ほしぞloveログ

天体観測始めました。

タグ:AOO

手持ちの未処理画像のうち、最後のもの取り掛かりました。昨年9-10月に撮影した勾玉星雲です。


撮影 (記録によると)

撮影日は2024年の9月30日。もうだいぶ前のことなので、ほぼ記憶はゼロです。記録から書き起こします。

この日の前半は、ε130Dで (これも少し前にやっと画像処理を終えた) 網状星雲の撮り増しをしていました。でもこの日、カメラの凍結防止ヒーターを入れ忘れて、途中から画面中心が結露してしまいました。しかもずっと気づかなかったので、かなりの範囲で結露してしまったみたいで、カメラの温度を0度より上に上げるだけでは全然解消しません。一旦常温まで戻して、30分程度放っておいたのですが、まだ結露は完全に取れず。次に、凍結防止ヒーターを入れて、温度をとりあえず5度くらいまで下げて、さらにしばらく待つと、やっと結露が無くなりました。

その間に網状星雲の撮影可能時間も過ぎてしまい、後半になって何を取るか迷ったのですが、カメラを回転させることなくちょうど画角的に入りそうな、勾玉星雲を撮影することに決めました。勾玉星雲は2018年12月に撮影しているので、6年ぶりになります。


前回の撮影は6年前のことなので、機材は鏡筒、カメラ共に進化しました。フィルターは少し迷いましたが、時間も限られているので、まずはRGBとHαにしてみました。以前カモメ星雲でHα領域と、BとかGで色調がうまく出たので、RGBで恒星、RGB背景のRをHαの背景で置き換えるという、同じ手を使う予定でした。ところが、途中から雲が出てしまったようで、R画像とG画像はほとんど使いものになりませんでした。

この日は、ヒータ以外にももう一つ大きなミスをしていて、bin2で撮るつもりがNINA上で設定するのを忘れていてbin1で撮ってしまいました。bin1でファイルサイズが大きくなってしまったこと、ピクセルサイズが小さいということなのでS/Nで考えると露光時間が実質短くなったのと同等なこと、bin1のダーク、フラットファイルが必要になることなどがデメリットです。メリットは分解能が出ることですが、そこまで細かい模様を見たいわけではないので、あまりbin1のメリットは効かないでしょう。

その後、10月11日の夜の後半にチャンスがあったので、初日の撮影と同じく泣く泣くbin1にして、RとGの撮り増しと、あとOIIIも追加で撮影しました。

その後、秋は紫金山アトラス彗星とSWAgTiでの撮影がしばらく続いたので、ε130Dでの撮影はしばらくお蔵入りになっていて、今に至ります。彗星は新鮮度が大事なこと、SWAgTi画像の処理は楽なので先に済ませてしまい、最後に残ったのが今回の勾玉彗星というわけです。残ったというか、残しておいたというか、とにかく北陸の冬場の天気は全く期待できないので、未処理のものを手持ちで置いておきたかったのですが、CP+も終わり落ち着いたのと、どうも今週末くらいからやっと冬場の天気を脱却しそうな予報になっているからです。年が明けて体力も戻ってきたので、また撮影を再開していきたいと思います。


RGB画像へのMGCの適用

さて画像処理ですが、今回はMGCのパラメータを少し探ってみました。その結果、RGBはある程度一意のパラメータに落ち着きました。RGBでやったことの順序と結果を書いておきます。


Gradient scale:
まずは大きな影響のあるGradient scaleを変えてみます。Gradient scaleが小さくなるほど、細かい構造で補正します。
  1. Gradient scale: 1024、Structure separation: 3、Model smoothness: 1
  2. Gradient scale: 512、Structure separation: 3、Model smoothness: 1
  3. Gradient scale: 256、Structure separation: 3、Model smoothness: 1
  4. Gradient scale: 128、Structure separation: 3、Model smoothness: 1
01_RGB
01_grad
画像は1枚目がMGC補正後のRGB画像をBoosted Auto Streatchしたもの、2枚目がMGCでどれだけ補正したかの画像をBoosted Auto Streatchしたものになります。2枚とも、左上からZ字順に比較の1、2、3、4になります。

このパラメータを決定するには2つの要因があります。まずはε130Dを使っていて、迷光の影響 (網状星雲ダイオウイカ星雲スパゲティ星雲おとめ座銀河団)がある (ε130Dだけでなく、強度に炙り出していくと、おそらく反射型一般に同様の迷光があっておかしくないと考えています) こと。この画像の右下の円弧の部分がわかりやすいです。これをきちんと取り除くためには1024と512では不足で、256以下にする必要があるとわかりました。128にすると、補正画像を見ると渦上の構造が出てしまうようで、これは不自然だとして却下しました。これでGradient scaleは256で決定とします。

というか、これでε130Dで散々悩んでいた欠点がとうとう解決するに至ったというわけです。ただし、今のところRGB画像だけ有効で、しかもMARSのデータがある領域が限られているという問題もあります。でもかなり大きな一歩です。


Structure separation:
次に、Structure separationの比較をします。小さい数だと独立した大きな構造内での相対輝度差が小さくなり、大きな数だと構造の相対輝度差を強調するとのことです。直訳ですが、いまいち意味がわかりませんでした。結果を見てパッと理解できたのは、小さな数の方が細かい補正をしていることくらいでしょうか。デフォルトは3です。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 1
  2. Gradient scale: 256、Structure separation: 3、Model smoothness: 1
  3. Gradient scale: 256、Structure separation: 5、Model smoothness: 1
11_RGB
11_grad
画像は左上から1、右上が2、左下が3です。

まず、Structure separationが5の場合は、補正画像で渦上の構造が出てしまい却下です。1と3はあまり差はないですが、本来大きな構造で処理するはずの1の方がよく見ると細かいところも補正できていたりします。とりあえず1を採用しましたが、3でもよかったかもしれません。


Model smoothness:
最後、Model smoothnessを変えてみます。数を大きくするとよりスムーズなモデルを使って補正し、小さくするとエッジや不連続なジャンプを描くようです。デフォルトは1です。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 1
  2. Gradient scale: 256、Structure separation: 1、Model smoothness: 5
  3. Gradient scale: 256、Structure separation: 1、Model smoothness: 10
21_RGB
21_grad
画像は左上から1、右上が2、左下が3です。

5と10は粗くなって、再び迷光の影響で右下の円弧が出てきたので、却下としました。

結論としては、RGB画像では
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 1
を採用し、理由は必要な細かさの補正をしつつ、やり過ぎないというものです。ただし、必要な細かさは撮影画像によって違うと思いますし、補正のかけ過ぎは避けたいものです。


Hα画像へのMGCの適用

次にアンドロメダ銀河の時にはできないと思っていた、Hα画像でもMGCを試してみました。

まず、Hα単体の画像もMGCで処理できることはわかりました。でもパラメータ設定はRGBに比べてはるかに難しいです。理由ですが、かなりの推測も含みますが、おそらく基準となる画像が基本的にRGBで撮影されていることかと思います。ようするに、Hαで見えるような輝線成分の明るさやコントラストがデータの中に含まれれていないので、下手をするとのっぺりしたり、過分に処理し過ぎて、RWA画像にあった豊かな構造やコントラストが崩されてしまう可能性があります。そのため、適用するとしてもかなり緩やかに適用する必要がありそうです。

元画像はこれです。
integration_A_ABE1_SPFC_f

PIのWBPPでの処理をした直後で、標準的な処理かと思います。表示だけは強度のブーストオートストレッチをかけてますが、まだストレッチ前です。見ている限り、かなり淡いところまで出ていることがわかります。面白いのは、HαやOIIIには明光の影響があまり出ないことでしょうか。これまでもそうだったのですが、RGBではあからさまに見えるリングなどがナローではほとんど目立つことがありません。理由は今のところ不明です。

まずはSPFCを適用しますが、narrow band filter modeを選びます。Gray filterだけHαの656.30nmとし、RGBは効いてない考え、適当にそれぞれ656.30nm、500.70nm、500.70nmとしました。RGBの設定がこれでいいのかはよくわかってません。とりあえずモノクロのHα画像にこれを適用し、次にMGCとします。

まずRGBでいいと結論づけた
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 1
01_integration_A_ABE1_SPFC_MGC256_1_1
としましたが、全くダメです。細かすぎで、あからさまに変になっています。細かく補正し過ぎていると思われますが、これは参照データがRGBなのでHαの情報を含んでいないためだと思われます。


Model smoothness:
細かすぎるので、まずはよりスムーズな補正になるように、Model smoothnessを増やしてみます。
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 10
02_integration_A_ABE1_SPFC_MGC256_1_10

としました。これでもまだ細か過ぎで全然ダメです。


Gradient scale:
埒が開かないので、Gradient scaleを増やします。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 10
  2. Gradient scale: 1024、Structure separation: 1、Model smoothness: 10
  3. Gradient scale: 2048、Structure separation: 1、Model smoothness: 10
01_RGB
11_grad
1024だとかなりまともになりますがまだ落ち込みが見え、2048でやっと許容範囲くらいになりました。256でどれくらい補正しているかを改めて見てみると、Hαでうまく出ているところをことごとく打ち消してしまっています。これは元データがHαベースのものではないことを示唆していますが、まだパラメータを探り切ったわけではないので、もしかしたら上手い回避方法があるのかもしれません。


Structure separation
ここで、Structure separationを変えてみます。
  1. Gradient scale: 2048、Structure separation: 1、Model smoothness: 10
  2. Gradient scale: 2048、Structure separation: 5、Model smoothness: 10
12
画像の上2つがRGB、下2つが補正量です。左が1で右が2です。

補正量を見るとStructure separationが5の方がより細かいというか、滑らかというか、スムーズな階調で補正しています。補正された画像を見ると、Structure separationが1の方が少し落ち込みが見え、5の方がその落ち込みが少ないようなので、ここでは5を採用します。


Model smoothness:
念の為、再びModel smoothnessを変えてみます。
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
21_integration_A_ABE1_SPFC_MGC2048_5_1_bad

としましたが、星雲本体の形を補正してしまっていて、落ち込みがひどく、即却下です。

さらに、念の為
  • Gradient scale: 1024、Structure separation: 5、Model smoothness: 10
integration_A_ABE1_SPFC_MGC1024_5_10_bad

も見ますが、こちらも同様に落ち込みがひどく、却下です。


Hαの結論

Hα画像の結論としては
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
を採用したのですが、果たしてMGCを適用した方が良かったのか、元のままでも良かったのかの検証を最後にしてみます。

元画像の方がのっぺりしているのですが、MGC補正後の方は少し落ち込みがあるようにも感じます。でもその落ち込みは、星雲本体をより際出させているとも言える範囲なので、今回はMGCで補正したものを採用とします。


