (Dead Pixel Suppression)機能のために元々ホットピクセルが緩和されていること
  • PixInsightでCosmeticCorrectionでホット/クールピクセルが緩和されること
と2つの効果で、実際の画像比較でもダーク補正の本来のホットピクセルの緩和の効果がほとんどわからないのかと思われます。


少し見直し

以前の解析で、ライトフレームに対して、ダークフレームは何枚くらい撮影したらいいかを検討していますが、


ディザリングの効果を考慮考えるとこのダークフレームの必要枚数の条件は遥かに緩和されることになります。これを数学的にどう表せばいいのか?ディザリングでどれくらい散らされるかに依るので、統計的な表現が必要になりそうです。かなり複雑になりそうなので、ここではこれ以上の計算はちょっと諦めます。

ただし、このディザリングがあればダークフレームの枚数を減らすことができるというのも、ある程度の制限があるはずで、例えばライトフレームの背景のノイズが、ダークノイズが支配的な場合は、少ない枚数のダークフレームで補正すると、今回考えたようなディザリングによる散らしの効果はあまり聞かなくなるはずです。

極端な例を示します。非常に暗い空で超長時間露光などして、ライトフレームがダークノイズに比べて読み出しノイズも背景のスカイノイズも無視できるとします。ダークフレームは1枚だけ撮影し、それでライトフレームを補正します。個々のライトフレームのダークノイズは√2~1.4倍になります。ライトフレームをスタックする際に、ディザリング効果でどう散らそうが、ダーク補正によって加えられたダークノイズはスタック枚数のルートで軽減されるだけで、ライトフレームに元々あったダークノイズのスタックによる軽減と同じ効果なので、結局のところダーク補正をした場合はダーク補正しない場合に比べて1.4倍程度ノイジーになります。

もしディザーしなかった場合は、ダーク補正によって加えられたダークノイズは、スタックによって軽減されないので、スタック枚数のルート倍大きくまります。例えば、100枚ライトフレームをスタックすると、ダーク補正しない場合に比べて10倍ダークノイズが大きくなります。

極端な場合の比較ですが、ディザーの有り無しで、1.4倍の悪化から10倍の悪化までと、非常に大きな差が出ます。必要ダークフレームの枚数に対して、ディザリングの効果が相当影響すると思っていいでしょう。

ネットを検索すると、ディザリングでホットピクセルが散らされて軽減されるというような記述はたくさん見つかりましたが、調べた限り、ディザリングがマスターダークフレームを散らすので、ダークフレームの枚数を減らすことができるというような記述を見つけることはできませんでした。定性的に考えたら至極当たり前だと直感的にもわかるのですが、定量的な話はおろか、定性的な話もこれまでほとんど言及されてこなかったようです。今後興味があるのは、これをどう定量的に示すかです。言い換えると、ディザリングの効果をどう数学的に記述するかです。また機会があれば考えてみたいと思います。


ダークノイズについて

天文関連の画像処理のページを検索すると、所々に、ダークノイズ = ホットピクセルとか、ダークノイズにはホットピクセルやクールピクセルのような固定ノイズと、ランダムなノイズがあるというような表現を見かけます。私も後者のような表現を使ってきました。でも、ダークノイズというのは本来はダークカレント(暗電流)の揺らぎが起因のノイズのはずです。ダークカレントも、ホットピクセルも、温度の増加とともに増えてくるものですが、ホットピクセル自身がダークノイズというのは、やはり少し強引な気がします。

「ダークフレームを撮影すると、(ランダムに振る舞う) ダークノイズとともに、ホットピクセルも顕著に見えるようになり、そのダークフレームを使うことで固定ノイズであるホットピクセルをライトフレームから除去することができるが、ダークノイズはランダムに揺らぐ(インコヒーレントな、コヒーレントでない、相関の無い) 「ノイズ、揺らぎ」なので、引くことはできずに、必ず2乗和のルートで増える。」

というのがある程度正確な記述かと思います。ホットピクセルはダークカレント起因ではないはずなので、やはりダークノイズとははっきり区別した方がいいのではないでしょうか?


まとめと日記

ここしばらく悩んでいたことが、やっと解決して、ブログ記事にまでまとめることができました。つうじょうに撮影していて、ディザリングもしていて、ダーク補正されている方は、ダークフレームの枚数がより少なくてもいいという話なので、これまで特に問題がないようならば、今回の話は特に気にする必要はないです。でもこういった解析はやはりしておくべきだと思います。しかも、できるだけ定量的に評価できるようにというのが重要だと思います。こういった積み重ねが、どんなノイズが支配的で、どこを改善すればより良くなるかなどに、効率的につながっていくのかと思います。ディザリングの数学的な表現をどうすればいいのか、今後の課題です。

ついでに日記です。今日11月8日(金)から小海において星フェスが開催されています。例年だと諸手を挙げて参加なのですが、今年は体調があまり良くなく、全然予定が立っていませんでした。ここしばらく調子は良かったのですが、先週の長野の泊まりで少し疲れてしまって、今週はあまり調子が良くありません。明日の朝起きて、調子が良ければあまり長居しない程度で行こうと思っています。天気はすごくいいみたいなので、できれば行きたいのですが...。


M104の画像処理の最中に、BXTの恒星の認識で気付いたことがありました。これも補足がてら書いておきます。



BXTの適用限界の一例

BXTについてはある程度一定の評価が定着したのかと思います。私もお世話になっていますし、今回のM104本体の内部構造を出すのにも大きな効果がありました。焦点距離1300mmのSCA260に対してM104は少し小さくて、拡大して細部を見ながら処理をすることも多いです。その拡大しながらの処理の最中で改めて気になったのは、BXTでどこまで微恒星を補正できるのか?ということです。

下の画像を見てください。左から順に1. BXT無し、2. BXTのCollect only、3. BXTで恒星を小さくし背景(銀河本体)の解像度の上げたたものになります。
名称未設定 1

星像を改善しているのはすぐにわかると思いますが、その中で目で見て明らかに微恒星とわかるものをいくつか取りこぼしてしまっているものがあります。次の画像は、仕上げ前にStarNet V2で恒星を分離し取り除いた画像になります。

Image07_ABE1_crop_ABE4_DBE_BXTc_SPCC_BXT_LRGB_GHS_GHS_Preview01

BXTで救いきれなかったものは(BXTとは別ソフトのStarNetでも)背景として認識されるようです。でもそれらは、人の目には微恒星側に認識できるものも明らかにあるのかと思います。

シンチレーションなどでブレてしまい星の鋭さが出ていないのが原因かと思われますが、問題はBXTで星と「認識される」か「認識されてない」かで、その切り替わりを境に本来の明るさや大きさが大きく変わり、差が出てしまうことです。以前、BXT2にバージョンアップする前にも同じようなことを書いていま。


その後BXT2にアップデートした時に、微恒星をより拾うようになっていると解説されています。

そのためかなりマシになっているはずなのですが、今のところは今回程度の認識が限界になるようです。

この程度のことは強拡大しない限りほとんど気になることはないでしょう。さらに今回の最終結果としては背景をそこまで明るくすることはないので、微恒星と思われるシミのようなものは実際には見えなくなってしまい、実用上はなんら問題はないと思います。ただ、強拡大したり、淡い背景を強炙り出しする場合は、この問題が露呈する可能性があることは、頭の隅に置いておいた方がいいのかもしれません。

