ほしぞloveログ

天体観測始めました。

タグ:ε130D

手持ちの未処理画像のうち、最後のもの取り掛かりました。昨年9-10月に撮影した勾玉星雲です。


撮影 (記録によると)

撮影日は2024年の9月30日。もうだいぶ前のことなので、ほぼ記憶はゼロです。記録から書き起こします。

この日の前半は、ε130Dで (これも少し前にやっと画像処理を終えた) 網状星雲の撮り増しをしていました。でもこの日、カメラの凍結防止ヒーターを入れ忘れて、途中から画面中心が結露してしまいました。しかもずっと気づかなかったので、かなりの範囲で結露してしまったみたいで、カメラの温度を0度より上に上げるだけでは全然解消しません。一旦常温まで戻して、30分程度放っておいたのですが、まだ結露は完全に取れず。次に、凍結防止ヒーターを入れて、温度をとりあえず5度くらいまで下げて、さらにしばらく待つと、やっと結露が無くなりました。

その間に網状星雲の撮影可能時間も過ぎてしまい、後半になって何を取るか迷ったのですが、カメラを回転させることなくちょうど画角的に入りそうな、勾玉星雲を撮影することに決めました。勾玉星雲は2018年12月に撮影しているので、6年ぶりになります。


前回の撮影は6年前のことなので、機材は鏡筒、カメラ共に進化しました。フィルターは少し迷いましたが、時間も限られているので、まずはRGBとHαにしてみました。以前カモメ星雲でHα領域と、BとかGで色調がうまく出たので、RGBで恒星、RGB背景のRをHαの背景で置き換えるという、同じ手を使う予定でした。ところが、途中から雲が出てしまったようで、R画像とG画像はほとんど使いものになりませんでした。

この日は、ヒータ以外にももう一つ大きなミスをしていて、bin2で撮るつもりがNINA上で設定するのを忘れていてbin1で撮ってしまいました。bin1でファイルサイズが大きくなってしまったこと、ピクセルサイズが小さいということなのでS/Nで考えると露光時間が実質短くなったのと同等なこと、bin1のダーク、フラットファイルが必要になることなどがデメリットです。メリットは分解能が出ることですが、そこまで細かい模様を見たいわけではないので、あまりbin1のメリットは効かないでしょう。

その後、10月11日の夜の後半にチャンスがあったので、初日の撮影と同じく泣く泣くbin1にして、RとGの撮り増しと、あとOIIIも追加で撮影しました。

その後、秋は紫金山アトラス彗星とSWAgTiでの撮影がしばらく続いたので、ε130Dでの撮影はしばらくお蔵入りになっていて、今に至ります。彗星は新鮮度が大事なこと、SWAgTi画像の処理は楽なので先に済ませてしまい、最後に残ったのが今回の勾玉彗星というわけです。残ったというか、残しておいたというか、とにかく北陸の冬場の天気は全く期待できないので、未処理のものを手持ちで置いておきたかったのですが、CP+も終わり落ち着いたのと、どうも今週末くらいからやっと冬場の天気を脱却しそうな予報になっているからです。年が明けて体力も戻ってきたので、また撮影を再開していきたいと思います。


RGB画像へのMGCの適用

さて画像処理ですが、今回はMGCのパラメータを少し探ってみました。その結果、RGBはある程度一意のパラメータに落ち着きました。RGBでやったことの順序と結果を書いておきます。


Gradient scale:
まずは大きな影響のあるGradient scaleを変えてみます。Gradient scaleが小さくなるほど、細かい構造で補正します。
  1. Gradient scale: 1024、Structure separation: 3、Model smoothness: 1
  2. Gradient scale: 512、Structure separation: 3、Model smoothness: 1
  3. Gradient scale: 256、Structure separation: 3、Model smoothness: 1
  4. Gradient scale: 128、Structure separation: 3、Model smoothness: 1
01_RGB
01_grad
画像は1枚目がMGC補正後のRGB画像をBoosted Auto Streatchしたもの、2枚目がMGCでどれだけ補正したかの画像をBoosted Auto Streatchしたものになります。2枚とも、左上からZ字順に比較の1、2、3、4になります。

このパラメータを決定するには2つの要因があります。まずはε130Dを使っていて、迷光の影響 (網状星雲ダイオウイカ星雲スパゲティ星雲おとめ座銀河団)がある (ε130Dだけでなく、強度に炙り出していくと、おそらく反射型一般に同様の迷光があっておかしくないと考えています) こと。この画像の右下の円弧の部分がわかりやすいです。これをきちんと取り除くためには1024と512では不足で、256以下にする必要があるとわかりました。128にすると、補正画像を見ると渦上の構造が出てしまうようで、これは不自然だとして却下しました。これでGradient scaleは256で決定とします。

というか、これでε130Dで散々悩んでいた欠点がとうとう解決するに至ったというわけです。ただし、今のところRGB画像だけ有効で、しかもMARSのデータがある領域が限られているという問題もあります。でもかなり大きな一歩です。


Structure separation:
次に、Structure separationの比較をします。小さい数だと独立した大きな構造内での相対輝度差が小さくなり、大きな数だと構造の相対輝度差を強調するとのことです。直訳ですが、いまいち意味がわかりませんでした。結果を見てパッと理解できたのは、小さな数の方が細かい補正をしていることくらいでしょうか。デフォルトは3です。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 1
  2. Gradient scale: 256、Structure separation: 3、Model smoothness: 1
  3. Gradient scale: 256、Structure separation: 5、Model smoothness: 1
11_RGB
11_grad
画像は左上から1、右上が2、左下が3です。

まず、Structure separationが5の場合は、補正画像で渦上の構造が出てしまい却下です。1と3はあまり差はないですが、本来大きな構造で処理するはずの1の方がよく見ると細かいところも補正できていたりします。とりあえず1を採用しましたが、3でもよかったかもしれません。


Model smoothness:
最後、Model smoothnessを変えてみます。数を大きくするとよりスムーズなモデルを使って補正し、小さくするとエッジや不連続なジャンプを描くようです。デフォルトは1です。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 1
  2. Gradient scale: 256、Structure separation: 1、Model smoothness: 5
  3. Gradient scale: 256、Structure separation: 1、Model smoothness: 10
21_RGB
21_grad
画像は左上から1、右上が2、左下が3です。

5と10は粗くなって、再び迷光の影響で右下の円弧が出てきたので、却下としました。

結論としては、RGB画像では
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 1
を採用し、理由は必要な細かさの補正をしつつ、やり過ぎないというものです。ただし、必要な細かさは撮影画像によって違うと思いますし、補正のかけ過ぎは避けたいものです。


Hα画像へのMGCの適用

次にアンドロメダ銀河の時にはできないと思っていた、Hα画像でもMGCを試してみました。

まず、Hα単体の画像もMGCで処理できることはわかりました。でもパラメータ設定はRGBに比べてはるかに難しいです。理由ですが、かなりの推測も含みますが、おそらく基準となる画像が基本的にRGBで撮影されていることかと思います。ようするに、Hαで見えるような輝線成分の明るさやコントラストがデータの中に含まれれていないので、下手をするとのっぺりしたり、過分に処理し過ぎて、RWA画像にあった豊かな構造やコントラストが崩されてしまう可能性があります。そのため、適用するとしてもかなり緩やかに適用する必要がありそうです。

元画像はこれです。
integration_A_ABE1_SPFC_f

PIのWBPPでの処理をした直後で、標準的な処理かと思います。表示だけは強度のブーストオートストレッチをかけてますが、まだストレッチ前です。見ている限り、かなり淡いところまで出ていることがわかります。面白いのは、HαやOIIIには明光の影響があまり出ないことでしょうか。これまでもそうだったのですが、RGBではあからさまに見えるリングなどがナローではほとんど目立つことがありません。理由は今のところ不明です。

まずはSPFCを適用しますが、narrow band filter modeを選びます。Gray filterだけHαの656.30nmとし、RGBは効いてない考え、適当にそれぞれ656.30nm、500.70nm、500.70nmとしました。RGBの設定がこれでいいのかはよくわかってません。とりあえずモノクロのHα画像にこれを適用し、次にMGCとします。

まずRGBでいいと結論づけた
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 1
01_integration_A_ABE1_SPFC_MGC256_1_1
としましたが、全くダメです。細かすぎで、あからさまに変になっています。細かく補正し過ぎていると思われますが、これは参照データがRGBなのでHαの情報を含んでいないためだと思われます。


Model smoothness:
細かすぎるので、まずはよりスムーズな補正になるように、Model smoothnessを増やしてみます。
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 10
02_integration_A_ABE1_SPFC_MGC256_1_10

としました。これでもまだ細か過ぎで全然ダメです。


Gradient scale:
埒が開かないので、Gradient scaleを増やします。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 10
  2. Gradient scale: 1024、Structure separation: 1、Model smoothness: 10
  3. Gradient scale: 2048、Structure separation: 1、Model smoothness: 10
01_RGB
11_grad
1024だとかなりまともになりますがまだ落ち込みが見え、2048でやっと許容範囲くらいになりました。256でどれくらい補正しているかを改めて見てみると、Hαでうまく出ているところをことごとく打ち消してしまっています。これは元データがHαベースのものではないことを示唆していますが、まだパラメータを探り切ったわけではないので、もしかしたら上手い回避方法があるのかもしれません。


Structure separation
ここで、Structure separationを変えてみます。
  1. Gradient scale: 2048、Structure separation: 1、Model smoothness: 10
  2. Gradient scale: 2048、Structure separation: 5、Model smoothness: 10
12
画像の上2つがRGB、下2つが補正量です。左が1で右が2です。

補正量を見るとStructure separationが5の方がより細かいというか、滑らかというか、スムーズな階調で補正しています。補正された画像を見ると、Structure separationが1の方が少し落ち込みが見え、5の方がその落ち込みが少ないようなので、ここでは5を採用します。


Model smoothness:
念の為、再びModel smoothnessを変えてみます。
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
21_integration_A_ABE1_SPFC_MGC2048_5_1_bad

としましたが、星雲本体の形を補正してしまっていて、落ち込みがひどく、即却下です。

さらに、念の為
  • Gradient scale: 1024、Structure separation: 5、Model smoothness: 10
integration_A_ABE1_SPFC_MGC1024_5_10_bad

も見ますが、こちらも同様に落ち込みがひどく、却下です。


Hαの結論

Hα画像の結論としては
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
を採用したのですが、果たしてMGCを適用した方が良かったのか、元のままでも良かったのかの検証を最後にしてみます。