OIII画像へのMGCの適用

OIII画像も試しましたが、Hαと同じ
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
が一番まともでした。Gradient scaleを1024にすると、星雲本体の暗い部分が落ち込んでしまいます。Hαと大きく違ったのは、Model smoothnessを10にするとMGC補正前も補正後もしほぼ変化は見られず、同様にStructure separationを5にしてもほぼ変化は見られなかったことです。これはOIIIの背景には元々構造がほぼなくて、同様に参照データの青成分の背景にも構造がほぼないため、補正しても効果がそもそも出ないためだと思われます。Hαの背景には複雑な構造があり、参照データの赤成分の背景は軽い構造があり、その差が変な補正を生みやすくなっていたことが、OIIIとの違いなのかと推測しています。

でも結論としては、OIIIにはMGCを適用しないものを採用しました。理由は、MGCによって星雲本体の特に淡い部分の一部が薄くなってしまうからです。これはOIIIで見える部分が、参照データに入っていないためで、OIIIでせっかく出た星雲本体の淡い部分を余分なものと捉えてしまい、消そうとする方向に働くからだと思われます。


MGCのまとめと所感

と、ここまでRGBとHαとOIIIについてMGCを議論しましたが、2つの画像で適したパラメータが全く違っていることから分かるように、どのパラメータがいいとすぐに言える状況ではないようです。どのような方針で探っていけばいいかを、ざっくりとだけまとめておきます。
  1. Gradient scaleは違いがわかりやすいので、まずはこれを変えてみるのがいいのでしょう。
  2. Structure separationは結果を見てもそこまで大きな差はないので、デフォルトの3でもいいのかと思います。
  3. あとは、Model smoothnessを1と10で変えてみて大きな差が出ないか、問題ないならデフォルトの1で、違いがあるのなら5も試してみて、いい値を探るとかするのがいいのかと思います。

さて、MGCについて少し個人的な所感を書いておきます。

1. 元々個人的にもかなり期待していた期待していたMARSデータを使った補正で、MGCという名前でやっと実用化されたわけですが、チュートリアルと、最初に使って、「あれ、これ結構まずいのでは?」とも思いました。MGCはMRASの参照画像と自分で撮影した画像の差を見て、その差がないように撮影画像を補正します。端的に言うと、例えば超短時間撮影などで星雲情報をがほとんど得られなかった画像に、同じ領域の星雲情報が入っているMARSデータを使ったら、撮影画像に入っていなかった星雲が浮かび上がるのではないかと思ったのです。

BXTが出た当初、AIの元データにハッブルなどのものを使っているなら、それを適用してしまうのは問題ではないかと言う意見がありました。これは補正した画像がハッブルのものになってしまうのではという杞憂だったと思うのですが、AIは直接それらのデータを利用するのではなく、ある意味普遍的な補正法則を学んでいると考えると、特に問題ではないと考えることができ、最近ではBXTの効果に大きな疑問を呈する意見はあまり聞きません。でもMGCの場合はMARSデータを直接参照して、比較、補正しています。

でも実際にはこの考えは、今の段階では杞憂でしょう。MGCでの補正はあくまで背景に相当する空間波長の低い(粗い)補正のみです。今回の検証でも細かすぎる補正は、逆に見た目でも(今回は渦模様でしたが)変な補正になるようなので、極端なパラメータを使う方がおかしくなるのかと思います。でも原理的には差を見てそれがなくなるよううに補正することはできるはずで、極端な方向に進むと、まずいところは全て補正してしまって、理想とする画像にどれも近づいてしまうという危険は含んでいるのかと思います。

2. MGCがあるから、これで背景補正は完璧だと思ってしまうことは危険です。所詮元データとの比較だけなので、当然ですが補正後の結果は元データに依ります。元データのMARSデータベースが理想的かどうかは誰にもわからず、今わかっているのは35mmと135mmレンズで撮影された、全天とはいかないまでもかなり広い範囲の背景データであるということです。ただしアマチュアレベルではないので、ある程度の基準になっていると思ってもいいはずで、それを共通の財産として広く使えるようにしようとする方向性は相当な評価ができるのかと思います。

特に、ε130Dで突き当たった迷光は、どうやっても解決できなかったもので、それを解決できる手段の一つとして使えるというのは、個人的にはとても助かっています。そもそもこのε130Dの迷光問題、以前検証したページにも書いていますが、
  1. フルサイズセンサーくらいの面積で初めて出てくること
  2. さらに一眼レフカメラなどでは上下の蹴られの影響の方がはるかに大きく、それを回避したフルサイズのCMOSカメラなどを使い
  3. その上でかなり積極的な炙り出しをして初めて出てくること
です。なのでε130Dを使って撮影しても、実際に問題なるケースはそこまで多くはないでしょう。でも突き詰めていくと必ず出てくる問題なので、これを解決できる方法が提唱されたことは、とても嬉しいことです。

3. MGCは、分子雲に満たされた背景を、広い範囲と矛盾なく強力に補正してくれます。これは特にモザイク合成の接続に強力な威力を発揮するでしょう。他人の撮影画像とのモザイク合成も可能にすると思われます。

4. RGBだけでなく、Hα、OIII、SIIなどのメジャーなナローバンドでの参照データベースでの補正もいつか可能にして欲しいです。現段階ではナローバンドはまだ実用的とは全然言い難いという印象です。


その後の画像処理

ここまでMGCについてかいてきましたが、でも結局はRGB画像のMGCはほとんど活かすことはありませんでした。Hαに比べて背景の構造が出ていないので、結局Hαで上書きされてしまうからです。なので一番検証できたRGB画像なのですが、本当にMGCの検証というだけの意味合いになってしまいました。

というのも最初はRGB画像とHαとOIII画像をPhotoshopに送り、RGB画像のRとBに混ぜたりしたのですが、どうもHαの階調がうまく出ずに赤でのっぺりしてしまいました。そこで方針を変えて、PixInsightの段階でAOO画像を作り、それをベースにRGBの恒星と、一部星雲中心のRGBでしか出てこないような構造をくわえることにしました。

bin1のままだとファイルサイズが大きくなりすぎるので、全ての処理が終了して一旦JPEGで出力してか、そのJPG画像の解像度を変えてbin2相当にしています。

「IC405 勾玉星雲とIC41」
Image03_AOO2_s_brighter_cut
  • 撮影日: 2024年10月1日1時1分-3時36分、10月12日1時11分-4時42分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 6.5nm、R、G、B
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin1、Gain 100、露光時間5分、Hα: 17枚、OIII: 8枚、R: 10枚、G: 13枚、B: 12枚の計60枚で総露光時間5時間0分
  • Dark: Gain 100、露光時間5分、温度-10℃、37枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 1秒、OIII: 1秒、R: 0.05秒、G: 0.05秒、B: 0.05秒で全て128枚
  • 画像処理: PixInsight、Photoshop CC
Hαの階調をできるだけ残すことと、赤一色にならないように、GやBを活かしつつ、OIIIも混ぜています。それでもやはり全体に赤っぽくなってしまうのは、まだまだ今後の課題でしょう。でもこの構造がHαにしか含まれれていないことを考えると仕方ないです。最近はHαをRだけに適用するのではなく、GやBに入れ込んでもいいのかと思うようになってきました。

恒例のアノテート画像です。
Image03_AOO2_s_brighter_annotted


過去画像の再撮影です。
light_BINNING_1_integration1_AS_DBE_cut
違いですが、
  • 鏡筒が口径6cmから13cm。
  • カメラがEOS 6DからASI6200MM Proなので、カラーからモノクロになっていて、フルサイズなのは同じですが、解像度は倍近くになっていて、ピクセルサイズも半分近くになっています。
  • フィルターはQBPだったのが、今回は実質AOO合成です。
  • 露光時間は52分から5時間と伸びています。
今回はナローバンドフィルターを使っているので、さらにコントラストは良くなるはずなので、露光時間を含めて、QBPとの直接の比較は意味がないかもしれませんが、ハード的な進化は大きいでしょう。それに加えて、StarNetやBXTなどのソフト的な進化もあります。あ、今回NXTの新バージョンも使いましたが、これはまたそのうちに検証したいと思います。


まとめ

やっと未処理画像が無くなりました。天気が良くなるまでにまだ時間があるなら、過去画像の再処理やボツにした画像の処理、特にボツにしたモザイク撮影の処理などをやってもいいかと思います。

今回はMGCを特にいじってみましたが、なかなか一意の方針を示すことは難しそうなので、このようなやり方で攻めていけばいいという指標くらいでしょうか。

もう少し赤っぽい印象を押さえつつ、階調を確保する方法が欲しいです。多分暗い空に行ってRGBで撮影するのが正解なのかと思います。結局前回の網状星雲と同じような悩みかと思うので、自宅でこれを解消しようとすると、またものすごく苦労しそうなので、もう少し何かいい方法がないか考えてみます。

今後の撮影ですが、少しSCA260を復活させてみたいと思います。SCA260用の、少し面白そうなアイテムを手に入れたので試してみることを考えています。

年末の12月初めくらいから撮り続けていたSh2-308 ミルクポット星雲がやっと仕上がりました。

海外ではDolphin Head Nebulaと呼ばれているようで、日本でも「イルカ星雲」とか「イルカの頭星雲」とも呼ばれているようです。その一方、Milk Pot Nebulaとかで検索しても全く引っかからないので、どうもミルクポットと言っているのは日本だけのようです。

本当にイルカの口に似たような特徴的な形と、OIIIで写すと青く目立ってとても綺麗で、星を始めた当初からいつか詳細な形と共に撮影したいと思っていた星雲の一つです。最高高度が31度程度と比較的低い空なので、撮影可能期間もあまり長くなく、やっと実現できたというわけです。


撮影

実際の撮影開始は結構前で、12月4日の夜中過ぎからです。自宅なので平日も撮影可能で、同じ日の前半に北西方向のダイオウイカ星雲、後半に東から昇ってきているイルカ星雲を撮影しています。

一般に淡いと言われているイルカさんですが、同日に撮影していたダイオウイカ星雲がとんでもない淡さなので、イルカ星雲はずいぶん濃く感じました。下の写真の左は6時間40分のOIIIのダイオウイカで、ABEにDBEもかけて強あぶり出ししてやっとこれくらい。一方右は3時間10分でABEをかけただけでこんなにはっきり出ます。
comp

今回のイルカ星雲は、5分露光でOIIIが59枚、Hαが39枚でAOO合成の予定です。さらに恒星用にR、G、Bでそれぞれ8枚ほど撮影しています。OIIIとHαは比較的早くに撮り終えていたのですが、RGBが曇っている日が多くてなかなか撮り溜めできず、撮影は最終的に1月14日まで食い込んでしまいました。