もう少し突っ込みます。微恒星をできる限り拾うって、色々価値があると思うんですよ。上の背景だけの画像を見てたら、微恒星と思われるところは輝度としては明らかに盛り上がっているので、その部分だけうまく集光できないかなと思ってしまうわけです。FWHMが星の明るさによらずに一定なように、恒星の広がり具合は本来明るい星でも暗い星でも同じはずです。でも暗い星は背景のノイズに埋もれてしまうために鋭さが出ないのかと思います。この鋭さを仮想的に補助してやればいいのかと思います。手動だと銀河本体はマスクをかけて、背景の中の輝度差で微恒星部を分離して、その盛り上がり部を背景に対して増強してやることでしょうか。もしくはここからBXTのcorrect onlyでまともな星像にしてもらうとかできればいいのかもしれません。あ、でもこれだと本来の輝度から変わってしまうかもしれません。まあ何か方法はありそうなので、じっくり考えてみると面白いかもしれません。


bin1にdrizzle x2に、さらにBXT

今出せる解像度の限界は、bin1にdrizzleを2倍以上かけて、さらにBXTでしょうか?PowerMATEなどのバローでも分解能は増す可能性はありますが、ここでは考えないことにします。

どこまで細かいのが出せるのか、果たしたそれに意味があるのかを試してみました。使ったのは2023年5月に撮影した5分露光のL画像を36枚、WBPPでインテグレートしたものです。その際、drizzle無しと、drizzle x2で出力しました。bin1なのでdrizzle x2の方は解像度は16576x11288で、ファイルサイズは1枚だけで1.5GBになります。全ての処理が重く、簡単な操作さえ非常にもっさりしています。画像処理もものすごいディスク食いで、はっきり言ってこの時点でもう実用的でもなんでもありません。

このdrizzle無しとx2それぞれにBXTをかけてみました。

まずはdrizzle無し。左から順にBXT無し、BXTのCollect only、BXTで恒星を小さくし背景(銀河本体)の解像度の上げたたものになります。
comp1

次にdrizzle x2の場合。BXTに関しては上と同じです。
comp2

この結果は面白いです。drizzle x2のほうがBXTが適用されない微恒星が多いのです。理由は今のところよくわかりませんが、niwaさんのブログのこの記事がヒントになるでしょうか。どうもBXTには適用範囲というものがあり、FWHMで言うと最大8ピクセルまでだとのことです。

でも今回、そもそもdrizzle無しでもFWHMが12とか13で、すでにこの時点で大きすぎます。drizzle x2だとするとさらに2倍で、はるかに範囲外です。でも不思議なのは、FWHMが12とか13でも、たとえそのれの2倍でも、一部の恒星にはBXTが適用できているんですよね。なので少なくとも私はまだこの適用範囲の意味はよくわかっていません。

あと、niwaさんのブログの同じ記事内にあった、明るい星に寄生する星が出てくることが私も今回M104でありました。
fakestars
真ん中の明るい星の下と左上に偽の星ができてしまっています。

niwaさんはdrizzle x2だと出て、drizzle x1だと緩和されると書いてありましたが、私の場合はdrizzle x1でした。恒星を小さくすることと、ハロを小さくすることが関係しているようで、両パラメータの効きを弱くしたら目立たないくらいになりました。そのため今回の画像では恒星を小さくしきれていないため、さらに星雲本体を拡大してあるため、恒星が多少大きい印象となってしまっているかもしれません。

いずれにせよ、ここでわかった重要なことは、むやみやたらに元画像の解像度を上げてもよくならないどころか、不利になることさえあるということです。BXTの効かせすぎも寄生星を生む可能性があります。ファイルサイズのこともあるのでbin1とdrizzle x2はそもそも実用的ではないし、さらにこれにBXTを使うなんてことは今後もうないでしょう。今のところbin2でdrizzle x2にBXT、bin1にdrizzle無しでBXTくらいが実用的なのかと思います。小さい銀河みたいに拡大すること前提で分解能を求めるとかでなければ、bin2にdrizzle無しでBXTでも十分なのかと思います。

年末の12月初めくらいから撮り続けていたSh2-308 ミルクポット星雲がやっと仕上がりました。

海外ではDolphin Head Nebulaと呼ばれているようで、日本でも「イルカ星雲」とか「イルカの頭星雲」とも呼ばれているようです。その一方、Milk Pot Nebulaとかで検索しても全く引っかからないので、どうもミルクポットと言っているのは日本だけのようです。

本当にイルカの口に似たような特徴的な形と、OIIIで写すと青く目立ってとても綺麗で、星を始めた当初からいつか詳細な形と共に撮影したいと思っていた星雲の一つです。最高高度が31度程度と比較的低い空なので、撮影可能期間もあまり長くなく、やっと実現できたというわけです。


撮影

実際の撮影開始は結構前で、12月4日の夜中過ぎからです。自宅なので平日も撮影可能で、同じ日の前半に北西方向のダイオウイカ星雲、後半に東から昇ってきているイルカ星雲を撮影しています。

一般に淡いと言われているイルカさんですが、同日に撮影していたダイオウイカ星雲がとんでもない淡さなので、イルカ星雲はずいぶん濃く感じました。下の写真の左は6時間40分のOIIIのダイオウイカで、ABEにDBEもかけて強あぶり出ししてやっとこれくらい。一方右は3時間10分でABEをかけただけでこんなにはっきり出ます。
comp

今回のイルカ星雲は、5分露光でOIIIが59枚、Hαが39枚でAOO合成の予定です。さらに恒星用にR、G、Bでそれぞれ8枚ほど撮影しています。OIIIとHαは比較的早くに撮り終えていたのですが、RGBが曇っている日が多くてなかなか撮り溜めできず、撮影は最終的に1月14日まで食い込んでしまいました。

R、G、B画像もそれぞれ同じ5分露光なのですが、明るい星はサチってしまっています。今後はRGBの各フィルターでの撮影は露光時間を短くするか、ゲインを落とした方がいいようです。

blue_BXT_Image36_DBE_DBE_Preview02_3dplot
RGB合成した画像の左側真ん中に写っている一番明るい星を、
PIの3Dプロットで表示。


画像処理

画像処理を進めていてすぐに、今回はイルカ星雲本体の青よりも、背景の赤がポイントではないかと思うようになりました。
  1. まず、イルカさんの中にも赤い部分が存在しているようで、今回程度のHαの露光時間では全然分解して表現できていないように思います。
  2. 背景の左側の赤い部分は、周辺減光か分子雲かの見分けがつきにくかったのです。特に左下の暗くなっている部分は暗くなっていますが、これは周辺減光なのか迷いました。他の方の画像を見ると確かに暗くなっているので正しいようです。
  3. 右側と上部には、かなり濃い波のような分子雲があり、こちらはHαだけでなくOIII成分も持っているようで、左下の赤とは明らかに違った色合いになり面白いです。
  4. 画面真ん中の星雲本体の周りに、下から右上方向に進むかなり淡い筋のような模様が見えますが、これも迷光などではなく本当に存在するもののようです。この筋はHαだけでなくOIIIにも存在するので、ここでも色の変化が見られとても興味深いです。