元画像の方がのっぺりしているのですが、MGC補正後の方は少し落ち込みがあるようにも感じます。でもその落ち込みは、星雲本体をより際出させているとも言える範囲なので、今回はMGCで補正したものを採用とします。


OIII画像へのMGCの適用

OIII画像も試しましたが、Hαと同じ
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
が一番まともでした。Gradient scaleを1024にすると、星雲本体の暗い部分が落ち込んでしまいます。Hαと大きく違ったのは、Model smoothnessを10にするとMGC補正前も補正後もしほぼ変化は見られず、同様にStructure separationを5にしてもほぼ変化は見られなかったことです。これはOIIIの背景には元々構造がほぼなくて、同様に参照データの青成分の背景にも構造がほぼないため、補正しても効果がそもそも出ないためだと思われます。Hαの背景には複雑な構造があり、参照データの赤成分の背景は軽い構造があり、その差が変な補正を生みやすくなっていたことが、OIIIとの違いなのかと推測しています。

でも結論としては、OIIIにはMGCを適用しないものを採用しました。理由は、MGCによって星雲本体の特に淡い部分の一部が薄くなってしまうからです。これはOIIIで見える部分が、参照データに入っていないためで、OIIIでせっかく出た星雲本体の淡い部分を余分なものと捉えてしまい、消そうとする方向に働くからだと思われます。


MGCのまとめと所感

と、ここまでRGBとHαとOIIIについてMGCを議論しましたが、2つの画像で適したパラメータが全く違っていることから分かるように、どのパラメータがいいとすぐに言える状況ではないようです。どのような方針で探っていけばいいかを、ざっくりとだけまとめておきます。
  1. Gradient scaleは違いがわかりやすいので、まずはこれを変えてみるのがいいのでしょう。
  2. Structure separationは結果を見てもそこまで大きな差はないので、デフォルトの3でもいいのかと思います。
  3. あとは、Model smoothnessを1と10で変えてみて大きな差が出ないか、問題ないならデフォルトの1で、違いがあるのなら5も試してみて、いい値を探るとかするのがいいのかと思います。

さて、MGCについて少し個人的な所感を書いておきます。

1. 元々個人的にもかなり期待していた期待していたMARSデータを使った補正で、MGCという名前でやっと実用化されたわけですが、チュートリアルと、最初に使って、「あれ、これ結構まずいのでは?」とも思いました。MGCはMRASの参照画像と自分で撮影した画像の差を見て、その差がないように撮影画像を補正します。端的に言うと、例えば超短時間撮影などで星雲情報をがほとんど得られなかった画像に、同じ領域の星雲情報が入っているMARSデータを使ったら、撮影画像に入っていなかった星雲が浮かび上がるのではないかと思ったのです。

BXTが出た当初、AIの元データにハッブルなどのものを使っているなら、それを適用してしまうのは問題ではないかと言う意見がありました。これは補正した画像がハッブルのものになってしまうのではという杞憂だったと思うのですが、AIは直接それらのデータを利用するのではなく、ある意味普遍的な補正法則を学んでいると考えると、特に問題ではないと考えることができ、最近ではBXTの効果に大きな疑問を呈する意見はあまり聞きません。でもMGCの場合はMARSデータを直接参照して、比較、補正しています。

でも実際にはこの考えは、今の段階では杞憂でしょう。MGCでの補正はあくまで背景に相当する空間波長の低い(粗い)補正のみです。今回の検証でも細かすぎる補正は、逆に見た目でも(今回は渦模様でしたが)変な補正になるようなので、極端なパラメータを使う方がおかしくなるのかと思います。でも原理的には差を見てそれがなくなるよううに補正することはできるはずで、極端な方向に進むと、まずいところは全て補正してしまって、理想とする画像にどれも近づいてしまうという危険は含んでいるのかと思います。

2. MGCがあるから、これで背景補正は完璧だと思ってしまうことは危険です。所詮元データとの比較だけなので、当然ですが補正後の結果は元データに依ります。元データのMARSデータベースが理想的かどうかは誰にもわからず、今わかっているのは35mmと135mmレンズで撮影された、全天とはいかないまでもかなり広い範囲の背景データであるということです。ただしアマチュアレベルではないので、ある程度の基準になっていると思ってもいいはずで、それを共通の財産として広く使えるようにしようとする方向性は相当な評価ができるのかと思います。

特に、ε130Dで突き当たった迷光は、どうやっても解決できなかったもので、それを解決できる手段の一つとして使えるというのは、個人的にはとても助かっています。そもそもこのε130Dの迷光問題、以前検証したページにも書いていますが、
  1. フルサイズセンサーくらいの面積で初めて出てくること
  2. さらに一眼レフカメラなどでは上下の蹴られの影響の方がはるかに大きく、それを回避したフルサイズのCMOSカメラなどを使い
  3. その上でかなり積極的な炙り出しをして初めて出てくること
です。なのでε130Dを使って撮影しても、実際に問題なるケースはそこまで多くはないでしょう。でも突き詰めていくと必ず出てくる問題なので、これを解決できる方法が提唱されたことは、とても嬉しいことです。

3. MGCは、分子雲に満たされた背景を、広い範囲と矛盾なく強力に補正してくれます。これは特にモザイク合成の接続に強力な威力を発揮するでしょう。他人の撮影画像とのモザイク合成も可能にすると思われます。

4. RGBだけでなく、Hα、OIII、SIIなどのメジャーなナローバンドでの参照データベースでの補正もいつか可能にして欲しいです。現段階ではナローバンドはまだ実用的とは全然言い難いという印象です。


その後の画像処理

ここまでMGCについてかいてきましたが、でも結局はRGB画像のMGCはほとんど活かすことはありませんでした。Hαに比べて背景の構造が出ていないので、結局Hαで上書きされてしまうからです。なので一番検証できたRGB画像なのですが、本当にMGCの検証というだけの意味合いになってしまいました。

というのも最初はRGB画像とHαとOIII画像をPhotoshopに送り、RGB画像のRとBに混ぜたりしたのですが、どうもHαの階調がうまく出ずに赤でのっぺりしてしまいました。そこで方針を変えて、PixInsightの段階でAOO画像を作り、それをベースにRGBの恒星と、一部星雲中心のRGBでしか出てこないような構造をくわえることにしました。

bin1のままだとファイルサイズが大きくなりすぎるので、全ての処理が終了して一旦JPEGで出力してか、そのJPG画像の解像度を変えてbin2相当にしています。

「IC405 勾玉星雲とIC41」
Image03_AOO2_s_brighter_cut
  • 撮影日: 2024年10月1日1時1分-3時36分、10月12日1時11分-4時42分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 6.5nm、R、G、B
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin1、Gain 100、露光時間5分、Hα: 17枚、OIII: 8枚、R: 10枚、G: 13枚、B: 12枚の計60枚で総露光時間5時間0分
  • Dark: Gain 100、露光時間5分、温度-10℃、37枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 1秒、OIII: 1秒、R: 0.05秒、G: 0.05秒、B: 0.05秒で全て128枚
  • 画像処理: PixInsight、Photoshop CC
Hαの階調をできるだけ残すことと、赤一色にならないように、GやBを活かしつつ、OIIIも混ぜています。それでもやはり全体に赤っぽくなってしまうのは、まだまだ今後の課題でしょう。でもこの構造がHαにしか含まれれていないことを考えると仕方ないです。最近はHαをRだけに適用するのではなく、GやBに入れ込んでもいいのかと思うようになってきました。

恒例のアノテート画像です。
Image03_AOO2_s_brighter_annotted


過去画像の再撮影です。
light_BINNING_1_integration1_AS_DBE_cut
違いですが、
  • 鏡筒が口径6cmから13cm。
  • カメラがEOS 6DからASI6200MM Proなので、カラーからモノクロになっていて、フルサイズなのは同じですが、解像度は倍近くになっていて、ピクセルサイズも半分近くになっています。
  • フィルターはQBPだったのが、今回は実質AOO合成です。
  • 露光時間は52分から5時間と伸びています。
今回はナローバンドフィルターを使っているので、さらにコントラストは良くなるはずなので、露光時間を含めて、QBPとの直接の比較は意味がないかもしれませんが、ハード的な進化は大きいでしょう。それに加えて、StarNetやBXTなどのソフト的な進化もあります。あ、今回NXTの新バージョンも使いましたが、これはまたそのうちに検証したいと思います。


まとめ

やっと未処理画像が無くなりました。天気が良くなるまでにまだ時間があるなら、過去画像の再処理やボツにした画像の処理、特にボツにしたモザイク撮影の処理などをやってもいいかと思います。

今回はMGCを特にいじってみましたが、なかなか一意の方針を示すことは難しそうなので、このようなやり方で攻めていけばいいという指標くらいでしょうか。

もう少し赤っぽい印象を押さえつつ、階調を確保する方法が欲しいです。多分暗い空に行ってRGBで撮影するのが正解なのかと思います。結局前回の網状星雲と同じような悩みかと思うので、自宅でこれを解消しようとすると、またものすごく苦労しそうなので、もう少し何かいい方法がないか考えてみます。

今後の撮影ですが、少しSCA260を復活させてみたいと思います。SCA260用の、少し面白そうなアイテムを手に入れたので試してみることを考えています。

網状星雲は今回で4度目の挑戦になります。2020年8月にFS60CB+EOS 6DでフィルターにCBPを使って初撮り、2021年10月には同じセットアップでフィルターをDBPにして、2023年5月にはε130D+ASI6200MM ProのテストとしてナローのAOOで撮影しています。だいたい1年半おきくらいでしょうか。なんだかんだ言って結構コンスタントに撮っていることになります。






4度目の撮影の目的

3度目はε130Dを買ってすぐでの撮影でした。まだ鏡筒のテスト段階で、HαとOIIIのみのAOOです。撮影時間も十分に取れていませんでしたが、この明るい鏡筒でどこまで出るか試していて、かなり淡いところまで出ていたので、明るさ的には十分な鏡筒だということが確認できました。この時の反省点としてはRGBを撮っていなかったので、恒星の色が赤っぽくなってしまったことでしょうか。あと、ε130Dを含む横側に接眼部が付いている鏡筒一般に出ると思われれる、迷光によるリング上の迷光の跡が残ってしまっていますが、当時はまだテスト開始時で何が原因かも分かってなかったですし、あまり問題視もしていませんでした。

また、既にこの時にも書いていて、今回の撮影のきっかけにもなっていますが、網状星雲の右側がいつも何か暗くなることに気づいています。2020年の最初のCBPの時にも既にその傾向が見えていることも確認ができました。これが分子雲か何かなのか?その正体を暴きたいとずっと思っていました。昨年の夏に、風の民さんが大きなヒントをくれました。