R、G、B画像もそれぞれ同じ5分露光なのですが、明るい星はサチってしまっています。今後はRGBの各フィルターでの撮影は露光時間を短くするか、ゲインを落とした方がいいようです。

blue_BXT_Image36_DBE_DBE_Preview02_3dplot
RGB合成した画像の左側真ん中に写っている一番明るい星を、
PIの3Dプロットで表示。


画像処理

画像処理を進めていてすぐに、今回はイルカ星雲本体の青よりも、背景の赤がポイントではないかと思うようになりました。
  1. まず、イルカさんの中にも赤い部分が存在しているようで、今回程度のHαの露光時間では全然分解して表現できていないように思います。
  2. 背景の左側の赤い部分は、周辺減光か分子雲かの見分けがつきにくかったのです。特に左下の暗くなっている部分は暗くなっていますが、これは周辺減光なのか迷いました。他の方の画像を見ると確かに暗くなっているので正しいようです。
  3. 右側と上部には、かなり濃い波のような分子雲があり、こちらはHαだけでなくOIII成分も持っているようで、左下の赤とは明らかに違った色合いになり面白いです。
  4. 画面真ん中の星雲本体の周りに、下から右上方向に進むかなり淡い筋のような模様が見えますが、これも迷光などではなく本当に存在するもののようです。この筋はHαだけでなくOIIIにも存在するので、ここでも色の変化が見られとても興味深いです。

背景の淡い部分を出すには、フラット化がどこまでできるかがとても重要です。通常のフラットフレームを撮影してのフラット補正は当然として、それだけでは取りきれない
  • 輝度勾配
  • 周辺減光の差の残り
  • ライトフレーム撮影時とフラットフレーム撮影時の迷光の入り具合の差
など、大局的な低周波成分の輝度差が、淡い部分のあぶり出しを阻害してしまいます。

私はフラットフレームは晴れた昼間の部屋の中の白い壁を写しているので、どうしても窓側と部屋中心側で輝度差が出てしまいます。これはABEの1次で簡単に補正できるので、まずはHαもOIIIもインテグレーション後にすぐにABEの1次をかけます。ABE1次の後は出てきた画像を見て、毎回それぞれ方針を考えます。


GraXpert

実は今回、フラット化のために最近人気のフリーのフラット化ツールGraXpertを使ってみました。以前からインストールはしていたのですが、ほとんど使ったことはありませんでした。

今回GraXpertをPixInsightから呼び出せるようにしようと思って、この動画にあるように

https://www.ideviceapps.de/PixInsight/Utilities/

をレポジトリに登録して、ScriptのToolboxの中のメニューにも出てきたのですが、いざPixInsightからGraXpertを呼び出すと「GraXpertの最新版が必要」と言われました。アップデートしようとして最新版をインストールしたわけですが、アップデート後PIから呼び出しても、どうも動いている様子が全くありません。確認のために、まずは単独でGraXpertを立ち上げてみましたが、セキュリティーの問題を回避した後もうまく起動しません。ちなみにMacのM1です。

それでどうしたかというと、アプリケーションフォルダのGraXpertをフォルダから右クリックして「パッケージの内容を表示」でコンテンツの中身を見てみます。ContentsのMacOSの中にあるGraXpertがターミナルから起動できる実行ファイルで、これをダブルクリックすることでエラーメッセージを確認することができます。今回はいくつかpyhthonのライブラリが足りないとか出ていたので、手動でインストールしたのですが、結局解決せず。

そもそもメインPCのpython関連はそんなに変なことをしていないので、おかしいと思い調べたら、最新版はMac OS 13.6以上が必要とのこと。私はアップデート後のトラブルが嫌であまり最新のOSには手を出していなかったのですが、自分のバージョンを見たら12.4とか2世代も古いです。仕方ないので久しぶりにOSをアップデートし、一気に14.2.1のSonomaになって、無事にGraXoertが立ち上がりました。

ちょっと蛇足になってしまいましたが、
  • うまくいかないときはターミナルから立ち上げてエラーメッセージが確認できること
  • OSのアップデートが必要なこともある
というのが教訓でしょうか。

さてGraXpertの結果ですが、背景の星雲の形が大きく変わってしまい、残念ながら撃沈でした。比較してみます。最初がABEのみでフラット化したもの、
Image19_ABE4

次がGraXpertで今回は見送ったものになります。AIとKrigingで試しましたが、大きな傾向は変わりませんでした。画像はKrigingのものです。
Image13_SPCC_GX_K

違いは左下の濃い赤の部分で、GraXpertではムラと判断され、取り除かれてしまっています。また、イルカ星雲本体があるあたりの背景のHαも同様に取り除かれてしまっています。

このように、背景全体に分子雲が広がっているような場合は非常に難しく、DBEでもあまりいい結果にならないことがわかっているので、今回は再びHαとOIIIに戻って、今一度注意深くABEのみで処理することにしました。 GraXpertの方が良い結果を出す場合もあると報告されているので、実際のフラット化処理の際には一意の決まり手は存在せず、毎回臨機応変に対応すべきなのでしょう。


ABEのみでのフラット化

さて、今回最終的に使ったABEの具体的な手順を書いておきます。これも今回限りそこそこ上手くいったと思われる、あくまで一例です。
  • Hα: ABE1次、ABE2次
  • OIII: ABE1次、ABE2次、ABE3次、ABE3次 
として、ここでAOO合成。その後さらに
  • AOO: ABE4次
として、やっと落ち着きました。繰り返しになりますが、どれも決まった手順とかはなく、その場その場で画像を見ての判断です。

ポイントは
  1. 過去に他の人が撮影した画像などを参考にして、自分の背景がおかしすぎることがないこと
  2. オートストレッチで十分に炙り出せる範囲にフラット化を進めること
の2点でしょうか。それでも特に2にあるように、あぶり出しやすくするためにというのを主目的でフラット化しているので、正しい背景からずれてしまう可能性は否定できません。さらに1も、淡いところをどんどん出していくと、参考にできる他の画像自体も数が限られてしまうようになるという問題もあります。

こうやって考えると、PixInsightのMARSプロジェクトにかなり期待したいです。何が正しい背景で、何がカブリなどのフェイクかの指標を示してもらえるのは、とてもありがたいです。もちろん、誰も到達していないような淡さなどは当然データベースに登録されないと思うので、限界はあるはずです。でも私みたいな庭撮りでやっている範囲では、十分な助けとなってくれると思います。


とりあえずの画像処理

1月19日の金曜の夜、SLIMの月面着陸の様子をネットで追いながら、画像処理をしていました。着陸後、結果発表までかなり時間があったので、寝るのは諦めてのんびり進めます。その時に一旦仕上げて、Xに投稿したのが以下の画像です。

Image19_ABE4_SPCC_BXT_back3_cut

イルカ星雲本体はかなりはっきり出ています。イルカなのでOIIIの青がよく似合っています。また、背景の赤もかなり出ているのではないでしょうか。ナローバンドと言えど、自宅で背景がここまで出るのなら、結構満足です。周りの赤いところまで出してある画像はそこまでないのでしょう、結構な反響がありました。

イルカ星雲本体に含まれる赤はもっと解像度が欲しいところですし、全体に霞みがかったようになってしまっています。淡いOIIIを無理して強調した弊害です。OIIIフィルターにバーダーの眼視用のものを使っていることが原因かと思われます。IR/UVカットができないために、青ハロが目立ち、その弊害で霞みがかったようになってしまっています。


Drizzle+BXTが流行!?

土曜の朝起きて、いつものコメダ珈琲に行き、画像処理の続きです。改めて昨晩処理したものを見てみると、ノイズ処理がのっぺりしていて、恒星の色も含めて全然ダメだと反省しました。特に、拡大するとアラが目立ちます。

そもそもε130Dの焦点距離が430mmとあまり長いものではないので、画角的にイルカ星雲本体が少し小さくなってしまいます。後から拡大しても耐え得るように、WBPP時にDrizzleの2倍をかけておいて、Drizzle+BXT法で、イルカさん本体の解像度を上げてみます。



下の画像は、左がDrizzle x1で右がDrizzle x2、上段がBXT無しで下段がBXTありです。差が分かりにくい場合は画面をクリックして、拡大するなどして比べてみてください。

comp2
  1. まず上段で左右を比べると、Drizzleを2倍にすることで、恒星の分解能が上がっていることがわかります。
  2. 次に左側で上下を比べると、(Drizzleは1倍のままで) BXTの有無で、恒星が小さくなり、背景の細かい模様もより出るのがわかります。ただし、画像の解像度そのもので分解能は制限されていて、1ピクセル単位のガタガタも見えてしまっています。
  3. さらに下段のみ注目して左右を比べると、右のDrizzle2倍にさらにBXTをかけたものでは、恒星のガタガタも解消され、かつ背景もピクセル単位のガタガタが解消されさらに細かい模様が見えています。
このように、Drizzle+BXTで、恒星も背景も分解能が上がるため、圧倒的に効果ありです。

ところでこのDrizzle+BXT法ですが、2023年5月に検証して、その後何度がこのブログ内でも実際に適用してきたのですが (1, 2, 3) 、最近のXでの天リフ編集長の「効果があるのかないのか実はよくわからなかった」という発言にあるように、当時は余り信用されなかったようです(笑)。


ところが上のリンク先にもあるように、ここ最近だいこもんさんや他の何人かの方が同様の方法を試してくださっていて、いずれも劇的な効果を上げているようです。とうとう流行期がきたようです!