背景の淡い部分を出すには、フラット化がどこまでできるかがとても重要です。通常のフラットフレームを撮影してのフラット補正は当然として、それだけでは取りきれない
  • 輝度勾配
  • 周辺減光の差の残り
  • ライトフレーム撮影時とフラットフレーム撮影時の迷光の入り具合の差
など、大局的な低周波成分の輝度差が、淡い部分のあぶり出しを阻害してしまいます。

私はフラットフレームは晴れた昼間の部屋の中の白い壁を写しているので、どうしても窓側と部屋中心側で輝度差が出てしまいます。これはABEの1次で簡単に補正できるので、まずはHαもOIIIもインテグレーション後にすぐにABEの1次をかけます。ABE1次の後は出てきた画像を見て、毎回それぞれ方針を考えます。


GraXpert

実は今回、フラット化のために最近人気のフリーのフラット化ツールGraXpertを使ってみました。以前からインストールはしていたのですが、ほとんど使ったことはありませんでした。

今回GraXpertをPixInsightから呼び出せるようにしようと思って、この動画にあるように

https://www.ideviceapps.de/PixInsight/Utilities/

をレポジトリに登録して、ScriptのToolboxの中のメニューにも出てきたのですが、いざPixInsightからGraXpertを呼び出すと「GraXpertの最新版が必要」と言われました。アップデートしようとして最新版をインストールしたわけですが、アップデート後PIから呼び出しても、どうも動いている様子が全くありません。確認のために、まずは単独でGraXpertを立ち上げてみましたが、セキュリティーの問題を回避した後もうまく起動しません。ちなみにMacのM1です。

それでどうしたかというと、アプリケーションフォルダのGraXpertをフォルダから右クリックして「パッケージの内容を表示」でコンテンツの中身を見てみます。ContentsのMacOSの中にあるGraXpertがターミナルから起動できる実行ファイルで、これをダブルクリックすることでエラーメッセージを確認することができます。今回はいくつかpyhthonのライブラリが足りないとか出ていたので、手動でインストールしたのですが、結局解決せず。

そもそもメインPCのpython関連はそんなに変なことをしていないので、おかしいと思い調べたら、最新版はMac OS 13.6以上が必要とのこと。私はアップデート後のトラブルが嫌であまり最新のOSには手を出していなかったのですが、自分のバージョンを見たら12.4とか2世代も古いです。仕方ないので久しぶりにOSをアップデートし、一気に14.2.1のSonomaになって、無事にGraXoertが立ち上がりました。

ちょっと蛇足になってしまいましたが、
  • うまくいかないときはターミナルから立ち上げてエラーメッセージが確認できること
  • OSのアップデートが必要なこともある
というのが教訓でしょうか。

さてGraXpertの結果ですが、背景の星雲の形が大きく変わってしまい、残念ながら撃沈でした。比較してみます。最初がABEのみでフラット化したもの、
Image19_ABE4

次がGraXpertで今回は見送ったものになります。AIとKrigingで試しましたが、大きな傾向は変わりませんでした。画像はKrigingのものです。
Image13_SPCC_GX_K

違いは左下の濃い赤の部分で、GraXpertではムラと判断され、取り除かれてしまっています。また、イルカ星雲本体があるあたりの背景のHαも同様に取り除かれてしまっています。

このように、背景全体に分子雲が広がっているような場合は非常に難しく、DBEでもあまりいい結果にならないことがわかっているので、今回は再びHαとOIIIに戻って、今一度注意深くABEのみで処理することにしました。 GraXpertの方が良い結果を出す場合もあると報告されているので、実際のフラット化処理の際には一意の決まり手は存在せず、毎回臨機応変に対応すべきなのでしょう。


ABEのみでのフラット化

さて、今回最終的に使ったABEの具体的な手順を書いておきます。これも今回限りそこそこ上手くいったと思われる、あくまで一例です。
  • Hα: ABE1次、ABE2次
  • OIII: ABE1次、ABE2次、ABE3次、ABE3次 
として、ここでAOO合成。その後さらに
  • AOO: ABE4次
として、やっと落ち着きました。繰り返しになりますが、どれも決まった手順とかはなく、その場その場で画像を見ての判断です。

ポイントは
  1. 過去に他の人が撮影した画像などを参考にして、自分の背景がおかしすぎることがないこと
  2. オートストレッチで十分に炙り出せる範囲にフラット化を進めること
の2点でしょうか。それでも特に2にあるように、あぶり出しやすくするためにというのを主目的でフラット化しているので、正しい背景からずれてしまう可能性は否定できません。さらに1も、淡いところをどんどん出していくと、参考にできる他の画像自体も数が限られてしまうようになるという問題もあります。

こうやって考えると、PixInsightのMARSプロジェクトにかなり期待したいです。何が正しい背景で、何がカブリなどのフェイクかの指標を示してもらえるのは、とてもありがたいです。もちろん、誰も到達していないような淡さなどは当然データベースに登録されないと思うので、限界はあるはずです。でも私みたいな庭撮りでやっている範囲では、十分な助けとなってくれると思います。


とりあえずの画像処理

1月19日の金曜の夜、SLIMの月面着陸の様子をネットで追いながら、画像処理をしていました。着陸後、結果発表までかなり時間があったので、寝るのは諦めてのんびり進めます。その時に一旦仕上げて、Xに投稿したのが以下の画像です。

Image19_ABE4_SPCC_BXT_back3_cut

イルカ星雲本体はかなりはっきり出ています。イルカなのでOIIIの青がよく似合っています。また、背景の赤もかなり出ているのではないでしょうか。ナローバンドと言えど、自宅で背景がここまで出るのなら、結構満足です。周りの赤いところまで出してある画像はそこまでないのでしょう、結構な反響がありました。

イルカ星雲本体に含まれる赤はもっと解像度が欲しいところですし、全体に霞みがかったようになってしまっています。淡いOIIIを無理して強調した弊害です。OIIIフィルターにバーダーの眼視用のものを使っていることが原因かと思われます。IR/UVカットができないために、青ハロが目立ち、その弊害で霞みがかったようになってしまっています。


Drizzle+BXTが流行!?