これを見る限り、明らかに分子雲と思われます。ナローバンドフィルターを使っていると出てこないようで、これはブロードで撮らないと出ないのではと思っていたのですが、上記画像もやはりノーフィルターでブロード撮影したとのこと。

これらのことから、今回の目的は、
  1. 恒星をRGBでまともな色にすること
  2. 鏡筒ムラをなくす
  3. 右側にあると思われる、広い範囲に広がる淡い分子雲のようなものを、ブロードで撮影して出す
などとすることにします。


迷走状態の撮影

撮影は長期にわたりました。HαとOIIIに関しては、前回の3度目の撮影の時に、光害地の自宅でもそこそこ出ることはわかったので、そこはあまり時間をかけませんでした。それよりも、右側の淡い分子雲と思われるものがこの自宅から撮影できるかどうか、全然見通しが立たなかったので、むしろRGBの方に撮影時間を割きました。

ε130DでR、G、Bフィルターでそれぞれ別撮りした画像を、RGB合成したものを見てみます。撮影は4日に渡っていて、約6時間分になります。
Image20_org

これで見る限り、分子雲と言えるようなものはほぼ何も見えていないと言っていいでしょう。この画像は4日分ですが、初日に2時間分くらいでRGB合成した時にも全く分子雲が写らず、本当に見通しが立っていませんでした。

それでも分子雲があるはずだという根拠の一つが、R画像でもG画像でもB画像でもいいのですが、スタック後に背景と恒星を分離して、恒星側を見てみると、右側3分の1くらいの領域の星が明らかに暗くなっていることがわかるのです。
star_mask
ここでの推測は、おそらくですが分子雲に遮られてその背景に見える恒星の光が遮られてしまい暗くなっているのではと考えました。過去3度の撮影でも右側の恒星が暗くなる傾向はあったので、たまたまとかではないはずです。

また、F3.3のε130Dではまだ暗いのかと思い、とにかく明るくという方針で手持ちのF1.4のシグマの105mmのレンズと画角をある程度揃えるためにUranus-C Proで撮影してみたのが下の画像です。背景の色の違いがわかるように恒星を分離しています。かろうじて茶色の分子運の濃淡がわかりますが、解像度がイマイチで使えるレベルではないようです。さらにノーフィルターで撮っていたので、やはり網状星雲自身の色さえもあまり出なくて、5時間くらい撮影しましたがお蔵入りとしました。

4144x2822_EXPOSURE_60_00s_RGB_integration_ABE_ABE

その後再びε130Dに戻り、RGB画像の撮影枚数を増やしていって、あるとき105mmレンズで分子雲を見ようとした時みたいに、恒星と背景を分けて背景を見てみたら、何か写るのでは?と気付きました。恒星分離して、ABE、DBE、HGC、GraXpert、マニュアルでの迷光補正など、ありとあらゆることを試しましたが、下の画像くらいが限界でした。
Image16_ABE

それでも網状星雲本体の右上に、少なくとも何か構造が写っているのがわかります。自宅の光害地でもRGBで何か写ることがこの時点でやっとわかりました。但し、ε130Dの迷光で出るリングくらいの淡さのにしか出ていません。これで進めてしまうか、それともRGBはお蔵入りして、AOOだけにするか、その後ずっと迷走していて時間だけが過ぎ、夏から撮影していたはずなのにあっという間に年末近くになってしまいました。


MGCでとうとう進展が!

長い時間をかけて処理をしている間に、PixInsightが2024年12月末に1.8.9から1.9.0に、


そこから程なくして1.9.2までアップデートされました。Lockhartですか...、私はどちらかというとKisaragiの方が...。懐かしいですね。

アップデートの際、WBPPの過去のインスタンスが使うことができなくなってしまいました。正確にいうと、一部使えるものもあるのですが、少なくとも1.8.9で網状星雲の処理に使っていたWBPP設定は内容を確認することもできなくて、全て最初からやり直しとなってしまいました。

WBPPはとりあえず置いておくとして、今回のアップデートで重要なのはとうとうMARSプロジェクトを利用したMGC(Multiscale Gradient Correction)が使えるようになったことです。これまでも背景処理にはシンプルなABEから、DBE、GradientCorrection、PI以外でもGraXpertなど、さまざまなフラット化処理がありました。それでも背景が分子雲で満たされているような場合は、処理によってずいぶん結果に差が出てしまい、何が正しいのか指標となるようなものがほとんどなかったというのが実情でした。MGCはMARSと呼ばれる35mmと135mmレンズで撮影された、全天とはいかないまでもかなり広い範囲の背景データを用いて、分子雲に満たされた背景を広い範囲と矛盾なく強力に補正してくれます。これは特にモザイク合成の接続などにも威力を発揮するようなので、これまで試しても結局仕上げを諦めていたモザイク合成もまた試してみようと思います。

今回の網状星雲でMGCを実際に試したところ、やはり威力はかなりのものです。触ったパラメータはGradient Scaleだけですが、デフォルトの1024から段階的に256まで変えたところで下の画像のように相当な改善が見られました。
Image20

あからさまに右側に分子雲と思われるものがはっきりと出ているのがわかります。これまでのフラット化の処理は画面内で閉じていたので、このように例えば左右で明らかに輝度に差がある背景などはうまく処理する方法がありませんでした。同様のことはこれまで例えばかもめ星雲でもありました。

本当はかもめの頭の上の画面の半分くらいが暗いはずですが、この時はなんとか誤魔化して処理しています。こういったものに使うことができるはずです。


画像処理

それでも、そこからの画像処理は難航を極めました。分子雲に加えて、Hαの赤と、OIIIの青がどこまで淡いところが出るかも一緒に表現したいのです。Hα単体、もしくはOIII単体ならそこそこ出ることがわかります。特にHαに見える、星雲本体を左から上側に取り囲むような淡いリングをなんとか表現したいと思います。
Image118_DBE1

Image91

ちなみにOIIIフィルターですが、これまではBaaderの眼視用のものを使っていてハロが出ていたりしましたが、やっと今回からBaaderの「撮影用」の6.5nm透過のものを使うことになりました。福島の星まつりで買ったものです。OIII画像を見る限り、ハロが出なくなったことと、コントラストがより出るようになったのかと思います。

HαとOIII2つを重ねるのがとても難しいです。明るいところは白くなりがち、淡いところは両色ともなかなかうまく表現できずと、単色の迫力からはどうしても劣ってしまいます。
Image108

これらと、さらに分子雲のRGB画像、RGB画像から作った恒星画像を重ねていきます。


結果

出来上がった画像です。

「網状星雲」
Image20_9_cut
  • 撮影日: 2024年7月5日0時9分-2時57分、9月10日22時35分-9月11日1時24分、9月11日23時8分-9月12日2時37分、9月14日1時2分-3時9分、10月9日20時14分-21時10分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 6.5nm、R、G、B
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 28枚、OIII: 20枚、R: 35枚、G: 29枚、B: 10枚の計121枚で総露光時間10時間5分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

MGCを使ったとしても、その後の画像処理が入っているので、分子雲がどこまで正しいのかよくわかっていません。それでも少なくとも何か存在することはわかったので、今回の目標は達成と言っていいかと思います。分子雲は主にRとGによく写っていて、B画像やHαとOIIIなどのナローバンドではほとんど写らないこともわかりました。

ただし、RGB画像のみだと網状星雲本体が出てこないので、同時にHαとOIIIで星雲本体もやはりあったほうが見栄えがいいでしょう。赤いリングもなんとか表現できたのではないかと思います。

それでも特にHαはやはり撮影時間が絶対的に足りていないです。左のリングを無理して出しているので、同等の明るさの中心部の淡いところの諧調が出ていません。OIIIももっと露光時間を伸ばしても良かったかもしれませんが、2024年は秋から冬にかけて富山の天気が全然ダメで、網状星雲の季節も過ぎてしまい、諦めざるを得ませんでした。実際、1年半前の前回の撮影の時の方がHαもOIIIも撮影時間が長く、淡い階調もきちんと表現できていたので、この画像を足そうかとも思いましたが、画角が微妙に違っていたので諦めました。来年以降に持ち越しでしょうか。


まとめ

いろいろ時間がかかりましたが、それでもとうとう網状星雲が分子雲込みで撮影できました!ε130Dでやりたかったことがまた一つ達成できたことになります。

OIIIフィルターもやっとまともなものになったので、今後も淡いOIIIに挑戦できるかと思います。

その一方、光害地でギリギリを攻めるのに疲れてきているのもあるので、しばらくはSWAgTiで明るくてよく出る対象にするかもしれません。でもSCA260でも試してみたいことがあるんですよね...。春になって天気が良くなったら考えることにします。


日記

しばらくブログ更新ができていなかったので、ちょっと事情を。

年末年始の休暇が終わった段階で、今回の網状星雲の画像処理はある程度目処をつけていました。でももう少しだけ直したくて少し放っておいたら、また体調を崩してしまいました。平日はかろうじて最低限の仕事だけして基本早めに寝て、休日はほとんど寝てるというのがしばらく続きました。1月も終わり近くになり、やっと体調も戻りつつあり、今回の画像処理とブログ書きとなりました。

やはり体調管理はとても大切で、調子が悪いとほとんど何もできなくなることを再認識しました。あまり無理をせずに、できる範囲で楽しみたいと思います。

気づいたらもう2024年も年の瀬です。最近なかなか忙しかったのですが、やっと年末の休暇に入って少し時間が取れそうなので、ずっとほったらかしていた画像処理を少し進めます。まずはM31の続きです。


目的

今回の目的は、少し前の記事で書いたM31: アンドロメダ銀河加えて、ε130D+ASI6200MM Pro+CGEM IIでHα画像を撮影することで、前回のカラー画像に赤ポチを加えることと、できるならM31周りの背景の構造を出せればと思います。

カラー画像が焦点距離250mmに19x13mmのフォーサーズセンサー、今回のHα画像が焦点距離430mmに36x24mmのフルサイズセンサーなので、そこそこ似たような画角になります。違う鏡筒とカメラを使った場合に、画像をうまく合成できるのか?これまであまりやったことがないので、うまくいくかのテストも兼ねています。



そもそもなのですが、銀河の赤ポチ自体あまりやったことがなく、これまでは2021年11月撮影のM33と、2023年3月撮影のM106



あと、申し訳程度で2022年4月に撮影して、2023年4月に再処理したM51くらいでしょうか。


Hα画像をどうやって赤っぽい色に持っていくか、銀河のRGB画像に対して赤ポチをどうやって自然に合成するかなど、まだまだ試行錯誤の段階です。今回は背景の淡い所も出そうと思っているので、明るい赤ポチと淡い背景の輝度バランスを崩さないようにマスク処理も必要になるのかと思います。