この手法を科学的な画像としてそのまま使うことはさすがにできませんが、鑑賞目的ならば、本物のさらに細かい構造が見えてきている可能性があると思うと、夢が大きく膨らむのかと思います。多少の手間と、(一から揃えるとPixInsightとBXTでそこそこの値段になるので) あまり多少ではないコストになりますが、それでも対する効果としては十分なものがあるのかと思います。

土曜日はこんなことをやっていて、力尽きました。


Drizzle x2

日曜日もほぼ丸一日かけて、Drizzle x2の画像の処理を進めます。なかなか上手くいかなくて、バージョン10まで進めてやっとそこそこ納得しました。あとから10段階を連続で見てみると、徐々に問題点が改善されていく過程がわかります。

金曜夜中に処理したDrizzle x1と、日曜夜遅くにDrizzle x2で最終的に仕上げた後の画像の比較してみます。ともにBXTをかけたものです。

まずはDrizzle x1
x1

次にDrizzle x2です。
x2

画像処理にかけた気合と時間が大きく違うこともありますが、それにしても結果が全然違います。では一体何をしたかというと、大きくはノイズ処理の見直しと、恒星の処理の見直しです。


Drizzle後のノイズ処理

特にノイズ処理は結構大変で、少し油断するとすぐにモワモワしてしまったり、分解能が悪くなったりで、全然上手くいかなかったです。でも筋道立てて丁寧にやっていくと、なんとか解は存在するといった感じでしょうか。

まず、ノイズ処理で気づいたことが一つあります。Drizzleで解像度2倍にした画像にはノイズ処理が効かないことがあるようです。興味があったので少し調べてみました。

今回試してみたノイズ処理ソフトは
  • Nik CollectionのDfine 2
  • PhotoshopのCamera RAWフィルターのディテールのノイズ軽減
  • DeNoise AI
  • NoiseXterminator
です。この中で効果があったのはDfine 2とNoiseXterminatorでした。他の2つは元々大きな構造のノイズが苦手な傾向があることは気になっていましたが、今回Drizzleで2倍の画素数にしたため、同じノイズでもより細かい画素数で表現されるようになり、相対的に大きな構造のノイズを扱っているような状態になったのかと推測します。まだ少し試しただけなので検証というレベルではなく、他のノイズ処理ソフト、例えばTGVDenoiseなどのPIのノイズ処理関連なども含めて、もう少し調べる必要があると思います。それぞれ得意な空間周波数があるような気がしています。

結局今回使ったのは、PI上でNXT、Photoshop上でDfine 2でした。これでモコモコしたノイズが残るとかを避けることができました。またNXTはカラーノイズ対策はできないので、カラーノイズはDfine2に任せました。


結果

結果です。拡大しないと一見、金曜夜中の画像とそこまで変わらないと思えるかもしれません。でも、少し細部を見ると全く違います。

「Sh2-308: イルカ星雲」
Image17_ABE4_SPCC_BXTx3_HT_HT_back7_cut_low
  • 撮影日: 2023年12月5日0時3分-3時9分、12月9日0時2分-1時5分、12月29日22時3分-30日4時20分、2024年1月4日20時50分-22時43分、その他2夜
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm、R、G、B
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 39枚、OIII: 59枚、R: 8枚、G: 9枚、B: 8枚、の計123枚で総露光時間10時間15分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

私的にはかなり満足なのですが、子供に上の画像を見せたら「霞んで見えるのが惜しい」と言われました。ナローバンドフィルターは星まつりで安いB級品をちょくちょく集めてきたのですが、パッと手に入れることができた眼視用OIIIフィルターだと多分もう厳しいので、新品で購入してしまった方がいいのかもしれません。でも新品でも在庫がないみたいです。いっそのことUV/IRカットフィルターを重ねてしまうのも手かもしれません。

上の画像は拡大すると真価を発揮します。イルカに見えるように画像を90度左回転し、左に明るい赤の壁を置くような構図にしてみました。

Image17_ABE4_SPCC_BXTx3_HT_HT_back7_rot_half2_wall
恒星の色もでているかと思います。大きくクロップしたとは思えないくらいです。

さらにイルカ星雲本体のみにしてみますが、ここまで拡大してもまだ大丈夫かと思います。
up2

この画像も子供に見せたら、「イルカの中の赤いところがまだ出ていない。頭のところにある脳みそみたいなところはまだマシだが、下の心臓の形はもっと出るはずだ」とか言われて、どこからか検索してきたもっと細部が出ている画像を見せられました。でもその画像の説明を見たらそもそも大口径の350mmでf/3、撮影時間がなんと45時間...、さすがに太刀打ちできるはずもないです。

超辛口な息子の意見に少したじろぎましたが、ナローバンドだとしても自宅撮影でここまで出るなら、もうかなり満足です。あとは毎回コンスタントにこれくらいまで出すことができるかでしょうか。もう少し練習が必要な気がしています。


まとめ

金曜夜から土日のほとんどを画像処理にかけてしまいました。やり直しを含めて、今回は丁寧な処理の画大切さを実感しました。淡いところを出すときは、特に慎重に手順を考えて処理しないとすぐに破綻してしまいます。

結局これ1枚に32時間くらい画像処理にかけたので、ちょっとスキルが上がったはずです。1枚に集中してできる限りのめり込むことは、かなり効果があるのかと思います。

でも次のダイオウイカとまともに戦えるとはまだ思えません。今のところ全然ノイジーです。ダイオウイカ星雲はそれくらい手強いです。


前前々回の記事でクワガタ星雲のSAO合成をしました。



せっかくなのでいつものようにAOO合成もするのですが、普通にAOO合成をするとHαの淡い構造とかが一切出てきません。これが不満で、色々試してみました。


Hαの情報量

AOO合成をして、オートストレッチすると大体これくらいです。
Image21s

きちんとクワガタの形が出ています。でも、Hαだけの画像を見るとまだまだ模様がいっぱい残っているんです。

Hα画像を強オートストレッチしてみます。
FILTER_A_mono_drizzle_2x_integration_ABE1_ABE2_ABE4s
すごい模様が出てきます。一番暗いところが背景だとしたら、多少なりとも明るいところはなんらかのHα成分が存在していると考えていいでしょう。普通にAOO合成した画像に、このHαの模様が活かされ切っているとはさすがに言い難いのかと思います。今回はこれをどこまで表現できるかやってみたいと思います。


まずはどこまで出そうか、テスト

まずAOO合成させたものを、強オートストレッチして、さらに微調整します。
Image21_strongs
ここらへんまで出せたらHαを使い切っていると言えそうですが、いくつか問題点があります。
  1. 右真ん中に大きな黒い窪みがある。
  2. 赤がサチりかけているところがある。
  3. 星がうるさい。
くらいでしょうか。一つづつ片付けます。


1. フラット化の大切さ

まず1の黒い窪みですが、普通にAOO合成したら対して問題にならないのですが、淡いところを頑張って出そうとすると目立ってしまいます。これはOIII画像に残っていた、ε130Dの迷光の残りのようです。今回は撮影時に鏡筒にフードもつけていますし、もちろんフラット補正もしています。それでも強あぶりで、これくらいのフラットの誤差が出てくるようです。ここまででもHα、OIII共にABEの1次と2次と4次をかけていますが、さらにOIIIにDBEをかけて窪みをとることにしました。その結果が以下になります。
Image24_strongs
窪みは目立たなくなり、さらにもう少し炙り出すことができるようになりました。

しかしながら窪みが目立たなくなったことで、今度は右上に注目すると、赤が構造なしでのっぺりしている気がします。本当にHα成分があるのか、カブリなのか見極めが難しいところです。仮にカブリだとすると、ここだけをうまく取り除くのは結構難しそうです。

今回は、ABEの2次を再度かけ、右上と、左下の赤も少し緩和するようにしました。もっとはっきり除いてもいいのですが、そもそもここら辺の領域を強度に炙り出しいる参考画像がほとんどなく、何が正解かよくわかりません。これ以上やると恣意的な操作になると判断し、今回はそのままで残しました。
Image24_ABE1s
こういったカブリ問題は、将来PixInsightのMARSプロジェクトがうまくいったら解決するのかもしれません。



情報を余すところなく引き出して炙り出す場合、上の操作のように「正しい背景にするというよりは、あぶり出しやすいように、できる限りあらかじめフラット化させておく」方向になるのかと思い思います。そのため、フィルターやセンサー面についているゴミはうまくフラット補正で除けないと、強あぶり出しの際にとんでもなく目立ってしまったり、周辺減光や迷光もフラット処理がうまくいかないと、そこの輝度差で制限されてしまって炙り出しが十分できないなど、致命的になる可能性があります。

先日の記事のように
最近はソフトの力でかなりの補正が効くようになってきていますが、BXTは分解能は出せても淡いものを出すことにはほとんど助けになりません。ソフトで補正が効かないこともたくさんあり、今回のように淡い構造を引き出し切ろうとすると、光学機器の段階での丁寧な汚れの除去や迷光処理、確実なフラット補正がとても大切だと言うことも肝に銘じておきたいものです。

次に、SPCCでナローバンドを選び、AOOの正しい波長と、手持ちのフィルターの波長幅を入力します。重要なことは、ニュートラルバックグラウンドをどこにするかです。プレビューで一番暗いところを選択して「Region of interest」に設定しておいた方がいいでしょう。これをしないと、赤が再び出にくくなったり、暗いところが緑がかったりしてしまいます。RGB画像を別撮りなどしていない場合は「Oprimize for stars」にチェックを入れておくと、星の色を優先的に最適化するとなっていますが、試したところ少なくとも今回は大きな違いはわかりませんでした。SPCCがうまくいくと、赤がかなり残った状態で色バランスが取れるようになります。


2. 恒星にはBXT

次に2の星がうるさいことですが、やり方は色々あると思います。今回は簡単にBXTを使ってしまいましょう。恒星も併せて十分にあぶり出しても、恒星自身が小さければ、全体を見た時のうるささは緩和されるはずです。今回はHαの淡いところを画面全体で見せたいので、トリミングやバブル星雲のところのみを拡大することなどは考えていないです。そのためSAO合成の時よりもBXTの効果は緩和させて
  • Sharpen Stars: 0.25, Adjust Star Halos: -0.30, Automatic PSF: on, Sharpen Nonsteller: 1.00
としました。


3. ストレッチは迷うところ

最後に3のサチり気味(=飽和気味)の赤をどう扱うかです。ストレッチをいかにうまくするかと言う問題です。

既に赤は色が十分出ているので、ArcsinhStretchは色が濃くなりで使えませんでした。意外なのがMaskedStretchが本来マスクで、本来はきちんとサチるのを保護してくれるはずなのに、赤のサチりを強調してしまい使えなかったことです。結局ここでは、HistgramTransformationで恒星が飽和しない範囲で軽くストレッチして、ここでStarNet2で恒星と背景を分離し、その後背景のみ必要なところまで強調しました。その後、私の場合はPhotoshopに引き渡して最終調整します。


仕上げ

最後のPhotoshopは個人の好みによるところも大きいでしょう。今回は赤の淡いところを残します。OIIIの青を少し持ち上げて色調を少しでも豊かに見せるのは、いつもの手段です。赤ももう少しいじって、強弱をつけたりします。それでも色相(RGBをそれぞれどれだけストレッチするかと、各色のブラックポイント)自体はSPCCで決めたので、それ以上は触っていません。

結果です。
Image24_ABE1_SPCC_BXTSS025_HT2_s_cut

元がHαとOIIIの高々2色なので、前回のSAOと比べてもどうしても赤でのっぺりしてしまうのは避けられません。実はAOOにする前に、なんとかSIIを使えないか、いろいろ比率を変えて試しました。複雑な比率にして、そこそこよさそうな候補はいくつかあったのですが、結局AOOのシンプルさを崩すほどいい配色は見つからず、結局今回はSIIは使わずじまいです。いつかHαとOIIIとSIIまで使った擬似RGB配色で自然に見える組み合わせが見つかるといいですが、少なくともAOOを凌駕するものでないとダメだと思うので、そんなに簡単ではないと思います。