土曜の朝起きて、いつものコメダ珈琲に行き、画像処理の続きです。改めて昨晩処理したものを見てみると、ノイズ処理がのっぺりしていて、恒星の色も含めて全然ダメだと反省しました。特に、拡大するとアラが目立ちます。

そもそもε130Dの焦点距離が430mmとあまり長いものではないので、画角的にイルカ星雲本体が少し小さくなってしまいます。後から拡大しても耐え得るように、WBPP時にDrizzleの2倍をかけておいて、Drizzle+BXT法で、イルカさん本体の解像度を上げてみます。



下の画像は、左がDrizzle x1で右がDrizzle x2、上段がBXT無しで下段がBXTありです。差が分かりにくい場合は画面をクリックして、拡大するなどして比べてみてください。

comp2
  1. まず上段で左右を比べると、Drizzleを2倍にすることで、恒星の分解能が上がっていることがわかります。
  2. 次に左側で上下を比べると、(Drizzleは1倍のままで) BXTの有無で、恒星が小さくなり、背景の細かい模様もより出るのがわかります。ただし、画像の解像度そのもので分解能は制限されていて、1ピクセル単位のガタガタも見えてしまっています。
  3. さらに下段のみ注目して左右を比べると、右のDrizzle2倍にさらにBXTをかけたものでは、恒星のガタガタも解消され、かつ背景もピクセル単位のガタガタが解消されさらに細かい模様が見えています。
このように、Drizzle+BXTで、恒星も背景も分解能が上がるため、圧倒的に効果ありです。

ところでこのDrizzle+BXT法ですが、2023年5月に検証して、その後何度がこのブログ内でも実際に適用してきたのですが (1, 2, 3) 、最近のXでの天リフ編集長の「効果があるのかないのか実はよくわからなかった」という発言にあるように、当時は余り信用されなかったようです(笑)。


ところが上のリンク先にもあるように、ここ最近だいこもんさんや他の何人かの方が同様の方法を試してくださっていて、いずれも劇的な効果を上げているようです。とうとう流行期がきたようです!

この手法を科学的な画像としてそのまま使うことはさすがにできませんが、鑑賞目的ならば、本物のさらに細かい構造が見えてきている可能性があると思うと、夢が大きく膨らむのかと思います。多少の手間と、(一から揃えるとPixInsightとBXTでそこそこの値段になるので) あまり多少ではないコストになりますが、それでも対する効果としては十分なものがあるのかと思います。

土曜日はこんなことをやっていて、力尽きました。


Drizzle x2

日曜日もほぼ丸一日かけて、Drizzle x2の画像の処理を進めます。なかなか上手くいかなくて、バージョン10まで進めてやっとそこそこ納得しました。あとから10段階を連続で見てみると、徐々に問題点が改善されていく過程がわかります。

金曜夜中に処理したDrizzle x1と、日曜夜遅くにDrizzle x2で最終的に仕上げた後の画像の比較してみます。ともにBXTをかけたものです。

まずはDrizzle x1
x1

次にDrizzle x2です。
x2

画像処理にかけた気合と時間が大きく違うこともありますが、それにしても結果が全然違います。では一体何をしたかというと、大きくはノイズ処理の見直しと、恒星の処理の見直しです。


Drizzle後のノイズ処理

特にノイズ処理は結構大変で、少し油断するとすぐにモワモワしてしまったり、分解能が悪くなったりで、全然上手くいかなかったです。でも筋道立てて丁寧にやっていくと、なんとか解は存在するといった感じでしょうか。

まず、ノイズ処理で気づいたことが一つあります。Drizzleで解像度2倍にした画像にはノイズ処理が効かないことがあるようです。興味があったので少し調べてみました。

今回試してみたノイズ処理ソフトは
  • Nik CollectionのDfine 2
  • PhotoshopのCamera RAWフィルターのディテールのノイズ軽減
  • DeNoise AI
  • NoiseXterminator
です。この中で効果があったのはDfine 2とNoiseXterminatorでした。他の2つは元々大きな構造のノイズが苦手な傾向があることは気になっていましたが、今回Drizzleで2倍の画素数にしたため、同じノイズでもより細かい画素数で表現されるようになり、相対的に大きな構造のノイズを扱っているような状態になったのかと推測します。まだ少し試しただけなので検証というレベルではなく、他のノイズ処理ソフト、例えばTGVDenoiseなどのPIのノイズ処理関連なども含めて、もう少し調べる必要があると思います。それぞれ得意な空間周波数があるような気がしています。

結局今回使ったのは、PI上でNXT、Photoshop上でDfine 2でした。これでモコモコしたノイズが残るとかを避けることができました。またNXTはカラーノイズ対策はできないので、カラーノイズはDfine2に任せました。


結果

結果です。拡大しないと一見、金曜夜中の画像とそこまで変わらないと思えるかもしれません。でも、少し細部を見ると全く違います。

「Sh2-308: イルカ星雲」
Image17_ABE4_SPCC_BXTx3_HT_HT_back7_cut_low
  • 撮影日: 2023年12月5日0時3分-3時9分、12月9日0時2分-1時5分、12月29日22時3分-30日4時20分、2024年1月4日20時50分-22時43分、その他2夜
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm、R、G、B
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 39枚、OIII: 59枚、R: 8枚、G: 9枚、B: 8枚、の計123枚で総露光時間10時間15分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

私的にはかなり満足なのですが、子供に上の画像を見せたら「霞んで見えるのが惜しい」と言われました。ナローバンドフィルターは星まつりで安いB級品をちょくちょく集めてきたのですが、パッと手に入れることができた眼視用OIIIフィルターだと多分もう厳しいので、新品で購入してしまった方がいいのかもしれません。でも新品でも在庫がないみたいです。いっそのことUV/IRカットフィルターを重ねてしまうのも手かもしれません。

上の画像は拡大すると真価を発揮します。イルカに見えるように画像を90度左回転し、左に明るい赤の壁を置くような構図にしてみました。

Image17_ABE4_SPCC_BXTx3_HT_HT_back7_rot_half2_wall
恒星の色もでているかと思います。大きくクロップしたとは思えないくらいです。

さらにイルカ星雲本体のみにしてみますが、ここまで拡大してもまだ大丈夫かと思います。
up2

この画像も子供に見せたら、「イルカの中の赤いところがまだ出ていない。頭のところにある脳みそみたいなところはまだマシだが、下の心臓の形はもっと出るはずだ」とか言われて、どこからか検索してきたもっと細部が出ている画像を見せられました。でもその画像の説明を見たらそもそも大口径の350mmでf/3、撮影時間がなんと45時間...、さすがに太刀打ちできるはずもないです。

超辛口な息子の意見に少したじろぎましたが、ナローバンドだとしても自宅撮影でここまで出るなら、もうかなり満足です。あとは毎回コンスタントにこれくらいまで出すことができるかでしょうか。もう少し練習が必要な気がしています。


まとめ

金曜夜から土日のほとんどを画像処理にかけてしまいました。やり直しを含めて、今回は丁寧な処理の画大切さを実感しました。淡いところを出すときは、特に慎重に手順を考えて処理しないとすぐに破綻してしまいます。

結局これ1枚に32時間くらい画像処理にかけたので、ちょっとスキルが上がったはずです。1枚に集中してできる限りのめり込むことは、かなり効果があるのかと思います。

でも次のダイオウイカとまともに戦えるとはまだ思えません。今のところ全然ノイジーです。ダイオウイカ星雲はそれくらい手強いです。


2年近く前に自宅から撮影したSh2-240、かなり淡く、当時はFS-60CB+CBP+EOS 6Dで12時間越えとかなり頑張ってみたのですが、画像処理で相当無理して出していたのがわかります。

 

結果を見ても明らかですが、これは敗退だったと言えるでしょう。

今年の春にε130Dを購入した最大の理由が、このリベンジです。無理ナントだった、超新星レムナントを自宅でどこまで出すことができるのか?特に前回は全く出なかったOIIIの青が、自宅でも本当に出るのかがポイントです。