Hαで撮影できる背景の淡い構造は、M31で近年撮影され始めたもので、例えば100時間越えの撮影などで詳細な構造が出てきています。OIIIにも構造があることもわかってきていて、例えばこちらはFSQ106で3nmのフィルターで、OIII単体で45時間越えの撮影でOIIIの放射を新たに発見したとあります。こういった比較的広視野での背景の構造は、機器を個人で占有しての長時間露光ができるアマチュア天文で、今後も成果が出てくる分野なのかと思います。

今回は自宅でのHαの、高々5時間程度の撮影なのですが、それでも何か構造が見えるかどうかという挑戦になります。


撮影

カラー画像の撮影についてはすでに前の記事で書いているので、ここではε130Dでのナローの方のセットアップを少し書いておきます。

最初のHα画像の撮影日は10月12日の夜です。前日までの勾玉星雲からM31に切り替えるにあたり、横幅でちょうど銀河が収まるように、鏡筒とカメラを最初にセットして以来今回初めてカメラの回転角を90度変えました。カメラの回転については、ε130Dの接眼部に回転機構が標準で組み込まれているので、それを利用しました。スケアリングとか少し心配ですが、今回は恒星に関してはカラーで撮ったものを使うので、背景のみならあまり目立たないでしょう。今後L画像とか撮影したら問題になるかもしれませんが、BXTがあるのでまあなんとかなるでしょう。

赤道儀は前日からセットしてあったので、架台側をいじる必要はなかったのですが、上記のように鏡筒の方を色々いじっていたら結構時間が経っていて、月が沈む0時過ぎをとっくに超えてしまい、撮影開始は午前1時過ぎになってしまいました。

撮影後の朝になって気づいたのですが、ミスってASI620MM Proのbin1で撮影していたことに気づきました。ダーク画像は以前同設定で撮影したものを持っていたのですが、フラット画像は当然撮り直しになります。bin1だとすごいHDD喰いになるので枚数は50枚と控えて撮影、その後画像処理を進めます。

出来上がった画像を見ると何かおかしいです。撮影されたRAW画像を1枚1枚よく見ると、なんと中心が結露していることが判明しました。40枚撮影したのに、使えそうなのは最初の1-2枚だけでした。どうやらカメラのヒーターを入れ忘れていて、撮影後すぐに結露したみたいです。この結露に気づいたのが11月17日に画像処理をした時で(すでにこの時点で1ヶ月以上経っているのでずいぶんのんびりなのですが)、1-2枚だと全く意味がないので結局全部ボツにして、改めてHα画像を撮影することにしました。

2回目の撮影は11月25日で、今回は忘れないようにいつものbin2に設定します。もう冬に近くなってくるので、アンドロメダも早い時間からそこそこの高度に昇っています。夕方から撮影を開始し、月が出てくる午前2時くらいまで撮影を続けましたが、朝確認してみると天気予報の通り午前0時を回ったくらいで雲が出てきて、それ位この画像は全てボツとなりました。使えたのは5時間分の画像で、もちろん本当はもっと長時間撮影して淡いところを攻めたいのですが、北陸の冬は天気は全く期待できないので、この日撮影できただけでも貴重でした。これ以降撮影できたのは前回記事のM45の12月2日のみで、その後も年末まで全く撮影できていません。


Hα画像が淡すぎ

RedCat51でのカラー画像の画像処理があらかた終わっていたのが11月27日で、その後Hαも交えて画像処理をしたのが11月30日。この時点でカラー画像は決定として、カラー画像完成のブログ記事を書いたのが12月5日です。Hαと合わせた画像処理は主に12月1日に終えていたのですが、まだ出来上がりに迷いがあり、少し置いておいたら結局今回の記事になってしまいました。

その間にPixInsightが1.8.9から1.9.0になり、Multiscale Gradient Correction (MGC)でとうとうMARSデータを一部ですが使うことができるようになりました。うまく使えればカブリ除去に劇的な効果があると思われます。

特に今回のHα画像の背景の淡さには辟易していて、高々5時間の露光では背景の構造があることはわかるのですが、それと同じくらいの輝度でε130Dのリング状の残差光が目立ってしまい、このMGCが使って上手く補正できたらとか思っていました。でも残念ながらどうやらMGCはカラー画像にしか使えないようで、今回はとりあえずHα画像で使うことはあきらめました。

4784x3194_EXPOSURE_300_00s_FILTER_A_ABE_HT_center

それでもこのリングを取り除かないことには背景はほとんど出てこないので、MGCの代わりにフラット画像を利用してリングを手作業で丁寧に除きました。具体的にはPhotoshopに移り、かなり輝度を落としたフラット画像を別レイヤーで表示し、差の絶対値で重ね合わせています。フラット画像の輝度を微調整することで、リング状の模様をできる限り消しています。

カラー画像とHα画像は鏡筒もカメラも違うので、画角が違うのですが、合成するためには画角を一致させなければいけません。実際にはカラー画像の方が画角が小さく、Hα画像の方が少し画角が広いので、Hα画像をカラー画像に合わせることになります。これはPixInsightの StarAlignmentを使うことで特に問題なく解決しました。PixInsightの1.9.0からImage Synchronizationという新機能ができたらしいので、今後はそれを使ってもいいかのかもしれません。

下の画像は、RedCat51のカラー画像と合わせる直前のHα画像に相当します。リングを補正したHαから、さらにカラー画像の銀河をモノクロにしたものを引いています。その後、赤ポチ部分にマスクをかけ、背景をさらに炙り出しています。上の画像と比べると相当マシになり、背景の構造が見えてきているかと思います。まだリング構造は少し残っているように見えるのですが、元のカラー画像に対してこの画像を比較(明)で重ねるため、相対的に暗いリング構造は、最終画像にはほとんど出てこなくなるくらいになります。
4144x2822_180_00s_RGB_integration_ABE4_SPCC_BXT5_HA


結果

最終画像です。

「M31: アンドロメダ銀河」
4144x2822_180_00s_RGB_integration_ABE4_SPCC_BXT5_red_cut
  • 撮影日: 2024年10月13日0時46分-4時33分 (カラー)、2024年11月25日18時24分-23時39分 (Hα)
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: William Optics RedCat51(f250mm、F4.9)  (カラー) 、ε130D (430mm、F3.3)  (Hα)
  • フィルター: UV/IR cut  (カラー)、Baader 6.5nm  (Hα)
  • 赤道儀: SWAgTi (SWAT-350V-spec Premium + AZ-GTi)  (カラー)、CGEM II  (Hα)
  • カメラ: ZWO ASI294MC Pro (-10℃) 、ZWO ASI6200MM Pro (-10℃)  (Hα)
  • ガイド: なし (カラー)、f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング (Hα)
  • 撮影: NINA、Gain 120、露光時間3分 x 64枚 = 192分 = 3時間12分 (カラー)、Gain 100、露光時間5分 x 60枚 = 300分 = 5時間00分 (Hα) 
  • Dark, Flat: なし (カラー)、Gain 100、露光時間5分 x 117枚 = 585分 = 9時間45分 (Hα)
  • 画像処理: PixInsight、Photoshop CC

前回のカラー画像ではあまり色を出さなかったのですが、これは今回のHαの赤とのコントラストを出すことを見越してです。モノクロに近い銀河に、Hαの赤という組み合わせを狙ってみました。赤ポチは十分明るく撮影できているので、まあ問題ないでしょう。そこそこ派手にしましたが、海外の例を見ているともっと派手なものもあるので、まあこれくらいしておきます。

さて肝心の背景の構造ですが、そもそも正しいのか?他の画像と比較しても、そこまで間違っているわけではなさそうで、かなり明るい部分だけですが何か撮れているのは間違いなさそうです。だからと言って十分とはとても言い難く、ε130Dの比較的明るい鏡筒だとしても撮影時間が絶対的に足りていないでしょう。これ以上の本当に淡いところは全く見えませんでした。自宅での撮影なので光害が問題の可能性もあり、ここら辺は暗いところでの撮影と比較して今後定量的に検証していきたいと思います。改善点としては、一つは暗い場所に行くことですが、もう一つはHαフィルターを3nmのものに変更する手があるかと思います。

なかなか遠征で時間を稼ぐのは今の体力では現実的に難しそうなので、ナローバンドフィルターですでにスカイノイズが無視できて、ダークノイズかリードノイズに支配されているなら、本格的に3nmフィルター導入というのは、アリかもしれません。本当に得するかどうか、こちらも定量的に検討してみたいと思います。


まとめ

秋の代表アンドロメダ銀河も、のんびり処理していたらいつの間にか年末の冬です。残りの未処理画像は夏の網状星雲と、勾玉星雲です。相変わらず天気は悪いので、まだしばらく撮影はお預けになりそうなことを考えると、焦って処理を進めても勿体無いので、ゆっくり進めようと思います。

今年の記事は多分これでおしまいです。すでに実家の名古屋に帰省してこの記事を書いています。みなさん、どうか良いお年を。

自宅で淡いもの撮影シリーズ、多分このダイオウイカが最終回になるでしょう。これ以上淡いのは...さすがにもう限界です。

「そこそこ」撮影

私の元々の天体撮影の動機は「自宅でそこそこ撮れればいいな」でした。でも「そこそこ」がいつしか「どこまで」になり、いまでは「限界は」になってしまっています...。初心から考えるとあまり良くない傾向ですね(笑)。

最初に天体写真を始めてからずいぶんかかりましたが、最近では自宅でもやっと「そこそこ」満足に撮れるようになってきました。なんか「そこそこ」の使い方が間違っているようにも感じますが、とにかくイルカさんカモメさんクワガタさんは分解能や階調など見てもそこそこかと思います。ここ数年のソフトの進化の効果もかなり大きいです。でもこれは明るい天体だからまだ言えることで、かなり頑張って出したスパゲッティーさんは自宅撮影の限界はもう超えているんだと思います。今回の撮影のコウモリさんはまだしも、ダイオウイカさんはスパゲティーと同レベルか、もっと淡かったりします。


撮影したのはかなり前

Sh2-129: フライングバット星雲とその中のダイオウイカ星雲を撮影したのはもう半年も前のことで、時期的にはスパゲティー星雲を撮影した直後です。そういう意味でも自宅からどこまで淡い天体が出るのかの検証の一環になります。


ところが、撮影後に長い迷走状態に陥りました。最低限の画像処理としてWBPPまではすぐに終わったのですが、そこからが長い長い。理由ははっきりしていて、何度やっても仕上がりが気にいらなくて、ほっぽらかしてしまっていたからです。