今回のHαを余すことなく引き出すAOOですが、懸念事項の一つは画面全体が赤に寄ってしまう印象を受けることです。でも赤にのみ構造がある限り、そこを出そうとすると赤を底上げする以外に今の所いい方法を思いつきません。アメペリも同じように処理をしていて、こちらも背景が赤いですが、それでも暗いところは存在していて、それ以上明るいHαが全面近くに渡り散らばっています。

今回、やっとこのAOO手法を言語化して記事にしたことになります。他に、全体をもう少しニュートラルに寄せて、Hαにふくまれる淡い構造もきちんと強調できる方法を探していきたいと思います。


まとめ

前回の記事で年末の挨拶をしてしまったのですが、今回の記事が本当の2023年最後の記事になります。 年が明けてからのんびりまとめようと思ったのですが、大晦日に少し時間があったので、まとめてしまいました。

クワガタ星雲をとおしてSAOとAOOの議論を少ししたことになります。でもまだ十分かというとそうでもなく、SAOの色がまだハッブルパレットと違う気もしますし、AOOは全画面真っ赤問題をなんとかしたいです。所詮人工的な色付けになるので、多少色相とかいじってもいい気もするのですが、今のところはまだ躊躇しています。理由は再現性がなさそうなところです。複雑になりすぎないというのも重要かと思います。何かいい方法はないのか?今後も探していくことになるでしょう。またいい方法があったら記事にします。


日記

最近はブログ記事を休日のガストのモーニングで書くことが多いです。以前はコメダのモーニングのみでしたが、最近はガストと半々か、ガストの方が多いくらいです。ガストのドリンクバーが飲み放題でいいのと、最近はマヨコーンピザが安くて美味しいからです。多分田舎のガストなので、朝はガラ空きで、混んでくるランチタイムくらいまでは長居も可能なので、とても居心地がいいです。同じようにPCを広げている常連さんも何人かいます。この記事も最後の仕上げを大晦日にガストで書いています。

これから実家の名古屋に向かいます。元旦は実家で、おせちをつまみながらのんびり過ごす予定です。残念ながら新年2日の北陸スタバ密会は中止になってしまいました。時間が少しできるので、またノイズ計算の方を進めたいと思っています。


2年近く前に自宅から撮影したSh2-240、かなり淡く、当時はFS-60CB+CBP+EOS 6Dで12時間越えとかなり頑張ってみたのですが、画像処理で相当無理して出していたのがわかります。

 

結果を見ても明らかですが、これは敗退だったと言えるでしょう。

今年の春にε130Dを購入した最大の理由が、このリベンジです。無理ナントだった、超新星レムナントを自宅でどこまで出すことができるのか?特に前回は全く出なかったOIIIの青が、自宅でも本当に出るのかがポイントです。


Sh2-240の下調べ

今回のターゲット、皆さんなんて呼びますか?Sh2-240という呼び名が多分一番メジャーでしょうか?一方、Sim147(シメイズ147, Simeis 147)という名前も持っています。通称はスパゲティ星雲 (Spaghetti Nebula) と呼ばれていて、これは最初日本語で誰かがつけたと思っていたら、英語のWikidiaとかにも普通に載っているので、どうも世界的に一般にこの通称で呼ばれているようです。

星雲としてはかなり大きくて、見かけの直径は約3度もあります。月が0.5度くらいなので、一辺で6個分、面積だと36倍の大きさです。おうし座からぎょしゃ座にかけて広がるレムナント(超新星残骸)です。約3000光年先にあるとのことで、10万年ほど前に現れてこの大きさにまで広がったようです。一つの超新星爆発がこんな複雑な形を作るのは、まさに宇宙の神秘かと思います。

ちょっと脱線ですが、Sh2はシャープレスカタログ(Sharpless catalog)と呼ばれていて、淡い天体を撮影しようとするとすぐに候補として出てきます。




アメリカの天文学者スチュワート・シャープレスが、パロマー天文台のスカイサーベイからの画像を使用して銀河系のHII領域を調査し、1953年にSh1として142天体をカタログに登録、その後1959年に第2版とのSh2として313の天体を登録しているとのことです。

シャープレスカタログはまだいいのですが、シメイズカタログは調べてもあまりよくわかりませんでした。日本語だとHIROPONさんのページくらいしか引っ掛からなくて、

「クリミアにあるシメイズ天文台で、ソ連の天文学者ヴェラ・ガゼ(Vera Fedorovna Gaze, 1899~1954)とグリゴーリ・シャイン(Grigory Abramovich Shajn, 1892~1956)によって1955年に編集された散光星雲のカタログです。カタログはクリミア天体物理天文台の会報に掲載されており、主に北半球にある306個の散光星雲を一覧にしています。有名な天体としては、おうし座~ぎょしゃ座にかけて存在する超新星残骸Simeis 147(=Sh2-240)があります。」

とあります。「シメイズ」と検索しても、ほぼシメイズ147しか結果が出てこなくて、色々調べてやっとSimbadの中のカタログまで辿り着きました。232個が登録されているようです。


久しぶりのε130D

ε130Dですが、5月にアメペリ星雲網状星雲おとめ座銀河団を撮って以来になります。これまではテスト撮影のようなもので、
  • bin2と分解能とBXTの関係
  • 淡いOIIIがどこまで出るか
  • bin1で系外銀河の描写がどこまで可能か
など、かなり実験的です。いずれも、ε130Dの分解能と口径の大きさを遺憾なく発揮した結果となりました。

その一方で
などが問題点として浮かんできました。今回の撮影の前に、上記二つの問題に対してもある程度解決の目処をつけようとしています。


星像の改善

まず最初の問題、星像についてですが、コリメートアイピースを利用しての光軸調整自身は何度かしてみました。でも、何度調整しても結果として毎回同じようなズレになるので、通常の光軸調整とは別のシステマティックなずれがあるような気がします。

具体的な問題としては、
  • 鏡筒に付いている回転装置を回すと、像が変わる。
  • 四隅の星像が流れる。特に、縦方向に像の上下でピントの内外が違うのがはっきりわかる。
などがあります。これらのことから、光軸というよりはスケアリングがずれているのではないかと考え、K-ASTECのスケアリング調整が可能なテーパーリング接続キットを購入しました。



IMG_8512

オフアキは使わないので、上の写真の右のように12.5mmの延長リングも合わせて購入したのですが、これはカメラ付属の5mm幅のセンサーチルトアダプターを「付けたまま」接続します。最初勘違いしていて、このセンサーチルトアダプターを外して組んでしまい、星像が改善しないと悩んでいました。一度スターベースに遊びに行った時に星像が合わないと相談して、スタッフの方の指摘で気づきました。どうもありがとうございました。

その後、スケアリング調整です。接眼部の鏡筒側の回転装置を回転させて、縦にしても横にしても、きちんと遠方の景色のカメラ中心がずれないように、合わせました。このこともスターベースで話したのですが、カメラ中心基準だとテーパー部のネジの締め具合で中心位置がずれてしまうので、回転させた時に中心が基準にならないかもという指摘をうけました。そのため、ネジの締め具合が毎回均等になるようにして中心の再現性がある程度あることを確認してから、回転させても遠方景色の中心がずれないようにスケアリングを調整しています。

IMG_8659
こんな風に回転装置でフィルターホイールごと回転させて、
遠方を見ながら、カメラ中心がずれないようにスケアリングを調整しました。

今回の撮影での四隅の様子です。
2023_11_21_03_22_49_ASI6200MM_2x2_A_300s_g100_9_80C_mosaic
まだ左下と左真ん中が縦に伸びていて、右上が右斜め方向に伸びています。

それでも調整前の北アメリカ星雲の時などは下のようで、真ん中以外全方向が伸びていたので、かなり改善されています。
_2023_05_04_00_51_54_A_9_90_300_00s_0001_mosaic

下の画像は、RGBを5分9枚づつインテグレートしたものですが、方向が多少散らされるのか、さらに目立たなくなります。
Image04_ABE_DBE1_mosaic01
それでも強拡大すると、完全に伸びがなくなっていないのがわかりますが、私的には許容範囲です。それよりも青が少しずれているのが気になるくらいなので、ここまで調整できればよしとします。

ちなみに、上のものにBXTをかけるとさらに星像は引き締まり、青のずれもなくなり、真円に近づきます。それでもまだ左下は少し縦に伸びています。
Image04_ABE_DBE1_mosaic

これくらなら歪みと言っても微々たるものなので、私的には結構満足です。今後ε130Dでもどんどん撮影していこうと思います。

ところで今回の星像の改善に一番効いたと思われるのは、実はスケアリングではなく、バックフォーカスでした。もともとε130Dにタカハシ純正のCanon用の変換アダプターを付けて、カメラ側にZWOのCanonマウントアダプターを使っていたのですが、これだと指定のバックフォーカス長の56.2mmぴったりで、フィルターの厚みなどを光量すると、微妙に長さが足りないのです。K-ASTECのテーバー接続リングは、あらかじめ1mmほど長く設定して出荷され57.2mm -0.2,+0.8の範囲で調整できます。実際にはもう少し伸ばしましたが、以前より1.5mmほど伸ばしたことが星像の改善に一番貢献したものと思われます。


フードの影響

今回簡易的に鏡筒先端にフードを付けてみました。

IMG_8784

ε130Dでこれまでフラット補正がうまくいかなかった原因の一つが「フードを取り付けていなくて周辺の光が入り込み、その光の入り込み具合が赤道儀の回転とともに変わっていって、単一のマスターフラットファイルでは補正しきれないのでは」と考えたからです。フード自身はまだ仮のもので、福島の星まつりで特価で手に入れたものを使いました。

今回はRGBAOと5種類撮影しましたが、その中でB画像の迷光が一番ひどく見えました。スタック後のBにABEの4次をかけて、オートストレッチの強い方をかけたものです。
masterLight_BIN_2_EXPOSURE_300_00s_FILTER_B_ABE

まだかなり残っていますが、HαやOIIIはこれより大分マシだったので、これがMaxだと思ってください。

下は以前おとめ座銀河団を撮影した際に、フードなしで撮ったスタック後のL画像にABEの4次をかけて、オートストレッチの強い方をかけたものです。

masterLight_BIN_1_EXPOSURE_300_00s_FILTER_L_ABE

L画像とB画像なので直接比較は不公平かもしれませんが、フードで少しマシになったようにも見えます。それでもフードが解というには厳しくて、やはりε130Dと付き合っていくには非対称的な迷光を許容していく必要がありそうです。

というより、この非対称性って接眼部が横についていることからきている可能性が高いと思っていて、ε130Dだけの問題ではなく、そのような形の反射型全般の構造的な問題かと思っています。