Sh2-240の下調べ

今回のターゲット、皆さんなんて呼びますか?Sh2-240という呼び名が多分一番メジャーでしょうか?一方、Sim147(シメイズ147, Simeis 147)という名前も持っています。通称はスパゲティ星雲 (Spaghetti Nebula) と呼ばれていて、これは最初日本語で誰かがつけたと思っていたら、英語のWikidiaとかにも普通に載っているので、どうも世界的に一般にこの通称で呼ばれているようです。

星雲としてはかなり大きくて、見かけの直径は約3度もあります。月が0.5度くらいなので、一辺で6個分、面積だと36倍の大きさです。おうし座からぎょしゃ座にかけて広がるレムナント(超新星残骸)です。約3000光年先にあるとのことで、10万年ほど前に現れてこの大きさにまで広がったようです。一つの超新星爆発がこんな複雑な形を作るのは、まさに宇宙の神秘かと思います。

ちょっと脱線ですが、Sh2はシャープレスカタログ(Sharpless catalog)と呼ばれていて、淡い天体を撮影しようとするとすぐに候補として出てきます。




アメリカの天文学者スチュワート・シャープレスが、パロマー天文台のスカイサーベイからの画像を使用して銀河系のHII領域を調査し、1953年にSh1として142天体をカタログに登録、その後1959年に第2版とのSh2として313の天体を登録しているとのことです。

シャープレスカタログはまだいいのですが、シメイズカタログは調べてもあまりよくわかりませんでした。日本語だとHIROPONさんのページくらいしか引っ掛からなくて、

「クリミアにあるシメイズ天文台で、ソ連の天文学者ヴェラ・ガゼ(Vera Fedorovna Gaze, 1899~1954)とグリゴーリ・シャイン(Grigory Abramovich Shajn, 1892~1956)によって1955年に編集された散光星雲のカタログです。カタログはクリミア天体物理天文台の会報に掲載されており、主に北半球にある306個の散光星雲を一覧にしています。有名な天体としては、おうし座~ぎょしゃ座にかけて存在する超新星残骸Simeis 147(=Sh2-240)があります。」

とあります。「シメイズ」と検索しても、ほぼシメイズ147しか結果が出てこなくて、色々調べてやっとSimbadの中のカタログまで辿り着きました。232個が登録されているようです。


久しぶりのε130D

ε130Dですが、5月にアメペリ星雲網状星雲おとめ座銀河団を撮って以来になります。これまではテスト撮影のようなもので、
  • bin2と分解能とBXTの関係
  • 淡いOIIIがどこまで出るか
  • bin1で系外銀河の描写がどこまで可能か
など、かなり実験的です。いずれも、ε130Dの分解能と口径の大きさを遺憾なく発揮した結果となりました。

その一方で
などが問題点として浮かんできました。今回の撮影の前に、上記二つの問題に対してもある程度解決の目処をつけようとしています。


星像の改善

まず最初の問題、星像についてですが、コリメートアイピースを利用しての光軸調整自身は何度かしてみました。でも、何度調整しても結果として毎回同じようなズレになるので、通常の光軸調整とは別のシステマティックなずれがあるような気がします。

具体的な問題としては、
  • 鏡筒に付いている回転装置を回すと、像が変わる。
  • 四隅の星像が流れる。特に、縦方向に像の上下でピントの内外が違うのがはっきりわかる。
などがあります。これらのことから、光軸というよりはスケアリングがずれているのではないかと考え、K-ASTECのスケアリング調整が可能なテーパーリング接続キットを購入しました。



IMG_8512

オフアキは使わないので、上の写真の右のように12.5mmの延長リングも合わせて購入したのですが、これはカメラ付属の5mm幅のセンサーチルトアダプターを「付けたまま」接続します。最初勘違いしていて、このセンサーチルトアダプターを外して組んでしまい、星像が改善しないと悩んでいました。一度スターベースに遊びに行った時に星像が合わないと相談して、スタッフの方の指摘で気づきました。どうもありがとうございました。

その後、スケアリング調整です。接眼部の鏡筒側の回転装置を回転させて、縦にしても横にしても、きちんと遠方の景色のカメラ中心がずれないように、合わせました。このこともスターベースで話したのですが、カメラ中心基準だとテーパー部のネジの締め具合で中心位置がずれてしまうので、回転させた時に中心が基準にならないかもという指摘をうけました。そのため、ネジの締め具合が毎回均等になるようにして中心の再現性がある程度あることを確認してから、回転させても遠方景色の中心がずれないようにスケアリングを調整しています。

IMG_8659
こんな風に回転装置でフィルターホイールごと回転させて、
遠方を見ながら、カメラ中心がずれないようにスケアリングを調整しました。

今回の撮影での四隅の様子です。
2023_11_21_03_22_49_ASI6200MM_2x2_A_300s_g100_9_80C_mosaic
まだ左下と左真ん中が縦に伸びていて、右上が右斜め方向に伸びています。

それでも調整前の北アメリカ星雲の時などは下のようで、真ん中以外全方向が伸びていたので、かなり改善されています。
_2023_05_04_00_51_54_A_9_90_300_00s_0001_mosaic

下の画像は、RGBを5分9枚づつインテグレートしたものですが、方向が多少散らされるのか、さらに目立たなくなります。
Image04_ABE_DBE1_mosaic01
それでも強拡大すると、完全に伸びがなくなっていないのがわかりますが、私的には許容範囲です。それよりも青が少しずれているのが気になるくらいなので、ここまで調整できればよしとします。

ちなみに、上のものにBXTをかけるとさらに星像は引き締まり、青のずれもなくなり、真円に近づきます。それでもまだ左下は少し縦に伸びています。
Image04_ABE_DBE1_mosaic

これくらなら歪みと言っても微々たるものなので、私的には結構満足です。今後ε130Dでもどんどん撮影していこうと思います。

ところで今回の星像の改善に一番効いたと思われるのは、実はスケアリングではなく、バックフォーカスでした。もともとε130Dにタカハシ純正のCanon用の変換アダプターを付けて、カメラ側にZWOのCanonマウントアダプターを使っていたのですが、これだと指定のバックフォーカス長の56.2mmぴったりで、フィルターの厚みなどを光量すると、微妙に長さが足りないのです。K-ASTECのテーバー接続リングは、あらかじめ1mmほど長く設定して出荷され57.2mm -0.2,+0.8の範囲で調整できます。実際にはもう少し伸ばしましたが、以前より1.5mmほど伸ばしたことが星像の改善に一番貢献したものと思われます。


フードの影響

今回簡易的に鏡筒先端にフードを付けてみました。

IMG_8784

ε130Dでこれまでフラット補正がうまくいかなかった原因の一つが「フードを取り付けていなくて周辺の光が入り込み、その光の入り込み具合が赤道儀の回転とともに変わっていって、単一のマスターフラットファイルでは補正しきれないのでは」と考えたからです。フード自身はまだ仮のもので、福島の星まつりで特価で手に入れたものを使いました。

今回はRGBAOと5種類撮影しましたが、その中でB画像の迷光が一番ひどく見えました。スタック後のBにABEの4次をかけて、オートストレッチの強い方をかけたものです。
masterLight_BIN_2_EXPOSURE_300_00s_FILTER_B_ABE