気に入らない理由もはっきりしていて、HαとOIIIに写るものがあまりにもはっきり区別されすぎていて、Hα起因の赤は赤だけでのっぺりしてしまうし、OIIIはそもそもメインのダイオウイカさえもあまりにも写らなくて、炙り出そうとしても画面全体がノイジーになってしまうからです。

とりあえずこちらを見てください。OIIIの5分露光1枚撮りで、ABEとDBEをかけてフラット化して、かなり強度に炙り出してみたものでが、ほとんど何も見えません。フラット補正の誤差レベルで出てくる鏡筒の迷光の僅かな明暗差よりも、星雲本体の方が全然淡いくらです。
2023_12_04_19_13_50_300_00s_g100_9_80C_0000_ABE_DBE_s

WBPP後にどうなるかというと、まあせいぜいこの程度です。OIIIだけで10時間25分あるのですが、強炙り出ししても高々これくらい出るのみです。
2392x1597_2x2_drizzle_2x_integration_ABE1_ABE6_DBE_strong

少しでもS/Nを稼ごうとして、ソフトウェアビニングをかけて、bin4x4状態にして、そこからdrizzleでx2をしています。これについては以前議論していて、上記画像はすでにその過程を経たものになってます。このレベルのノイズだと流石にいかんともしがたく、少しだけ画像処理を進めましたが、全く太刀打ちできませんでした。

こんな調子ですが、画像処理の基本的な方針だけは初期の方に決まりました。恒星はRGBをそれぞれ別撮りしたものから得ます。その結果Hαの恒星もOIIIの恒星も使わないことになります。なので、最初からリニアの段階でHαもOIIIも背景と恒星を分離してしまいます。HαとOIIIの背景と、RGBから作った恒星を、別々にストレッチして、あとから合わせることにしました。

OIIIですが、恒星分離するともう少しフラット化や炙り出しなどを進めることができ、やっとダイオウイカの形がそこそこ見える程度にまでなりました。
2x2_300_00s_FILTER_O_mono_dri2x_ABE1_ABE6_DBEDBEDBE_back_DBEDBE

背景の一部がボケたようになっていますが、DBEなどのフラット化の時になぜかボケてしまいます。どうやらこれは階調が僅かすぎて補正しきれないことに起因するようです。例えこれくらい出ていたとしても、AOO合成して処理しようとすると青と緑の背景があまりにノイジーになりすぎ、全く処理する気にならずに、ここで長期間放置状態になりました。

その後しばらくして、OIII画像は星雲本体のマスクを作ることができることに気づき、なんとかなると思い画像処理を進めました。今度はHαは赤のみ、OIIIは青と緑のみと、ものの見事に別れきっていることに気づいて、あまりに赤がのっぺりしてしまって、さらにはダイオウイカ自身も青一辺倒で後から乗っけたようになってしまい、これまた嫌になってしまって再度長期放置していました。

体調を崩してからまだ夜の撮影を敢行できずにいるので、未処理の画像をと思い、今回重い腰を上げました。スタートは以下の画像です。これとOIII画像から作った星雲本体と明るい青い部分のマスクを使います。
Image80

ただ、これだけだと赤と青共にのっぺりするのは変わらないので、途中からRGB画像のG成分を少し加えてみました。淡いですがG画像の背景に構造は残っているようで、緑成分がHαの赤と合わさって茶色の分子雲を作り出せればと考えました。このやり方が正しいのかどうかは疑問もあるのですが、例えばこれまでもかもめ星雲の時にHαにGBの背景を合わせて、赤の「のっぺり」を防いでいます。OIIIを使っていないのがポイントで、B画像とG画像の青と緑成分を使い色の階調を稼いでいます。また、網状星雲の画像処理ではε130DのテストとしてHαとOIIIのみでAOO合成していますが、これだと右側に広がる茶色の分子雲をどうやっても表現することができません。G画像を持ってくれば何か出せるのかなと考えていて、今回はその布石でもあります。同様のことはクワガタ星雲のAOO画像でも述べています。

初出でXに投稿した画像はマスク処理が功を奏して、やっとなんとかダイオウイカ本体が出てきたものでした。でもダイオウイカ本体から透けて見えるはずのHαの赤成分が全然出ていないことに後から気づきました。今から見るとちょっと恥ずかしいですが、まだ苦労している途中の習作ということで出しておきます。
Image80_3_cut

次に投稿したものは、青から透けて見える背景の赤に気をつけて処理したものです。
Image80_5_cut

その後、ソフトウェアビニングでbin4相当だったOIII画像を元のbin2に戻して、さらに青ハロの処理を間違えていたことと、ダイオウイカ本体以外にも青い部分は存在していることに気づき、青をさらに注意して、再度ほぼ一から処理し直しました。大体の処理方針はもう決まっていたので、再処理でもそこまで時間はかからず、最終的には以下のようになりました。

「Sh2-129: ダイオウイカ星雲」 
final4_cut2
  • 撮影日: 2023年12月4日19時13分-23時47分、12月8日18時53分-22時45分、12月29日17時56分-21時53分、12月30日18時5分-21時13分、2024年1月2日17時54分-20時47分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 28枚、OIII: 125枚、R: 11枚、G: 14枚、B: 11枚、の計189枚で総露光時間15時間45分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

背景が赤一辺倒、ダイオウイカ本体は青一辺倒というのから脱却して、少しだけですが階調を出せたのかと思います。処理途中は、かなり最後の方までイカ本体が少しでも見えたらいいくらいに本気で思っていましたが、結果としては正直自宅撮影でよくここまで出たと思います。結局イカ本体はある程度出てくれたので、こんな淡い天体の場合でも画像処理の手法としては存在するということが、今回学べたことです。

その一方、元々超淡くてノイジーなダイオウイカです。マスクを駆使して、相当な無理をして出していることを実感しながら処理していました。これだけ淡いと、環境のいい多少暗いところで撮影したとしても、画像処理には無理が出そうで、例えば他の方のダイオウイカ本体がかなり綺麗に出ている画像を見ても、よくよく見てみると多少強引に処理を進めたような跡が見てとられます。Xに投稿したときに海外の方から「このターゲットを狙う限り、みんな苦労して画像処理している」とか言うようなコメントがありましたが、本当にみんな苦労しているのかもしれません。

恒例のアノテーションです。
final4_cut2_Annotated1


以前に挑戦していた!?

どうせなのでぶっちゃけますが、実はダイオウイカ星雲は以前撮影していて、お蔵入りにしたことがあります。2021年11月のことです。FS-60CBにDBPフィルターをつけて、EOS 6Dで撮影しました。

DBPで胎児とハート星雲を撮影してみて、結構出るのでこれならダイオウイカでもなんとかなるかなと思って意気揚々と3日に渡り撮影しました。1枚当たりの露光時間はたっぷり10分で82枚、合計で13時間40分です。下の画像は、試しにWBPP後、フラット化だけしたものですが、何個もある黒い穴はホコリなので無視するとして、強炙り出ししても心の目で見てやっと青いイカが確認できるくらいです。

600_20s_FILTER_NoFilter_RGB_drizzle_1x_ABE_ABE

ホコリの跡が目立ったのもありますが、このイカさんの淡さ見て画像処理をする気にもならずに、諦めてしまいました。でもこれが広角の明るい鏡筒でナローバンド撮影をしたくなった強烈な動機になり、それから1年ちょっと経った時にε130Dを手に入れています。(追記: 改めて過去記事を読んでみると、DBPと6Dで胎児とハート星雲を撮影してうまくいったので、次にDBPでスパゲティー星雲を撮影しようと思ったみたいです。でもスパゲティーの前に6D+DBPでダイオウイカに行って上の画像のように打ちのめされて、そのままスパゲティーに行かずに、一旦ε130Dに走ってスパゲティーを撮影して、やっと今回のダイオウイカに戻ったということみたいです。)

今の技術で2年前のダイオウイカを画像処理したらどうなるか、ちょっと興味が出たので、少しだけ挑戦してみました。念の為一からWBPPをかけ直して、ABEとGradientCorrectionでフラット化して、SPCCをかけて、BXTをかけて、リニアの状態で恒星と背景を分離するなど、基本方針はナローで撮った時と同じです。ところが、適当にストレッチしてからダイオウイカ本体の処理のために青のマスクを作ろうとしたのですが、あまりに淡くてノイジーで背景と分離することができずに、結論としてはマスク作成不可能ということで頓挫しました。やはり今の技術を持ってしても、無理なものは無理と分かっただけでも収穫かもしれません。

結局年単位の長期計画になったのですが、改めて明るい鏡筒まで手に入れて、今回ナローでイカを撮った甲斐があったというものです。


PixInsight1.8.9-3のFBPP 

ちょうど6Dの画像処理中の6月24日、PixInsightのメジャーアップデートのお知らせがメールで届きました。目玉の新機能が多数枚の画像の速い処理を可能にするFastBatchPreprocessing(FBPP)と 、色バランスをGaia DR3データと比較して合わせるSpectrophotometricFluxCalibration (SPFC)でしょうか。とりあえずFBPPだけ試してみました。WBPPとの簡単な比較ですが、興味がある人も多いのではないでしょうか。

あ、その前に、1.8.9-3にアップデートした時点でプロジェクトファイル内に保存されていたWBPPのインスタンスが再利用できなくなったので、使い回しができなくなり新たに一から作り直す必要がありました。ダークとかフラットを登録済みで便利だったのに、また登録し直しでちょっと面倒でした。アップデートする方はこの点注意です。

1.8.9-3のインストール後、使えなくなったのはStarNetのみでした。これは前バージョンのPixInsightを消さずにフォルダ名だけ変えて残しておいて、1.8.9-3を元と同じ名前のフォルダにインストールし、古いフォルダ以下に残っていたファイルを新しい方にコピペしました。どのファイルをコピペすればいいかはここを参照してください。コピペでファイルの権限などもそのまま写されるので、このページにあるchmodなどの属性変更は必要ありませんでした。

さて処理にかかった時間の結果ですが、WBPPとFBPPで比較します。ファイルは全てEOS 6Dで撮影したカラー画像です。ファイル数は全く同じで、LIGHTが82枚、FLATが32枚、FLATDARKが32枚、DARKが106枚、BIASは以前に撮ったマスターが1枚です。

まずはこれまでのWBPPでかかった時間です。WBPPはdrizzle x1やLN Referenceなどもフルで実行しています。やっていないのはCosmeticCorrectionくらいでしょうか。トータルでは45分強かかっています。
20240621_WBPP_time2