「そんなの出てないよ」という方も、フラット画像にABEの4次をかけて、オートストレッチの強い方をかけてみてください。できれば中心だけを見るのではなく、CMOSカメラのAPSCとかフルサイズクラスで見ると外の方に見えるのかと思います。「CMOSカメラ」とあえて書いたのは、一眼レフカメラだとカメラ本体のミラー部のケラレが上下に出てしまう可能性があるからです。そのケラレでの光の落ち方の大きさが、今議論している迷光の模様よりも大きい場合があって、ストレッチで炙り出してもケラレの方で制限されてしまい、迷光の微妙な違いがわからないことがあります。画像処理によっては問題にならないレベルかもしれませんが、今回のように淡いところを強度にあぶり出していく場合は、どうしても問題になってきます。

あ、ブログを書いていて最後に見直した時に思ったのですが、よく考えたら今回のフラット、以前のものを使い回しています。フードのない時に撮ったフラットということです。フードをつけて取り直したらもう少しマシになるかもしれません。休日で、天気のいい昼間に撮り直してみます。
 

撮影時

撮影は11月20日から22日の3日間に渡りました。上弦の月を過ぎた頃で、前半は月も明るくSh2-240自体の高度も低いので、どの日も後半がメインとなります。初日の前半は準備と星像確認に費やし、0時頃から撮影開始でした。

フィルターですが、前回はCBPでした。今回はカメラもモノクロなので、HαもOIIIも個別のです。どちらもBaaderのものになり、バンド幅もかなり小さくなるのでコントラスも向上するはずでが、OIIIが眼視用で青ハロが出ることがわかっているので、少し気になるところです。

2日目と3日目は、前半まだSh2-240の高度が低いので、その間クワガタ星雲を撮影しました。半月越えの月が出ていますが、ナローバンド撮影なのでなんとかなるかどうかのテストも兼ねています。この話はまた別の記事で書こうと思います。

2日目の後半は順調に枚数を稼いだのですが、途中でPCに繋げてあるバッテリーが落ちたようで、残されたファイルを見ると午前3時過ぎのものが最後でした。

3日目前半のクワガタ星雲の撮影後に、急遽Sh2-240のRGBを個別に撮ることにしました。以前の北アメリカ星雲のAOO撮影で赤の淡いところを出すのに無理をして、恒星の色がおかしくなり、恒星の周りに赤ハロのようなものが目立ってしまったからです。短時間ながらもRGBで別撮りしておけば、恒星の色もある程度残るのではとの期待です。各色5分で9枚、45分づつ撮影しました。3日目の後半は途中から風がすごいことになってきたので、午前3次頃に中断して片付けました。

そうそう、Xではつぶやいたのですが、最近自宅の近辺でクマの被害がかなり出ています。歩いて行ける距離の所で一人亡くなっていて、さすがにそのクマは駆除されたのですが、その後も車で5分くらいのところでも二人襲われています。さらに、これも自宅から5分くらいのところですが、いつも仕事に行く時に使う道を横切るクマの映像がニュースで流れていました。

実際の撮影は冗談抜きでクマに怯えながらでした。できる限り外に出ている時間を短縮して、セットしたらあとはプレートソルブやEAFを駆使してリモート撮影に徹底します。それでも反転の時だけは心配で、その場に行ってケーブルとかが引っかからないか見ながら、マニュアルで反転してました。


ビニングについて

元々今回の記事の中でビニングについて書こうとしていましたが、結構な分量になってしまったので、独立した記事としました。詳しくは前回の記事を見てください。

少しだけ書いておくと、富山の自宅でスカイノイズが大きいことを緩和するために、bin2でソフトウェアビニングをかけて撮影し、輝度を上げショットノイズのS/Nを上げようとしました。

 

bin1に比べて4倍の露光時間をかけたことに相当しますが、それでも露光時間がまだ足りないか、もっと暗いところに行くべきなのかと思います。ちなみに、今回の撮影時間がトータル12時間なので、bin1で撮影していたらショットノイズに関しては、48時間撮影したのと同等のS/Nとなります。


画像処理

まず、OIIIの一枚画像を見てみます。ABEの4次をかけ、強い方のオートストレッチをかけます。何か模様は出ているようです。これならスタックさえすればなんとかなりそうです。

2023_11_21_00_34_08_2x2_O_300_00s_g100_10_00C_0005_ABE

次にPixInsightのWBPPが終わった段階のマスターOIII画像を改めて見てみます。ABEの4次をかけ、強い方のオートストレッチをかけます。淡いながらも(この時点では)十分に出ていると思いました。

masterLight_BIN_2_300_00s_FILTER_O_integration_ABE

Hαも同様に見てみますが、OIIIがでているので、Hαは余裕と思っていました。

masterLight_BIN_2_300_00s_FILTER_A_mono_drizzle_1x_ABE

でも、その後の画像処理は困難を極めました。やはり淡い青がつらいのです。青が出てると言っても、そもそも青単独のところは一部で、多くは赤と重なっていて仕上がりで明るい紫になります。単独の青は、もっと淡いところにまだ隠れいているようです。今回の条件ではそこまで届きませんでした。

青は他にも問題があって、そもそも今回使っているOIIIフィルターが眼視用で、どうもUV/IR領域がカットされていないようなのです。そのため、青ハロができてしまったりして強度の炙り出しが難しくなります。無理に出そうとすると、その青ハロが霞を増加しているように見えてしまい、処理を難しくしています。青ハロだけでなく、淡い天体部分と背景の輝度がかなり近い(背景ノイズが大きい)ので、淡いところを出そうとすると無理が出ます。


drizzle x1の効果

Niwaさんが、SPCCをする際は1倍でもいいのでdrizzleをするといいとの記事を書いてくれています。ノイズが少し軽減され、背景が緑化されるのを防ぐこともできるそうです。私は緑化で困ったことはないのですが、1倍なら特にファイルサイズが増えることもないので、ノイズが軽減されるならと試してみました。

drizzleされたマスターライトとものと、されていないマスターライトができあがるので、PixInsightのスクリプトからSNRを比較してみました。結果はdrizzleしたものがSNR = 7.475e+04 、してないものがSNR = 4.222e+04とのことで、2倍近くの向上がみられました。

comp1

上の画像は、左がdrizzleなしの通常の処理、右が1倍のdrizzleです。drizzleをかけると、背景のクールピクセルっぽい黒い穴が少なくなっていることがわかります。SN比の向上と一致していますね。その代わりに、少し星像が肥大しているでしょうか?シャープさがなくなったようにも見えます。

多少の不利さもありそうですが、2倍近くのS/Nの向上はかなり魅力的なので、今後も使っていくことになりそうです。


結果

やっと画像処理の結果です。
Image22_DBE_SPCC_back_BXT_HT1_HT2_NXT_SCNRG6_cut
  • 撮影日: 2023年11月21日0時8分-5時23分、11月21日22時48分-22日2時25分、11月22日22時14分-23日3時14分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 48枚、OIII: 70枚、R: 9枚、G: 9枚、B: 9枚、の計145枚で総露光時間12時間5分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

結果を見るに、かなり出たのではないでしょうか!いろいろ苦労はありましたが、今回のレムナント、明らかにリベンジは果たせたと思います。

まず2年前に全く出なかった青は明らかに出ています。赤も無理して出していたものは、かなり複雑な模様まで詳細に出るようになりました。鏡筒だけでなく、ナローバンドフィルター、モノクロ冷却カメラと、機材も総取っ替えで挑んだ甲斐がありました。自宅からでも無理ナントではなかったと言っていいでしょう。

その一方、これで終わりかというと、画像を見てもまだ無理をしている感があるのも事実です。
  • まず、青に関してですが、やはりOIIIフィルターが眼視用のせいか、どうも恒星周りに青ハロっぽいのが出てしまっています。この青ハロの明るさが、淡いところの明るさと同程度になるために、淡いところをこれ以上炙り出すのが難しくなっています。星もとで48mmのOIIIフィルターを特価で見つけた時に、パッと買っておけばと、今でも悔やまれます。
  • 一方、Hαの赤も、よく見るといくつかの大きなリングの中に、ノイズに埋もれそうな淡い構造が明らかに見え始めています。これだけ見てもまだHαの方も露光時間を増やした方がいいいのかと思います。
  • 焦点距離が430mmとまだ微妙に長くて、全景が入っていません。モザイク撮影で周りも少し入れてみたいです。
こうやってみるとまだ不満な点もあるので、できるならもう一度リベンジしたいです。

今回の成果の一つは、ε130Dの星像がしっかりしてきたことです。今後は躊躇せずに、この鏡筒で撮影をどんどんしていきたいと思います。その一方、フードはフラット補正に少しは貢献しましたが、まだ完全な解決までは遠いです。でも他にアイデアもないので、これはもうあるものとして付き合っていくしかないと思います。


ナローバンド撮影と光害の関係

ナローバンドで、明るい月夜や明るい場所と、暗い場所でどれくらいスカイノイズに差が出るのか、今後きちんと実測と計算をしてみたいと思います。もしかしたらナローバンドフィルターの影響が強くて、意外なほど周りの明るさがあっても撮影結果に差が無いのではとも少し思っています。ナローで淡いところを出す場合、光害はあまり関係なく、いかに天体を明るく撮るかにかかっていて、口径、F値、露光時間、ピクセルサイズなどで決まってしまうのではないかという推測です。

もしこれが数値的に示されたとすると、自宅で撮るのは環境的には決して難しいことではなく、あとは機材と露光時間の根性という話になります。あ、ビニングなどの工夫もありますか。

暗いところにいって、ナローバンド撮影をしてみればすぐに判明するので、いつかまた遠征した時にナローで撮影して差を見てみたいと思います。


ビニング x drizzle x BXT

もう一つのアイデアです。

今回bin2で撮影しましたが、いわゆるソフトウェアビニングなので、bin1で撮影してから、画像処理の段階でPC上でbin2にしても同じことになります。しかも、16bitカメラなので後からビニングして32bitファイルに書き込めば、4倍の明るさになるのでダイナミックレンジは2bit得するはずです。

今回は後からのビニングができるのかわからなかったので撮影時にビニングしていますが、元のbin1の解像度が高すぎるので、bin2でもまだ十分な解像度があります。いっそのことここから更にビニングしてbin4相当にして更に4倍の明るさにして、でも流石にそれだと解像度がしょぼくなりすぎるので、drizzleで2倍にするというのもありだと思います。

もちろんそれだけだとS/Nは得しても、解像度に関してはあまり得しないので、この状態でBXTをかけるというアイデアです。drizzleとBXTは相乗効果が非常に高い可能性があることはすでに検証しているので、
 
解像度がほぼ今のままで、更に淡いところを出せるかもしれません。bin4だとすると今回のbin2に比べたら4倍、元のbin1に比べると16倍の露光時間になります。今回トタールで12時間半の撮影時間なので、16倍ならちょうど200時間の撮影時間と同等ということになります。自宅撮影の可能性をさらに広げてくれるかもしれません。分解能がどこまで犠牲になるかも注意しながら、余裕があったら試してみたいと思います。


まとめ

長い記事になってしまいましたが、半年くらいの細々とやっていたε130Dの調整も入っているので、実際にはまだまだ書き足りないくらいです。念願だった自宅レムナントがやっと出てくれたので、かなり満足している一方、まだ十分でないこともわかったので、いつかまたリベンジしたいと思います。

これでε130Dも多少安定して撮影できそうです。今後、どんどん活用していきたいと思います。

次はイカ釣りかな?