まだかなり残っていますが、HαやOIIIはこれより大分マシだったので、これがMaxだと思ってください。

下は以前おとめ座銀河団を撮影した際に、フードなしで撮ったスタック後のL画像にABEの4次をかけて、オートストレッチの強い方をかけたものです。

masterLight_BIN_1_EXPOSURE_300_00s_FILTER_L_ABE

L画像とB画像なので直接比較は不公平かもしれませんが、フードで少しマシになったようにも見えます。それでもフードが解というには厳しくて、やはりε130Dと付き合っていくには非対称的な迷光を許容していく必要がありそうです。

というより、この非対称性って接眼部が横についていることからきている可能性が高いと思っていて、ε130Dだけの問題ではなく、そのような形の反射型全般の構造的な問題かと思っています。

「そんなの出てないよ」という方も、フラット画像にABEの4次をかけて、オートストレッチの強い方をかけてみてください。できれば中心だけを見るのではなく、CMOSカメラのAPSCとかフルサイズクラスで見ると外の方に見えるのかと思います。「CMOSカメラ」とあえて書いたのは、一眼レフカメラだとカメラ本体のミラー部のケラレが上下に出てしまう可能性があるからです。そのケラレでの光の落ち方の大きさが、今議論している迷光の模様よりも大きい場合があって、ストレッチで炙り出してもケラレの方で制限されてしまい、迷光の微妙な違いがわからないことがあります。画像処理によっては問題にならないレベルかもしれませんが、今回のように淡いところを強度にあぶり出していく場合は、どうしても問題になってきます。

あ、ブログを書いていて最後に見直した時に思ったのですが、よく考えたら今回のフラット、以前のものを使い回しています。フードのない時に撮ったフラットということです。フードをつけて取り直したらもう少しマシになるかもしれません。休日で、天気のいい昼間に撮り直してみます。
 

撮影時

撮影は11月20日から22日の3日間に渡りました。上弦の月を過ぎた頃で、前半は月も明るくSh2-240自体の高度も低いので、どの日も後半がメインとなります。初日の前半は準備と星像確認に費やし、0時頃から撮影開始でした。

フィルターですが、前回はCBPでした。今回はカメラもモノクロなので、HαもOIIIも個別のです。どちらもBaaderのものになり、バンド幅もかなり小さくなるのでコントラスも向上するはずでが、OIIIが眼視用で青ハロが出ることがわかっているので、少し気になるところです。

2日目と3日目は、前半まだSh2-240の高度が低いので、その間クワガタ星雲を撮影しました。半月越えの月が出ていますが、ナローバンド撮影なのでなんとかなるかどうかのテストも兼ねています。この話はまた別の記事で書こうと思います。

2日目の後半は順調に枚数を稼いだのですが、途中でPCに繋げてあるバッテリーが落ちたようで、残されたファイルを見ると午前3時過ぎのものが最後でした。

3日目前半のクワガタ星雲の撮影後に、急遽Sh2-240のRGBを個別に撮ることにしました。以前の北アメリカ星雲のAOO撮影で赤の淡いところを出すのに無理をして、恒星の色がおかしくなり、恒星の周りに赤ハロのようなものが目立ってしまったからです。短時間ながらもRGBで別撮りしておけば、恒星の色もある程度残るのではとの期待です。各色5分で9枚、45分づつ撮影しました。3日目の後半は途中から風がすごいことになってきたので、午前3次頃に中断して片付けました。

そうそう、Xではつぶやいたのですが、最近自宅の近辺でクマの被害がかなり出ています。歩いて行ける距離の所で一人亡くなっていて、さすがにそのクマは駆除されたのですが、その後も車で5分くらいのところでも二人襲われています。さらに、これも自宅から5分くらいのところですが、いつも仕事に行く時に使う道を横切るクマの映像がニュースで流れていました。

実際の撮影は冗談抜きでクマに怯えながらでした。できる限り外に出ている時間を短縮して、セットしたらあとはプレートソルブやEAFを駆使してリモート撮影に徹底します。それでも反転の時だけは心配で、その場に行ってケーブルとかが引っかからないか見ながら、マニュアルで反転してました。


ビニングについて

元々今回の記事の中でビニングについて書こうとしていましたが、結構な分量になってしまったので、独立した記事としました。詳しくは前回の記事を見てください。

少しだけ書いておくと、富山の自宅でスカイノイズが大きいことを緩和するために、bin2でソフトウェアビニングをかけて撮影し、輝度を上げショットノイズのS/Nを上げようとしました。

 

bin1に比べて4倍の露光時間をかけたことに相当しますが、それでも露光時間がまだ足りないか、もっと暗いところに行くべきなのかと思います。ちなみに、今回の撮影時間がトータル12時間なので、bin1で撮影していたらショットノイズに関しては、48時間撮影したのと同等のS/Nとなります。


画像処理

まず、OIIIの一枚画像を見てみます。ABEの4次をかけ、強い方のオートストレッチをかけます。何か模様は出ているようです。これならスタックさえすればなんとかなりそうです。

2023_11_21_00_34_08_2x2_O_300_00s_g100_10_00C_0005_ABE

次にPixInsightのWBPPが終わった段階のマスターOIII画像を改めて見てみます。ABEの4次をかけ、強い方のオートストレッチをかけます。淡いながらも(この時点では)十分に出ていると思いました。

masterLight_BIN_2_300_00s_FILTER_O_integration_ABE

Hαも同様に見てみますが、OIIIがでているので、Hαは余裕と思っていました。

masterLight_BIN_2_300_00s_FILTER_A_mono_drizzle_1x_ABE

でも、その後の画像処理は困難を極めました。やはり淡い青がつらいのです。青が出てると言っても、そもそも青単独のところは一部で、多くは赤と重なっていて仕上がりで明るい紫になります。単独の青は、もっと淡いところにまだ隠れいているようです。今回の条件ではそこまで届きませんでした。

青は他にも問題があって、そもそも今回使っているOIIIフィルターが眼視用で、どうもUV/IR領域がカットされていないようなのです。そのため、青ハロができてしまったりして強度の炙り出しが難しくなります。無理に出そうとすると、その青ハロが霞を増加しているように見えてしまい、処理を難しくしています。青ハロだけでなく、淡い天体部分と背景の輝度がかなり近い(背景ノイズが大きい)ので、淡いところを出そうとすると無理が出ます。


drizzle x1の効果

Niwaさんが、SPCCをする際は1倍でもいいのでdrizzleをするといいとの記事を書いてくれています。ノイズが少し軽減され、背景が緑化されるのを防ぐこともできるそうです。私は緑化で困ったことはないのですが、1倍なら特にファイルサイズが増えることもないので、ノイズが軽減されるならと試してみました。

drizzleされたマスターライトとものと、されていないマスターライトができあがるので、PixInsightのスクリプトからSNRを比較してみました。結果はdrizzleしたものがSNR = 7.475e+04 、してないものがSNR = 4.222e+04とのことで、2倍近くの向上がみられました。

comp1

上の画像は、左がdrizzleなしの通常の処理、右が1倍のdrizzleです。drizzleをかけると、背景のクールピクセルっぽい黒い穴が少なくなっていることがわかります。SN比の向上と一致していますね。その代わりに、少し星像が肥大しているでしょうか?シャープさがなくなったようにも見えます。