一方、FBPPは設定でほとんどいじるところがなくて、ここまでシンプルになると迷うことが無くなるので好感が持てました。PixInsightの設定の多さや複雑さに困っている人も多いかと思います。私は多少複雑でも気にしないのですが、それでもこれだけシンプルだとかなりいいです。トータル時間は約11分です。
20240621_FBPP_time2

結果を比べると、Fast Integrationと出ているところは元のIntegrationなどに比べて3倍程度速くなっていますが、Fast IntegrationはLIGHTのみに使われていて、その他のDARKなどのIntegrationには使われないようです。Debayerも5倍弱と、かなり速くなっています。他の処理は元と同じ名前になっていて、かかる時間はほぼ同じようです。その代わりに余分な処理数を減らすことでトータルの時間を短縮しているようです。トータルでは4分の1くらいの時間になりました。

ここから考えると、LIGHTフレームの数が極端に多い場合は、かなりの時間短縮になるのかと思われますが、アナウンスであった10分の1は少し大袈裟なのかもしれません。

処理数を減らしたことに関してはdrizzleを使わないとか、ImageSolveで位置特定を個別にするとかなら、ほとんど問題になることはないと思われます。出来上がりのファイル数も少なくて、操作もシンプルで、FBPPの方がむしろ迷わなくて使いやすいのではと思うくらいです。


今後の改善

ダイオウイカですが、2年くらい前の撮影から進歩したことは確実です。機材が違うのが第一です。ソフトウェアの進化はそこまで効かなくて、以前の撮影の無理なものは無理という事実は変わりませんでした。

さて今後ですが、これ以上の改善の可能性もまだ多少あるかと思います。例えば今使っている2インチのOIIIフィルターはBaaderの眼視用なのですが、透過波長幅が10nmと大きいこと、さらにUV/IR領域で光を透過する可能性があり、まだ余分な光が多いはずです。実際、フラット撮影時にBaaderの撮影用のHαとSIIフィルターと比べると、OIIIのみ明らかに明るくなります。また、明るい恒星の周りにかなりはっきりとしたハロができるのも問題です。これらはきちんとした撮影用のOIIIフィルターを使うことで多少改善するかと思います。この間の福島の星まつりでやっと撮影用の2インチのOIIIフィルターを手に入れることができたので、今後は改善されるはずです。

また、今回OIIIに注力するあまり、Hαの枚数が5分の1程度の25枚で2時間程度と短かったので、もう少し枚数を増やして背景の赤の解像度を増すという手もあるかと思います。

G画像だけはもっと時間をかけて淡いところを出し、分子雲を茶色系に階調豊かにする手もあるかと思います。これはナローバンド、特にAOOで緑成分をどう主張させればいいかという、今後の課題になるのかと思います。

あとは、やはり暗いとことで撮影することでしょうか。いくらナローバンド撮影と言っても、光害での背景光の明るさが変われば、OIIIの波長のところでも違いが出るのかと思います。特にS/Nの低い淡い部分は効いてくるでしょう。


まとめ

2年前に心底淡いと震撼したダイオウイカですが、自宅でのナロー撮影で、まあ画像処理は大変でしたが、これだけ出たのは満足すべきなのでしょう。でももう、自宅ではここまで淡いのは撮影しないと思います。もう少し明るいものにした方が幸せになりそうです。無理のない画像処理で、余裕を持って階調を出すとかの方が満足度が高い気がしています。



年末の12月初めくらいから撮り続けていたSh2-308 ミルクポット星雲がやっと仕上がりました。

海外ではDolphin Head Nebulaと呼ばれているようで、日本でも「イルカ星雲」とか「イルカの頭星雲」とも呼ばれているようです。その一方、Milk Pot Nebulaとかで検索しても全く引っかからないので、どうもミルクポットと言っているのは日本だけのようです。

本当にイルカの口に似たような特徴的な形と、OIIIで写すと青く目立ってとても綺麗で、星を始めた当初からいつか詳細な形と共に撮影したいと思っていた星雲の一つです。最高高度が31度程度と比較的低い空なので、撮影可能期間もあまり長くなく、やっと実現できたというわけです。


撮影

実際の撮影開始は結構前で、12月4日の夜中過ぎからです。自宅なので平日も撮影可能で、同じ日の前半に北西方向のダイオウイカ星雲、後半に東から昇ってきているイルカ星雲を撮影しています。

一般に淡いと言われているイルカさんですが、同日に撮影していたダイオウイカ星雲がとんでもない淡さなので、イルカ星雲はずいぶん濃く感じました。下の写真の左は6時間40分のOIIIのダイオウイカで、ABEにDBEもかけて強あぶり出ししてやっとこれくらい。一方右は3時間10分でABEをかけただけでこんなにはっきり出ます。
comp

今回のイルカ星雲は、5分露光でOIIIが59枚、Hαが39枚でAOO合成の予定です。さらに恒星用にR、G、Bでそれぞれ8枚ほど撮影しています。OIIIとHαは比較的早くに撮り終えていたのですが、RGBが曇っている日が多くてなかなか撮り溜めできず、撮影は最終的に1月14日まで食い込んでしまいました。

R、G、B画像もそれぞれ同じ5分露光なのですが、明るい星はサチってしまっています。今後はRGBの各フィルターでの撮影は露光時間を短くするか、ゲインを落とした方がいいようです。

blue_BXT_Image36_DBE_DBE_Preview02_3dplot
RGB合成した画像の左側真ん中に写っている一番明るい星を、
PIの3Dプロットで表示。


画像処理

画像処理を進めていてすぐに、今回はイルカ星雲本体の青よりも、背景の赤がポイントではないかと思うようになりました。
  1. まず、イルカさんの中にも赤い部分が存在しているようで、今回程度のHαの露光時間では全然分解して表現できていないように思います。
  2. 背景の左側の赤い部分は、周辺減光か分子雲かの見分けがつきにくかったのです。特に左下の暗くなっている部分は暗くなっていますが、これは周辺減光なのか迷いました。他の方の画像を見ると確かに暗くなっているので正しいようです。
  3. 右側と上部には、かなり濃い波のような分子雲があり、こちらはHαだけでなくOIII成分も持っているようで、左下の赤とは明らかに違った色合いになり面白いです。
  4. 画面真ん中の星雲本体の周りに、下から右上方向に進むかなり淡い筋のような模様が見えますが、これも迷光などではなく本当に存在するもののようです。この筋はHαだけでなくOIIIにも存在するので、ここでも色の変化が見られとても興味深いです。

背景の淡い部分を出すには、フラット化がどこまでできるかがとても重要です。通常のフラットフレームを撮影してのフラット補正は当然として、それだけでは取りきれない
  • 輝度勾配
  • 周辺減光の差の残り
  • ライトフレーム撮影時とフラットフレーム撮影時の迷光の入り具合の差
など、大局的な低周波成分の輝度差が、淡い部分のあぶり出しを阻害してしまいます。

私はフラットフレームは晴れた昼間の部屋の中の白い壁を写しているので、どうしても窓側と部屋中心側で輝度差が出てしまいます。これはABEの1次で簡単に補正できるので、まずはHαもOIIIもインテグレーション後にすぐにABEの1次をかけます。ABE1次の後は出てきた画像を見て、毎回それぞれ方針を考えます。


GraXpert

実は今回、フラット化のために最近人気のフリーのフラット化ツールGraXpertを使ってみました。以前からインストールはしていたのですが、ほとんど使ったことはありませんでした。

今回GraXpertをPixInsightから呼び出せるようにしようと思って、この動画にあるように

https://www.ideviceapps.de/PixInsight/Utilities/

をレポジトリに登録して、ScriptのToolboxの中のメニューにも出てきたのですが、いざPixInsightからGraXpertを呼び出すと「GraXpertの最新版が必要」と言われました。アップデートしようとして最新版をインストールしたわけですが、アップデート後PIから呼び出しても、どうも動いている様子が全くありません。確認のために、まずは単独でGraXpertを立ち上げてみましたが、セキュリティーの問題を回避した後もうまく起動しません。ちなみにMacのM1です。

それでどうしたかというと、アプリケーションフォルダのGraXpertをフォルダから右クリックして「パッケージの内容を表示」でコンテンツの中身を見てみます。ContentsのMacOSの中にあるGraXpertがターミナルから起動できる実行ファイルで、これをダブルクリックすることでエラーメッセージを確認することができます。今回はいくつかpyhthonのライブラリが足りないとか出ていたので、手動でインストールしたのですが、結局解決せず。

そもそもメインPCのpython関連はそんなに変なことをしていないので、おかしいと思い調べたら、最新版はMac OS 13.6以上が必要とのこと。私はアップデート後のトラブルが嫌であまり最新のOSには手を出していなかったのですが、自分のバージョンを見たら12.4とか2世代も古いです。仕方ないので久しぶりにOSをアップデートし、一気に14.2.1のSonomaになって、無事にGraXoertが立ち上がりました。

ちょっと蛇足になってしまいましたが、
  • うまくいかないときはターミナルから立ち上げてエラーメッセージが確認できること
  • OSのアップデートが必要なこともある
というのが教訓でしょうか。

さてGraXpertの結果ですが、背景の星雲の形が大きく変わってしまい、残念ながら撃沈でした。比較してみます。最初がABEのみでフラット化したもの、
Image19_ABE4

次がGraXpertで今回は見送ったものになります。AIとKrigingで試しましたが、大きな傾向は変わりませんでした。画像はKrigingのものです。
Image13_SPCC_GX_K

違いは左下の濃い赤の部分で、GraXpertではムラと判断され、取り除かれてしまっています。また、イルカ星雲本体があるあたりの背景のHαも同様に取り除かれてしまっています。

このように、背景全体に分子雲が広がっているような場合は非常に難しく、DBEでもあまりいい結果にならないことがわかっているので、今回は再びHαとOIIIに戻って、今一度注意深くABEのみで処理することにしました。 GraXpertの方が良い結果を出す場合もあると報告されているので、実際のフラット化処理の際には一意の決まり手は存在せず、毎回臨機応変に対応すべきなのでしょう。


ABEのみでのフラット化

さて、今回最終的に使ったABEの具体的な手順を書いておきます。これも今回限りそこそこ上手くいったと思われる、あくまで一例です。
  • Hα: ABE1次、ABE2次
  • OIII: ABE1次、ABE2次、ABE3次、ABE3次 
として、ここでAOO合成。その後さらに
  • AOO: ABE4次
として、やっと落ち着きました。繰り返しになりますが、どれも決まった手順とかはなく、その場その場で画像を見ての判断です。