日記

コロナの後遺症か、熱がひいてからも数週間体力がなくて、今回やっと望遠鏡を出す気になりました。それでもこのブログを書いている現在もまだ咳が続いていたりします。

この間にも、どんどん試したいことが増えています。SharpCapの惑星ライブスタックとか、SharpCapでガイドなしのdhitherとかです。でももう既に冬型の気圧配置になってしまったのでしょうか、天気が全然ダメです。天気が悪くても、まだノイズ解析は進めたいですし、小海でお借りしたInteractiveの読み込みとかもしたいです。これらもまた、いずれ記事にしたいと思います。時間が全然足りません。


2023/10/12、久しぶりに新月期で晴れです。平日なのであまり無理をしたくないのですが、せっかくなので撮影を敢行しました。


久しぶりの撮影

実は前日の10月11日も晴れていたのですが、ε130Dの光軸調整で時間を潰してしまい、何の成果もありませんでした。実際光軸調整も大したことはできず、せっかくの晴れでもったいないです。なんとか撮影の成果だけは残そうと思い、SCA260+ASI294MM Proで簡単な撮影をしました。この日の撮影は、前半がM27、後半がM45です。でも結局撮影が忙しくて、せっかくε130Dを出してセットアップまでしたのに、光軸調整はやっぱりできないんですよね。平日に二つのことは厳しいです。

今回M27にした理由ですが、5月にHα画像を写していました。その後続けてOIIIも撮ったはずなんです。でも撮影後に確認したら、実際に撮影していたのはB...。AOO撮影のはずなのに、Aの次はBと思い込んでしまったようです。今回はそのリベンジで、OIIIの撮影です。でもここでも痛恨のミス。縦横を合わせ損なって90度ずれてしまい、使えるのは重なる正方形の部分だけとなってしまいました。

前回M27を撮影したのは2年前のTSA120を使ってです。2021年9月になります。この時が、そこそこセンサー面積があるモノクロカメラを使った初のナローバンド撮影で、まだフィルターホイールも持っていなかったので、手でフィルターを付け替えてのAOO撮影でした。本体周りの羽の部分を出したくてOを重点的に出そうとしました。羽はそこそこ写ったのですが、意外にAが出なくて、Aのリベンジが課題だったことを覚えています。



それでもこの時のM27には結構満足していて、もうしばらく撮ることはないなと思っていましたが、2年経つとアラも見えてきますし、SCA260でさらに光量が稼げるとか、BXTが台頭してきたとかで、状況も大分変わってきています。高度も高く、夏を中心に一年のうちのかなりの期間撮影が可能なので、ベンチマークがわりに再びM27を撮影しようとここしばらく思っていて、やっと実現できたというわけです。


撮影

SCA260での撮影は久しぶりです。少しづつ思い出しながらのセットアップになりますが、それでもほとんどトラブルもなく、比較的順調に撮影開始となりました。一つだけミスがあって、StickPCを使っているのですが、SCA260+ASI294MM Proで使っているStickPCと、ε130D+ASI6200MM Proで使っているStickPCが入れ替わっていて、気づかずにカメラの設定やフィルターごとのEAFのピント位置とかの設定でファイルを上書きしてしまいました。気づいたのはプレートソルブがどうしてもできなくて、ε130Dの焦点距離の400mmが入っていた時でした。でも面倒なのでそのままStickPC交換せずに使い続けたのですが、色々不具合が出てきて、すぐに交換すればいいと後から後悔しました。
M27
撮影中のNINAの画面。ガイドも順調です。

撮影は順調に続き、OIII画像が溜まっていきます。23時位になるとM27が隣の家の屋根にかかってしまい、次に考えたのが、ずっとやってみたかったモザイク撮影です。以前拡大撮影したM45: プレアデス星団が次のターゲットですが、これは別の記事で書きたいと思います。


追加撮影

OIIIの撮影直後は5月に撮影したHαと合わせて仕上げてしまおうと思っていましたが、縦横の間違いが悔しかったので、結局10月17日にHαを、OIIIと同じ方向にして撮影し直してしまいました。こうなってくるとOIIIもHαももう少し追加したくなり、18日にも追加撮影して、5分露光でHαが44枚、OIIIも44枚で、合計88枚、総露光時間440分で7時間20分となりました。17日から18日にかけては庭に望遠鏡を出しっぱなしにしていたので、すぐに撮影に入ることができ、18時台から撮影を開始できています。


フラットでトラブル

久しぶりの撮影なので、フラットを撮り直しています。フラット撮影は、昼間に明るい部屋で白い壁を映しています。ところが、今回条件を一緒にしようとして「冷却して」撮影したのは失敗でした。結露が起こってしまったことに後から気づき、結局常温で全て撮影し直しです。DARKFLATも温度を合わせるため、こちらも全部取り直しです。
2023-10-14_14-00-20_M 27_2x2_FLAT_R_-10.00C_0.01s_G120_0000
フラット撮影中にオートストレッチして、こんな風に真ん中にシミのような大きな模様ができていたら、結露しています。拡大すると、おかしな黒い点々が見えたりします。

普段はフラットは昼間に部屋が明るい時に撮っていましたが、雲があると明るさがバラバラになるのでダメですね。今回は早く画像処理を始めたかったため、暗くなってから部屋のライトをつけて撮影しました。でもこれ、もしかしたらダメなのかもしれません。特にHαですが、微妙にフラット補正が合わずにムラになってしまいました。

以前記事に書いたことがあるのですが、ナローバンド系はフラットファイルそのものがどうしてもムラムラになってしまいます。



当時、センサー自身のムラではないかと予測したのですが、その後ZWO自身がこのムラはセンサーの特徴だと言及しているページを見つけました。



当時このページの存在は知らなかったのですが、後からやはり推測は正しかったと分かりました。でもいずれにせよ、このムラはフラット補正で解決できましたし、ZWOの説明でも同様のことが書いてあります。

でも今回は、フラット補正をしてもどうしても、ムラの形が残ってしまいました。まず、今回撮影したフラット画像のうちの1枚です。ナローバンド特有の大きなムラ構造が出ています。
masterFlat_BIN-2_4144x2822_FILTER-A_mono

次に、AOO合成した直後の画像です。上のフラット画像と比べてみると、ムラの形がよく似ていて、暗いところが赤くなってしまっているのがわかると思います。
Image11_ABE

まだ未検証ですが、部屋の明かりを使ったのが悪かった気がしています。明かりとしては、蛍光灯と電球を合わせたのですが、それぞれ波長が違っていて、違った種類の光源が複数方向から来ているので、複雑な形の輝度勾配ができてしまっていた可能性があります。もし時間が取れるなら、再度晴れた日の明るい部屋の中で自然光を光源に、再度撮影してみたいと思います。あ、多分ですが、晴れた日にの薄明時に鏡筒を空に向けるのが一番いいのかとは思いますが、時間が限られるので、壁での方法を確立しておきたいということです。

今回問題だったフラットのムラはHα、OIIIともにDBEを細かくかけることで、なんとか見える程度にすることができました。


ダークの撮影

あと、今回ついでにダークも久しぶりに撮影しました。ダーク系を撮るのも昼間は注意が必要です。カーテンを閉めてできるだけ部屋を暗くするのはもちろんですが、鏡筒や特にフォーカサー部などにきちんと暗幕(タオルとか、服とか)をかけて撮影しないと、完全にダークになりません。今回は二度に分けてダークを撮りましたが、最初の暗幕が甘くて、十分暗くなりませんでした。
IMG_8668
こんな風に望遠鏡をくるんで、さらに部屋を暗くしてダークを撮影してます。


最新版PixInsightと、Mac M1でのStarNet

私は画像処理にMacのM1を使っているのですが、最近PixInsightを1.8.9-2にアップデートしたら、StarNet V2が使えなくなりました。その後StarNet V2もアップデートされ、最新バージョンのPIでも使えるようになったということでしたが、再インストールの方法を忘れてしまい少し手間取りました。Niwaさんのページやその参照元のCloudy Nithtsに解説があるのですが、自分の環境とは微妙に違っていて、そのままではうまく動きません。うまく動いた方法を書いておきます。

まず、ダウンロードページに行って、



をダウンロードします。その後、ファイルを解凍します。
  1. StarNet2_weights.pbとStarNet2-pxm.dylibは/Applications/PixInsight/bin/にコピーします。
  2. libtensorflow.2.dylibとlibtensorflow_framework.2.dylibはApplications/PixInsight/PixInsight.app/Contents/Frameworks/にコピーします。PixInsight.appの中身は、PixInsight.appを右クリックして「パッケージの中身を表示」を選ぶとアクセスすることができます。
  3. 以下のコマンドを、一つ一つコピペしてターミナルから実行します。
  • sudo chown root:admin           /Applications/PixInsight/bin/StarNet2_weights.pb
  • sudo chmod 644                  /Applications/PixInsight/bin/StarNet2_weights.pb

  • sudo chown root:admin      /Applications/PixInsight/bin/StarNet2-pxm.dylib
  • sudo chmod 755             /Applications/PixInsight/bin/StarNet2-pxm.dylib

  • sudo rm -f             /Applications/PixInsight/bin/libtensorflow*
  • sudo chown root:admin  /Applications/PixInsight/PixInsight.app/Contents/Frameworks/libtensorflow*
  • sudo chmod 755         /Applications/PixInsight/PixInsight.app/Contents/Frameworks/libtensorflow*

あとはREADME.txtに書いてある通りに、
  • PI上でPROCESSES=>Modules=>Install Modulesで'Search'を押すと、StarNetが出てきます。
  • その後他のボタンは何も押さずに'Install'を押します。
  • うまくいくとStarNet2がPROCESSES-><Etc>もしくはPRECESSES-><All Processes>に出てくるはずです。
怖かったのは、マニュアルに「ちゃんと手順を踏んでやってもサーチでStarNetが出てこない場合は、AVXに対応してないから仕方ないとか、心を折るような記述があることです。でもM1のMacでPIの最新版で、確実にStarNet V2をインストールできたので、諦めずに正しい手順でやってみてください。