多少の不利さもありそうですが、2倍近くのS/Nの向上はかなり魅力的なので、今後も使っていくことになりそうです。


結果

やっと画像処理の結果です。
Image22_DBE_SPCC_back_BXT_HT1_HT2_NXT_SCNRG6_cut
  • 撮影日: 2023年11月21日0時8分-5時23分、11月21日22時48分-22日2時25分、11月22日22時14分-23日3時14分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 48枚、OIII: 70枚、R: 9枚、G: 9枚、B: 9枚、の計145枚で総露光時間12時間5分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

結果を見るに、かなり出たのではないでしょうか!いろいろ苦労はありましたが、今回のレムナント、明らかにリベンジは果たせたと思います。

まず2年前に全く出なかった青は明らかに出ています。赤も無理して出していたものは、かなり複雑な模様まで詳細に出るようになりました。鏡筒だけでなく、ナローバンドフィルター、モノクロ冷却カメラと、機材も総取っ替えで挑んだ甲斐がありました。自宅からでも無理ナントではなかったと言っていいでしょう。

その一方、これで終わりかというと、画像を見てもまだ無理をしている感があるのも事実です。
  • まず、青に関してですが、やはりOIIIフィルターが眼視用のせいか、どうも恒星周りに青ハロっぽいのが出てしまっています。この青ハロの明るさが、淡いところの明るさと同程度になるために、淡いところをこれ以上炙り出すのが難しくなっています。星もとで48mmのOIIIフィルターを特価で見つけた時に、パッと買っておけばと、今でも悔やまれます。
  • 一方、Hαの赤も、よく見るといくつかの大きなリングの中に、ノイズに埋もれそうな淡い構造が明らかに見え始めています。これだけ見てもまだHαの方も露光時間を増やした方がいいいのかと思います。
  • 焦点距離が430mmとまだ微妙に長くて、全景が入っていません。モザイク撮影で周りも少し入れてみたいです。
こうやってみるとまだ不満な点もあるので、できるならもう一度リベンジしたいです。

今回の成果の一つは、ε130Dの星像がしっかりしてきたことです。今後は躊躇せずに、この鏡筒で撮影をどんどんしていきたいと思います。その一方、フードはフラット補正に少しは貢献しましたが、まだ完全な解決までは遠いです。でも他にアイデアもないので、これはもうあるものとして付き合っていくしかないと思います。


ナローバンド撮影と光害の関係

ナローバンドで、明るい月夜や明るい場所と、暗い場所でどれくらいスカイノイズに差が出るのか、今後きちんと実測と計算をしてみたいと思います。もしかしたらナローバンドフィルターの影響が強くて、意外なほど周りの明るさがあっても撮影結果に差が無いのではとも少し思っています。ナローで淡いところを出す場合、光害はあまり関係なく、いかに天体を明るく撮るかにかかっていて、口径、F値、露光時間、ピクセルサイズなどで決まってしまうのではないかという推測です。

もしこれが数値的に示されたとすると、自宅で撮るのは環境的には決して難しいことではなく、あとは機材と露光時間の根性という話になります。あ、ビニングなどの工夫もありますか。

暗いところにいって、ナローバンド撮影をしてみればすぐに判明するので、いつかまた遠征した時にナローで撮影して差を見てみたいと思います。


ビニング x drizzle x BXT

もう一つのアイデアです。

今回bin2で撮影しましたが、いわゆるソフトウェアビニングなので、bin1で撮影してから、画像処理の段階でPC上でbin2にしても同じことになります。しかも、16bitカメラなので後からビニングして32bitファイルに書き込めば、4倍の明るさになるのでダイナミックレンジは2bit得するはずです。

今回は後からのビニングができるのかわからなかったので撮影時にビニングしていますが、元のbin1の解像度が高すぎるので、bin2でもまだ十分な解像度があります。いっそのことここから更にビニングしてbin4相当にして更に4倍の明るさにして、でも流石にそれだと解像度がしょぼくなりすぎるので、drizzleで2倍にするというのもありだと思います。

もちろんそれだけだとS/Nは得しても、解像度に関してはあまり得しないので、この状態でBXTをかけるというアイデアです。drizzleとBXTは相乗効果が非常に高い可能性があることはすでに検証しているので、
 
解像度がほぼ今のままで、更に淡いところを出せるかもしれません。bin4だとすると今回のbin2に比べたら4倍、元のbin1に比べると16倍の露光時間になります。今回トタールで12時間半の撮影時間なので、16倍ならちょうど200時間の撮影時間と同等ということになります。自宅撮影の可能性をさらに広げてくれるかもしれません。分解能がどこまで犠牲になるかも注意しながら、余裕があったら試してみたいと思います。


まとめ

長い記事になってしまいましたが、半年くらいの細々とやっていたε130Dの調整も入っているので、実際にはまだまだ書き足りないくらいです。念願だった自宅レムナントがやっと出てくれたので、かなり満足している一方、まだ十分でないこともわかったので、いつかまたリベンジしたいと思います。

これでε130Dも多少安定して撮影できそうです。今後、どんどん活用していきたいと思います。

次はイカ釣りかな?


日記

コロナの後遺症か、熱がひいてからも数週間体力がなくて、今回やっと望遠鏡を出す気になりました。それでもこのブログを書いている現在もまだ咳が続いていたりします。

この間にも、どんどん試したいことが増えています。SharpCapの惑星ライブスタックとか、SharpCapでガイドなしのdhitherとかです。でももう既に冬型の気圧配置になってしまったのでしょうか、天気が全然ダメです。天気が悪くても、まだノイズ解析は進めたいですし、小海でお借りしたInteractiveの読み込みとかもしたいです。これらもまた、いずれ記事にしたいと思います。時間が全然足りません。


連休中にε130Dのテスト撮影をしているのですが、その画像処理の過程で面白いことがわかりました。このネタだけで長くなりそうなので、先に記事にしておきます。


最初に出てきたε130Dの分解能にビックリ!

今回ε130Dで初の撮影を進めています。満月直前で明るいので、ナローバンド撮影です。初めての機材なので色々トラブルもありますが、それらのことはまた次の記事以降で書くつもりです。とりあえず2日かけてなんとか約2時間半分のHα画像を撮影しました。細かく言うと、ASI6200MM Proのbin1で1時間ぶん、かなり暗かったのでその後bin2で2時間半分撮影しました。

その後、まだ仮処理段階のbin2のHα画像を見てびっくりしました。bin2撮影の2時間半ぶんをインテグレートして、BlurXTerminator(BXT)をかけて、オートストレッチしただけですが、なぜかわからないレベルのすごい分解能が出ています。下の画像はペリカン星雲の頭の部分を拡大して切り出しています。

BIN_2_4784x3194_EXPOSURE_300_00s_FILTER_A_ABE_Preview01

昔FS-60CBとEOS 6Dで撮ったものとは雲泥の差です。
283e6bd1_cut

分解能の理由の一つ

ちょっとビックリしたのでTwitterに速報で流してみたのですが、かなりの反響でした。分解能がいいと言われているε130DにモノクロCMOSカメラなので、ある程度分解能は出ると予想していましたが、予想以上のちょっとした魔法クラスです。

その後、画像処理がてらいろいろ検証を進めていたのですが、魔法の原因の一つは少なくとも判明しました。ちょっと面白いので検証過程を紹介しつつ、謎を解いていきます。


意図せずして高解像度に...