ポイントは
  1. 過去に他の人が撮影した画像などを参考にして、自分の背景がおかしすぎることがないこと
  2. オートストレッチで十分に炙り出せる範囲にフラット化を進めること
の2点でしょうか。それでも特に2にあるように、あぶり出しやすくするためにというのを主目的でフラット化しているので、正しい背景からずれてしまう可能性は否定できません。さらに1も、淡いところをどんどん出していくと、参考にできる他の画像自体も数が限られてしまうようになるという問題もあります。

こうやって考えると、PixInsightのMARSプロジェクトにかなり期待したいです。何が正しい背景で、何がカブリなどのフェイクかの指標を示してもらえるのは、とてもありがたいです。もちろん、誰も到達していないような淡さなどは当然データベースに登録されないと思うので、限界はあるはずです。でも私みたいな庭撮りでやっている範囲では、十分な助けとなってくれると思います。


とりあえずの画像処理

1月19日の金曜の夜、SLIMの月面着陸の様子をネットで追いながら、画像処理をしていました。着陸後、結果発表までかなり時間があったので、寝るのは諦めてのんびり進めます。その時に一旦仕上げて、Xに投稿したのが以下の画像です。

Image19_ABE4_SPCC_BXT_back3_cut

イルカ星雲本体はかなりはっきり出ています。イルカなのでOIIIの青がよく似合っています。また、背景の赤もかなり出ているのではないでしょうか。ナローバンドと言えど、自宅で背景がここまで出るのなら、結構満足です。周りの赤いところまで出してある画像はそこまでないのでしょう、結構な反響がありました。

イルカ星雲本体に含まれる赤はもっと解像度が欲しいところですし、全体に霞みがかったようになってしまっています。淡いOIIIを無理して強調した弊害です。OIIIフィルターにバーダーの眼視用のものを使っていることが原因かと思われます。IR/UVカットができないために、青ハロが目立ち、その弊害で霞みがかったようになってしまっています。


Drizzle+BXTが流行!?

土曜の朝起きて、いつものコメダ珈琲に行き、画像処理の続きです。改めて昨晩処理したものを見てみると、ノイズ処理がのっぺりしていて、恒星の色も含めて全然ダメだと反省しました。特に、拡大するとアラが目立ちます。

そもそもε130Dの焦点距離が430mmとあまり長いものではないので、画角的にイルカ星雲本体が少し小さくなってしまいます。後から拡大しても耐え得るように、WBPP時にDrizzleの2倍をかけておいて、Drizzle+BXT法で、イルカさん本体の解像度を上げてみます。



下の画像は、左がDrizzle x1で右がDrizzle x2、上段がBXT無しで下段がBXTありです。差が分かりにくい場合は画面をクリックして、拡大するなどして比べてみてください。

comp2
  1. まず上段で左右を比べると、Drizzleを2倍にすることで、恒星の分解能が上がっていることがわかります。
  2. 次に左側で上下を比べると、(Drizzleは1倍のままで) BXTの有無で、恒星が小さくなり、背景の細かい模様もより出るのがわかります。ただし、画像の解像度そのもので分解能は制限されていて、1ピクセル単位のガタガタも見えてしまっています。
  3. さらに下段のみ注目して左右を比べると、右のDrizzle2倍にさらにBXTをかけたものでは、恒星のガタガタも解消され、かつ背景もピクセル単位のガタガタが解消されさらに細かい模様が見えています。
このように、Drizzle+BXTで、恒星も背景も分解能が上がるため、圧倒的に効果ありです。

ところでこのDrizzle+BXT法ですが、2023年5月に検証して、その後何度がこのブログ内でも実際に適用してきたのですが (1, 2, 3) 、最近のXでの天リフ編集長の「効果があるのかないのか実はよくわからなかった」という発言にあるように、当時は余り信用されなかったようです(笑)。


ところが上のリンク先にもあるように、ここ最近だいこもんさんや他の何人かの方が同様の方法を試してくださっていて、いずれも劇的な効果を上げているようです。とうとう流行期がきたようです!

この手法を科学的な画像としてそのまま使うことはさすがにできませんが、鑑賞目的ならば、本物のさらに細かい構造が見えてきている可能性があると思うと、夢が大きく膨らむのかと思います。多少の手間と、(一から揃えるとPixInsightとBXTでそこそこの値段になるので) あまり多少ではないコストになりますが、それでも対する効果としては十分なものがあるのかと思います。

土曜日はこんなことをやっていて、力尽きました。


Drizzle x2

日曜日もほぼ丸一日かけて、Drizzle x2の画像の処理を進めます。なかなか上手くいかなくて、バージョン10まで進めてやっとそこそこ納得しました。あとから10段階を連続で見てみると、徐々に問題点が改善されていく過程がわかります。

金曜夜中に処理したDrizzle x1と、日曜夜遅くにDrizzle x2で最終的に仕上げた後の画像の比較してみます。ともにBXTをかけたものです。

まずはDrizzle x1
x1

次にDrizzle x2です。
x2

画像処理にかけた気合と時間が大きく違うこともありますが、それにしても結果が全然違います。では一体何をしたかというと、大きくはノイズ処理の見直しと、恒星の処理の見直しです。


Drizzle後のノイズ処理

特にノイズ処理は結構大変で、少し油断するとすぐにモワモワしてしまったり、分解能が悪くなったりで、全然上手くいかなかったです。でも筋道立てて丁寧にやっていくと、なんとか解は存在するといった感じでしょうか。

まず、ノイズ処理で気づいたことが一つあります。Drizzleで解像度2倍にした画像にはノイズ処理が効かないことがあるようです。興味があったので少し調べてみました。

今回試してみたノイズ処理ソフトは
  • Nik CollectionのDfine 2
  • PhotoshopのCamera RAWフィルターのディテールのノイズ軽減
  • DeNoise AI
  • NoiseXterminator
です。この中で効果があったのはDfine 2とNoiseXterminatorでした。他の2つは元々大きな構造のノイズが苦手な傾向があることは気になっていましたが、今回Drizzleで2倍の画素数にしたため、同じノイズでもより細かい画素数で表現されるようになり、相対的に大きな構造のノイズを扱っているような状態になったのかと推測します。まだ少し試しただけなので検証というレベルではなく、他のノイズ処理ソフト、例えばTGVDenoiseなどのPIのノイズ処理関連なども含めて、もう少し調べる必要があると思います。それぞれ得意な空間周波数があるような気がしています。

結局今回使ったのは、PI上でNXT、Photoshop上でDfine 2でした。これでモコモコしたノイズが残るとかを避けることができました。またNXTはカラーノイズ対策はできないので、カラーノイズはDfine2に任せました。


結果

結果です。拡大しないと一見、金曜夜中の画像とそこまで変わらないと思えるかもしれません。でも、少し細部を見ると全く違います。

「Sh2-308: イルカ星雲」
Image17_ABE4_SPCC_BXTx3_HT_HT_back7_cut_low
  • 撮影日: 2023年12月5日0時3分-3時9分、12月9日0時2分-1時5分、12月29日22時3分-30日4時20分、2024年1月4日20時50分-22時43分、その他2夜
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm、R、G、B
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 39枚、OIII: 59枚、R: 8枚、G: 9枚、B: 8枚、の計123枚で総露光時間10時間15分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

私的にはかなり満足なのですが、子供に上の画像を見せたら「霞んで見えるのが惜しい」と言われました。ナローバンドフィルターは星まつりで安いB級品をちょくちょく集めてきたのですが、パッと手に入れることができた眼視用OIIIフィルターだと多分もう厳しいので、新品で購入してしまった方がいいのかもしれません。でも新品でも在庫がないみたいです。いっそのことUV/IRカットフィルターを重ねてしまうのも手かもしれません。

上の画像は拡大すると真価を発揮します。イルカに見えるように画像を90度左回転し、左に明るい赤の壁を置くような構図にしてみました。

Image17_ABE4_SPCC_BXTx3_HT_HT_back7_rot_half2_wall
恒星の色もでているかと思います。大きくクロップしたとは思えないくらいです。

さらにイルカ星雲本体のみにしてみますが、ここまで拡大してもまだ大丈夫かと思います。
up2

この画像も子供に見せたら、「イルカの中の赤いところがまだ出ていない。頭のところにある脳みそみたいなところはまだマシだが、下の心臓の形はもっと出るはずだ」とか言われて、どこからか検索してきたもっと細部が出ている画像を見せられました。でもその画像の説明を見たらそもそも大口径の350mmでf/3、撮影時間がなんと45時間...、さすがに太刀打ちできるはずもないです。

超辛口な息子の意見に少したじろぎましたが、ナローバンドだとしても自宅撮影でここまで出るなら、もうかなり満足です。あとは毎回コンスタントにこれくらいまで出すことができるかでしょうか。もう少し練習が必要な気がしています。


まとめ

金曜夜から土日のほとんどを画像処理にかけてしまいました。やり直しを含めて、今回は丁寧な処理の画大切さを実感しました。淡いところを出すときは、特に慎重に手順を考えて処理しないとすぐに破綻してしまいます。

結局これ1枚に32時間くらい画像処理にかけたので、ちょっとスキルが上がったはずです。1枚に集中してできる限りのめり込むことは、かなり効果があるのかと思います。

でも次のダイオウイカとまともに戦えるとはまだ思えません。今のところ全然ノイジーです。ダイオウイカ星雲はそれくらい手強いです。


2023年に撮影した天体写真のまとめです。2022年のまとめはこちらにあります。

2023-12-30 - miyakawa


SCA260

「M106」
Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT_bg4_cut
  • 撮影日: 2023年3月19日20時48分-20日4時9分、20日19時25分-23時19分、28日19時51分-29日4時38分、
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader RGBHα
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120、露光時間5分、L:80枚、R:10枚、G:10枚、B:14枚、Hα:44枚の計158枚で総露光時間13時間10分
  • Dark: Gain 120、露光時間5分、温度-10℃、32枚
  • Flat, Darkflat: Gain120、露光時間 L:0.001秒、128枚、RGB:0.01秒、128枚、Hα:20秒、17枚(dark flatは32枚)
  • 画像処理: PixInsight、Photoshop CC


「M27: 亜鈴状星雲」
masterLight_BIN_2_300_AOO_SPCC_BXT_DBE_MS_MS_BG2_cut_X3
  • 撮影日: 2023年10月12日20時59分-22時52分、10月17日20時34分-23時29分、10月18日18時18分-22時35分、
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260 (f1300mm)
  • フィルター: Baader Hα, OIII
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120、露光時間5分、Hα:44枚、OIII:44枚の計88枚で総露光時間7時間20分
  • Dark: Gain 120、露光時間5分、温度-10℃、42枚
  • Flat, Darkflat: Gain120、露光時間 Hα, OIII:10秒、128枚
  • 画像処理: PixInsight、Photoshop CC