結果

画像処理に関しては、あとはほとんど問題はありませんでした。ナローなので、色決めに一意の解はなく、SPCCも恒星の色を合わせるように設定したので、星雲の色は自由度があります。他の画像を見ていてもM27の色は様々で迷いますが、前回TSA120で出した色が比較的好みなので、今回も近い色としました。

画像処理の結果が下のようになります。
masterLight_BIN_2_300_AOO_SPCC_BXT_DBE_MS_MS_BG2_cut_X3
  • 撮影日: 2023年10月12日20時59分-22時52分、10月17日20時34分-23時29分、10月18日18時18分-22時35分、
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260 (f1300mm)
  • フィルター: Baader Hα, OIII
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120、露光時間5分、Hα:44枚、OIII:44枚の計88枚で総露光時間7時間20分
  • Dark: Gain 120、露光時間5分、温度-10℃、42枚
  • Flat, Darkflat: Gain120、露光時間 Hα, OIII:10秒、128枚
  • 画像処理: PixInsight、Photoshop CC

ちなみに、2年前に撮ったTSA120の画像が以下になります。
Image09_DBE2_stretched7_cut_crop_b


比較と評価

2年前と今回を比較してみます。
  • 最初のスタック画像を見ていると、微恒星に関してはどうも前回のTSA120の方がより出ている気がしました。これまで同じ対象でTSA120とSCA260を比べて、SCA260が負けたことはないので、意外な結果でした。原因はシンチレーションくらいしか考えらないです。もう夏の気候は終わってしまったので、揺れは大きくなっているのかもしれません。それでもBXTをかけて改善する余地があったので、結果としては今回の方が微恒星は数も鋭さも出ています。
  • 狙いの本体外側の蝶の羽の部分は、今回の方が明るい鏡筒で露光時間も倍以上と長いため、明らかに綺麗に出ています。羽の部分はOIIIの青よりも、Hαの赤の方がやはり淡いようで、前回よりも出てはいますが、フラットムラのこともあり、まだ露光時間を伸ばすか、このレベルの淡さになってくると自宅よりはさらに暗いところに行ったほうが効率がいいのかと思います。ここ最近の記事で、明るいところと暗い所のスカイノイズの影響が数値で定量的に出るようになってきたので、いずれこの淡さならこの場所に行くべきというようなことが言えるようになるのかと思います。
  • 中心部の微細構造は、口径とBXTの効果で圧倒的に今回の方がいいです。ただし、淡い羽部分の分解能との差がありすぎるので、多少なりともバランスを取るために、あえて少し分解能を落としてあります。
今回のM27、羽の部分、中心部分の分解能、微恒星の鋭さ、背景のノイズなど、ほぼ全てを2年前の結果を上回っていて、自己記録更新です。あえていうなら、透明度みたいなのだけは以前の方が良かったように思いますが、これは画像処理に依っていて、まだ私も確信を持って(少なくとも見かけの透明度さえも)透明度をコントロールできていないので、偶然によってしまっています。それ以外はトータルとしてはかなり満足しています。


まとめ

久しぶりのSCA260での本気撮影でしたが、かなり満足な結果でした。自宅庭撮りで、M27の羽がここまで出るのなら、十分なのかと思います。その一方、これ以上出すのは撮影時間がかかりすぎることなどから難しく、暗いところに行く必要があると思います。次のシーズンに飛騨コスモスでしょうか?

ε130Dの光軸調整がなかなかはかどっていないので、しばらくはSCA260での撮影も継続していこうと思います。


2023/5/17(水)、平日ですが新月間近で夜の天文薄明終了から、朝の開始まで6h23minの撮影時間。この時期にしては長い撮影時間となるので、平日で初めて2台展開してみました。

一台はSCA260でM104:ソンブレロ銀河と、もう一台はε130Dで前半おとめ座銀河団、後半網状星雲です。

焦点距離の短いε130Dにフルサイズカメラだとかなり広角になるので、銀河が中心の春だと少し厳いので広角でおとめ座銀河団、夏の星雲がメインになってくる夜中からは迷いましたが今回は淡いところがどこまで出るかみたいので、網状星雲としました。

今回とりあえずε130D網状星雲のみ画像処理をしました。


これまでの網状星雲と今回の目的

網状星雲ですが、これまでの実績では、FS-60CBにDBPをつけてEOS 6Dで自宅で撮影したものがもっともよく出たものです。
masterLight_ABE_ABE_Rhalo_PCC_ASx2_HT3_cut

中心の淡い線も多少出ていますが、フルサイズの画角が欲しくて、その場合6Dしかなかったので、カラーセンサーとなり、DBPを使ってもこれくらいがやっとでした。

この時「広角のナローは試すことはないだろう」とか言っていますが、わずか1年半で前言撤回となってしまいました...。

実際今回、ε130Dで口径が約2倍になって、ナローバンドになった場合、自宅撮影のフルサイズ広角でどこまで出るのかを見極めたいのです。


撮影

今回もAOO撮影になります。網状星雲としてはその後5/17(水)と5/17(水)に撮影を続けましたが、青のOIIIがどこまで出るかが勝負です。とくに中心の淡い線。これをもっと出したいのです。

まだ高度が低いうちにAフィルターで撮影し、後半より昇ってくるので次にBフィルターで撮影です。初日は前半はまだしも、後半は風がかなり強くなってきたので、午前3次で中断しました。あとから画像をチェックしましたが、一応ブレずに撮れているようです。CGEM IIに小型のε130Dであることと、焦点距離が短いのでブレが効きにくいのかと思いますが、多少の風には耐えられることがわかったのはいい指標でした。

まる2日同じような設定で撮影して、3日目の撮影前にこれまでの画像を改めてチェックしてみました。でもよくみると青い線が全く出てないのです。え???と思い、改めていろいろチェックしなおしたのですが、なんとここで間違えてBフィルターで撮影していたことにやっと気づきました。はい、RGBのBフィルターで撮影していたというわけです。フィルターホイールの各フィルターの名前付けでHαを「A」としたのですが、次は「B」と思い込んでしまったのです。OIIIフィルターは「O」と名付けたのですが、とても間違えやすいです。多分これからも何回かやらかす気がします。

OIIIが全く撮れていなかったことがわかったので、気を取り直して3日目はすべて「O」で撮影です。


問題点

3日間の撮影後、改めて画像を見比べてみると大きな問題があることがわかりました。炙り出すと1日目の画像のみ、中心が暗くなっているのです。よくみるとリング状の明るい部分もあるようです。下は初日にとったHα画像です。同日に(間違えて)撮影したB画像にも同様の明暗がありました。
2023-05-16_03-27-08_A_-10.00_300.00s_0014

2日目のHα、B画像、3日目のOIIIの方はそのような現象は見ている限り確認できませんでした。

原因はおそらく迷光だと思います。時間帯によって部屋からなどの光が鏡筒付近当たったりすることがあるので、初日は自宅か、隣の家の窓が明るかったりしたのかと思います。屈折やSCA260などのこれまでの鏡筒と違い、カメラが鏡筒の先端近くに付いていることも周りの外光が入り込む原因かと思います。

フードを作ることが必須かと思います。とりあえず材料だけ揃えましたが、まだ製作まで手が回っていません。休日の時間がある時などに作りたいと思います。

あと、やはり四隅の星像が伸びます。特に下側が縦方向に伸びるのでスケアリングの可能性があることと、全体に外側に広がっている気がするのでバックフォーカスが問題かもしれません。

Image03_mosaic

これもBXTで劇的に改善するのは、前回の北アメリカ星雲と同じです。酷かった下側の縦方向の伸びなんかはほとんど目立たなくなります。

Image03_mosaic01

でもこのままだと流石にダメそうなので、次回晴れた日に光軸調整をすることにします。


ちょっとだけ光軸調整

実はこのブログを書いている今日(2023/5/31)ですが、晴れているので少しだけ星像を見ながら光軸を触ってみました。まずはカメラの回転角を90度とか180度とか変えてみたのですが、角度によってピントが合っている部分が変わるので、カメラが傾いている可能性が高そうです。副鏡と主鏡でこれを補正することはできるのか、スケアリングをいじる必要があるのか?今のCanon EFマウントアダプターを使っているとスケアリング調整はできないので、どこかのネジを緩めて何か薄いものを挟むなどの工夫が必要になるかもしれません。

その後、副鏡を少しだけ触ってみました。星像が多少良くなったりしますが、全部を合わせることは全然できなさそうです。自由度だけ見ても、副鏡、主鏡、バックフォーカス、スケアリングとかなりあります。いくつかは縮退していてもう少しいじるところは少ないでしょうが、夜に星像だけを見て闇雲に触るのは到底無理そうなのです。時間に余裕がある時にまずは明るいところで問題を切り分けながらじっくり試そうと思います。


AOO合成

テスト撮影ですが、せっかくなので仕上げてみます。

「網状星雲」
AOO_crop_SPCC_BXT_HT_HT_NXT_bg_more_s

  • 撮影日: 2023年5月16日2時14分-3時32分、5月17日2時1分-2時42分、5月17日0時12分-1時49分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f50mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 21枚、OIII: 19枚の計40枚で総露光時間3時間20分
  • Dark: Gain 100、露光時間5分、温度-10℃、118枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、64枚、OIII: 0.2秒、64枚
  • 画像処理: PixInsight、Photoshop CC

今回の目的は自宅で網状星雲がどこまで出るかのテストなので、ギリギリまで淡いところを出してみました。一番上の去年の画像と比べてどうでしょうか?中心の青い縦線まではっきり出たのは成果の一つかと思います。また、本体周りの淡い赤も構造が見えているので、これもよしとしましょう。

今回は総露光時間が3時間強と大した長さでないのと、季節初めで撮影した時の高度も低いので、まだかなりノイジーです。今後高い位置で長時間露光すればもう少しマシになるでしょう。

実は網状星雲って、本体の外の左と右を比べると、右の方が一段暗くなっているようなのです。今回それがまだ全然表現できていません。これはもう少し露光時間を伸ばせば出てくるのか、それともただの勘違いなのか、いずれ答えは出るでしょう。

あと、迷光に起因すると思われる明暗が色ムラとして淡くあり、それも炙り出してしまっているので目立ってしまっています。ここも大きな課題の一つでしょうか。


まとめ

今回の新機材で、自宅撮影でも淡いところまで写す見込みはありそうなことはわかりました。フードと光軸調整をして、いつかそう遠くないうちに自宅スパゲティー星雲に挑戦したいです。

網状星雲としては一応作例として残しましたが、リベンジ案件です。できれば今シーズン中にもう一度撮影したいと思っています。



このページのトップヘ