まず、今回大きなミスをやらかしたことです。テスト撮影ではbin1とbin2の2種類を撮ったのですが、それらの画像をPixInsightで同時に処理していました。2種類のマスターライト画像が出来上がるわけですが、ここで問題が起きていたことに後に気づきました。

reference画像をオートで選択していたのですが、そこにbin1のものが自動で選択されてしまっていた
のです。その結果、bin2の低解像度のものもregistration時に強制的にbin1のものに合わせられてしまい、高解像度になってしまっていました。その状態に気づかずにBXTをかけてしまい、予期せずして恐ろしい分解能の画像になっていたというわけです。

その後、気を取り直し再度普通のbin2画像を処理して比較してみると、いろいろ面白いことに気づきました。メモがわりに書いておきます。


1. BXTのPFSの値と解像度の関係

まず、BXTのパラメータですが、恒星の縮小とハロの処理は共に0としてしないようにしました。背景の青雲部の詳細を出すために、PSFを7.0にしてSharpen Nonstellerを9.0にします。

これをbin1画像に適用してみます。この中の一部をカットしたのが以下です。最初の画像と同じものです。少し出しすぎなくらいのパラメーターですが、まあ許容範囲かと思います。

BIN_2_4784x3194_EXPOSURE_300_00s_FILTER_A_ABE_Preview01

これをそのまま同じBXTのパラメーターでbin2画像に適用してみます。明らかに処理しすぎでおかしなことになっています。許容範囲外です。
bi2_bad_BXT_BIN_2_4784x3194_300_00s_FILTER_A_Preview01

次に、bin2画像は解像度が半分になっていることを考慮し、PSFを7.0から3.5にします。するとbin1でPSF7.0で処理した程度になります。これをbin2画像に適用します。

bin2_good_BXT_BIN_2_4784x3194_300_00s_FILTER_A_Preview011

bin1にPSF7.0で適用したのと同じくらいの効果になりました。これでbin1とbin2に対するBXTの効果が直接比較ができるようになったと考えることができます。

このことはまあ、当たり前と言えば当たり前なのですが、BXTのPSFは解像度に応じて適時調整すべきという教訓です。もちろんオートでPSFを決めてしまってもいいのですが、オートPSFはいまいち効きが悪いのも事実で、背景の出具合を調整したい場合はマニュアルで数値を入れた方が効果がよく出たりします。


2. referenceで解像度が倍になったのと、drizzleで2倍したものの比較

referenceで解像度が倍になったのと、drizzleで2倍したものの比較をしてみました。これはほとんど違いが分かりませんでした。下の画像の左がreferenceで解像度が倍になったもの、右がdrizzleで2倍にしたものです。かなり拡大してますが、顕著な差はないように見えます。
comp1

これにBXTをかけた場合も、ほとんど違いが分かりませんでした。同じく、左がreferenceで解像度が倍になったもの、右がdrizzleで2倍にしたものです。
comp2

この結果から、わざわざbin1を撮影してフィットとかしなくても、bin2でdrizzleしてしまえば同様の分解能が得られることがわかります。


drizzleで2倍にしてBXTをかけた場合

次に、bin2で撮影したものと、bin2で撮影したものをdrizzleで2倍にした場合を比べてみます。左がbin2で撮影したもので、右がbin2をdrizzleで解像度を2倍にしたものになります。左のbin2の拡大はPhotoshopで細部を残しすようにして2倍にしましたが、やはり一部再現できてないところもあるので、もと画像を左上に残しておきました。
comp1b

それでもちょっとわかりにくいので、PCの画面に出したものをスマホで撮影しました。こちらの方がわかりやすいと思います。左がbin2で撮影したもので、右がbin2をdrizzleで2倍にしたものです。(わかりにくい場合はクリックして拡大してみてください。はっきりわかるはずです。)
658E3BF1-9F61-4E65-BAE0-340184B9DC67

ぱっと見でわかる効果が微恒星が滑らかになることです。ですが、背景に関してはそこまで目に見えた改善はなさそうに見えます。

ところが、これにBXTをかけた場合、結果は一変します。明らかに2倍drizzleの方が背景も含めて分解能が上がっているように見えます。(と書きたかったのですが、どうも画像を2倍に大きくするときにやはり補正が入ってよく見えすぎてしまい、右とあまり変わらなく見えます。ここら辺がブログでお伝えできる限界でしょうか。実際には左上の小さな画像と、右の画像を比べるのが一番よくわかります。)
comp2b

同じくわかりにくいので、これもPCの画面に出したものをスマホで撮影しました。左がbin2で撮影したもので、右がbin2をdrizzleで2倍にしたものに、それぞれBXTかけています。
27718827-C94A-4A1D-B101-0A9F619FC62F

この右のものは、最初に示したbin1画像を参照してしまって予期せずして解像度が倍になった場合の結果とほぼ等しいです。

どうやら「BXTは画像の解像度を上げてから適用すると、背景の分解能を目に見えてあげることができる」ということがわかります。解像度を上げたことで情報をストックする余裕が増えるため、BXTで処理した結果をいかんなく適用保存できると言ったところでしょうか。言い換えると、BXTが普通に出す結果はまだ表現しきれない情報が残っているのかもしれません。これが本当なら、ちょっと面白いです。


分解能が増したように見える画像を、解像度2分の1にしたらどうなるか

では、解像度増しでBXTで分解能が増したように見える画像を、再度解像度を半分にして元のように戻した場合どうなるのでしょうか?比較してみます。左が1で得た「bin2にBXTをPSF3.5で適用した画像」、右が「一旦解像度を増してBXTをかけ再度解像度を落とした画像」です。

comp2c

結果を見ると、そこまで変化ないように見えます。ということは、解像度自身でBXTが出せる分解能は制限されてしまっているということです。

ここまでのことが本当なら、BXTの能力を引き出すには、drizzleで画像自身の解像度を上げてからかけたほうがより効果的ということが言えそうです。


まとめ

以上の結果をまとめると、
  • drizzleは適用した方が少なくとも微恒星に関しては得をする。
  • BXTと合わせると背景でも明らかに得をする。
  • drizzleして分解能を上げるとBXTの効果をより引き出すことができる。

ただしこのdrizzle-BXT、拡大しないとわからないような効果なことも確かで、そもそもこんな広角の画像で無駄な分解能を出して意味があるのかというツッコミも多々あるかと思います。それでも系外銀河など小さな天体にはdrizzle-BXTは恩恵がある気がします。まあ取らぬ狸の皮算用なので、小さな天体で実際に検証してから評価するべきかと思います。

今回の効果はおそらく意図したものではないと思いますが、BXT ある意味すごいポテンシャルかと思います。ここまで明らかに効果があると思うと、過去画像もdrizzleしてもう少しいじりたくなります。

このページのトップヘ