「M101での超新星爆発」
masterLight_BIN_1_8288x5644_300_00s_L_integration_ABE1_DBEcrop2
  • 撮影日: 2023年5月17日22時21分-5月18日3時8分(JST)、5月17日13時21分-18時13分(UTC)、2023年5月24日21時58分-23時1分(JST)、5月24日12時58分-14時1分(UTC)
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: 無し
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (0℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120で露光時間5分x47=235分 =3時間55分(爆発前)、5分x10=50分(爆発後)
  • Dark: 0度、Gain 120で、露光時間5分x44枚
  • Flat, Darkflat: Gain 240で露光時間 0.01秒x128
  • 画像処理: PixInsight


ε130D

「北アメリカ星雲とペリカン星雲」
Image14_SXT_for_O_AOO_SPCC_ABE1_BXT_NXT_ABE4_MS3_s_cut
  • 撮影日: 2023年5月3日1時22分-2時9分、5月3日23時44分-5月4日3時48分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f50mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 240、露光時間5分、Hα: 30枚、OIII: 22枚の計28枚で総露光時間4時間50分
  • Dark: Gain 240、露光時間5分、温度-10℃、64枚
  • Flat, Darkflat: Gain240、露光時間 Hα: 0.2秒、64枚、OIII: 0.1秒、64枚
  • 画像処理: PixInsight、Photoshop CC


 NGC6960, 6979, 6992, 6995: 網状星雲
AOO_crop_SPCC_BXT_HT_HT_NXT_bg_more_s
  • 撮影日: 2023年5月16日2時14分-3時32分、5月17日2時1分-2時42分、5月17日0時12分-1時49分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f50mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 21枚、OIII: 19枚の計40枚で総露光時間3時間20分
  • Dark: Gain 100、露光時間5分、温度-10℃、118枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、64枚、OIII: 0.2秒、64枚
  • 画像処理: PixInsight、Photoshop CC


「おとめ座銀河団」
final_50

「マルカリアンの鎖」
Markarian_large

「M99とNGC 4298、4302」
M99

「M88とM91
M88_M91
  • 撮影日: 2023年5月15日21時1分-16日0時7分、5月16日21時2分-23時23分、5月17日21時0分-23時6分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: ZWO LRGB
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f50mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin1、Gain 100、露光時間5分、L: 55枚、R: 11枚、G: 8枚、B: 11枚の計85枚で総露光時間7時間5分
  • Dark: Gain 100、露光時間5分、温度-10℃、37枚
  • Flat, Gain100、L: 0.01秒、128枚、RGB: 0.01秒、64枚
  • Flat, Darkflat: Gain100、0.01秒、256枚
  • 画像処理: PixInsight、Photoshop CC


「Sh2-240: スパゲティ星雲」
Image22_DBE_SPCC_back_BXT_HT1_HT2_NXT_SCNRG6_cut
  • 撮影日: 2023年11月21日0時8分-5時23分、11月21日22時48分-22日2時25分、11月22日22時14分-23日3時14分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 48枚、OIII: 70枚、R: 9枚、G: 9枚、B: 9枚、の計145枚で総露光時間12時間5分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC


「Sh2-157: クワガタ星雲」
Image13_rot_cut

「バブル星雲」
Image13_bubble_cut_small
  • 撮影日: 2023年11月21日19時5分-21時22分、11月22日18時27分-22時5分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm、SII6.5nm、
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 28枚、OIII: 24枚、SII: 23枚の計75枚で総露光時間6時間15分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 1秒、OIII: 1秒、SII: 1秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC


再処理

「NGC6888: 三日月星雲」
Image11_SPCC_BXT_HT_HT_CT_SCNR_NXT_maskB_CT_CT_CT_ok2
  • 撮影日: 2022年5月25日1時8分-2時59分、26日0時33分-2時56分、30日0時37分-3時0分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader:Hα 6.5nm、OIII 6.5nm、Optlong: SII 6.5nm
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120、露光時間10分、Hα: 12枚、OIII: 13枚、SII: 13枚の計38枚で総露光時間6時間20分
  • Dark: Gain 120、露光時間10分、温度-10℃、32枚
  • Flat, Darkflat: Gain120、露光時間 Hα、OIII、SII、それぞれ20秒、16枚
  • 画像処理: PixInsight、Photoshop CC


「IC4592: 青い馬星雲」
masterLight_180_00s_RGB_integration_ABE_SPCC_ABE3_cut
  • 撮影日: 2022年5月6日0時10分-2時57分
  • 撮影場所: 富山県富山市牛岳
  • 鏡筒: TAKAHASHI FS-60CB+マルチフラットナー(f370mm)
  • フィルター: なし
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI2400MC Pro (-10℃)
  • ガイド:  f50mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: SharpCap、Gain 150、露光時間3分x55枚で総露光時間2時間45分
  • Dark: Gain 150、露光時間3分、64枚
  • Flat, Darkflat: Gain 150、露光時間 0.1秒、64枚
  • 画像処理: PixInsight、Photoshop CC


「NGC2359: トールの兜星雲」
Image07_ABE1_DBE_SPCC_BXTbad_NXT_stretch2_cut
  • 撮影日: 2022年1月22日22時2分-23日2時5分、1月27日18時57分-21時00分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader Hα:7nm、OIII:7nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド: オフアクシスガイダー + ASI120MM mini、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120、露光時間3分、Hα27枚、OIII36枚の計63枚で総露光時間3時間9分
  • Dark: Gain 120、露光時間3分、128枚
  • Flat, Darkflat: Gain 120、露光時間0.2秒、128枚
  • 画像処理: PixInsight、Photoshop CC

「M51:子持ち銀河」
masterLight_ABE_crop_BXT_BXT_Lab_conv5_Lab_CT_bg2_cut_tw
  • 撮影日: RGB: 2022年4月2日20時32分-4月3日3時50分、LとHa: 2023年3月29日20時17分-3月30日4時34分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader RGB、Hα
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 240で露光時間10分がR: 7枚、G: 7枚、B: 10枚、Gain 240で露光時間5分がL: 47枚、Hα: 21枚の計27枚で総露光時間240+340 =580分 =9時間40分
  • Dark: Gain 240で露光時間10分が64枚、Gain 240で露光時間5分が128枚
  • Flat, Darkflat: Gain 240で露光時間 RGB: 0.03秒、L: 0.01秒、Hα: 0.2秒、 RGBがそれぞれ64枚、LとHαがそれぞれ128枚
  • 画像処理: PixInsight、Photoshop CC


まとめと反省

今年は枚数がそれほど多くなく、再処理も合わせて12枚でした。撮影だけして未処理のものもまだ4枚ほどあるので、実際にはもう少し多いですが、処理に時間がより長くかかったりしていたり、忙しく処理せずに放っておいたらそのままというのもあるので、その意味でも少し反省しています。

これまで撮ったことのない新規天体が「M106」と「クワガタ星雲」2つ、今継続撮影中でまだ未処理の「ダイオウイカ星雲」と「ドルフィン星雲」を入れても4つです。クワガタ星雲ついでの「バブル星雲」を入れても5つです。やはり少ないですね。

過去に撮ったことのある天体のリベンジは「M27亜鈴状星雲」「北アメリカ、ペリカン星雲」「網状星雲」「おとめ座銀河団」「スパゲティ星雲」の5つです。だんだん新規天体より既存天体の取り直しの割合が増えています。もしかしたらこれはダメな方向かもしれません。でもどれも再撮影の甲斐は十分にあって、あからさまに進化しているのがほとんどなので、それはそれで満足です。

「M101」は超新星爆発があったので楽しめましたが、もともとLだけ撮って既存のRGBと合わせての再処理のつもりだったので、もし何も起こらなかったらお蔵入りだったかもしれません。同様の再処理が「M51子持ち銀河」で、こちらも元々RGBのみの撮影で、さらにL画像だけ新たに撮ってLRGB合成しています。

画像処理側での再処理が「三日月星雲」「青い馬星雲」「トールの兜星雲」の3つです。主にBXTでの改善です。三日月とトールの兜は見た目にもあからさまに解像度が増しました。青い馬は収差の改善なので、拡大しないと分かりませんが、BXTの収差補正の可能性を示すことができました。BXTは最近バージョン2のAIバージョン4というアップデートがあり、さらに格段に進化しているので、再々処理をしてもいいのかもしれません。もしくは、BXT1では補正しきれなかったもっと過去の画像を再処理しても、さらに格段に改善されるかもしれません。2023年はBXTで始まり、さらに年末もBXT2で盛り上がったと言えるでしょう。

枚数はそれほど多くはありませんでしたが、それでも十分に楽しめた天体撮影でした。その一方、太陽や月はあまり盛り上がりませんでした。太陽は休日と晴れの日が中々合わないのと、粒状斑が今のところうまく出ていなくて動機がだだ下がり気味です。月も2022年末に皆既月食があり盛り上がりすぎたので、その反動か2023年はほぼ活動ゼロです。

そもそも今年は晴れの日が少なかったのですが、新鏡筒のε130Dはちょうど今かなり楽しめています。とにかく最初から分解能がものすごくて、出だしこそ星像流れでのんびりでしたが、バックフォーカスがきちんとあってからは、今現在も撮影していることを含めてかなりの稼働率です。その分、重いSCA260の稼働率が減ってきていますが、実は焦点距離430mmのε130D+フルサイズくらいの広角の対象はそれほど多いわけではないので、いずれまた1300mmのSCA260+フォーサーズに帰っていくでしょう。

ε130DとSCA260の比較で、取り付けてあるカメラも考えると、画角が一辺で6倍くらい面積だと36倍くらい違うので、その中間くらいがあるといいなと思い始めています。しかも自宅でスカイノイズが大きいので、効率のいいできるだけ明るい鏡筒がいいです。今ある手持ちだと焦点距離800mmでF4のBKP200とかでしょうか。これにあまり大きくない、例えば今と同じASI294MMとか取り付けるか、いっそのこと使っていないカラー冷却のASI294MC Proでもいいかもしれません。コマコレクターは持っているのですが、ε130DやSCA260に比べるとそれでも多少星像は伸びるので、BXT2が前提になると思います。

こんなふうに、来年もまた夢が広がりそうです。

いつも長いブログ記事を読んでいただいてありがとうございます。ネットでの付き合いの方、直接お会いした方、この一年たくさんの方々と関わることができました。一年間本当にお世話になりました。

2024年も、良い年でありますように。また今後とも、よろしくお願いいたします。


このページのトップヘ