ほしぞloveログ

天体観測始めました。

カテゴリ:カメラ > G3M678M

新カメラのTouptek社のG3M678Mを使うと、8cm鏡筒での太陽全景でエタロン位置をさらにずらし、像が改善するはずです。実際にやってみました。これはちょっと前の2025年5月11日、あまり天気の良くない日に、晴れた瞬間瞬間を狙ってなんとかやれたテストです。


エタロン位置の最適化 (その2)

8cm鏡筒を使ったエタロン位置の検証は4月末に一度ASI290MMを使って試しています。鏡筒にPSTが当たる最前の位置0mmから、最大33mmまでPSTを後ろに下げることができ、以前のブログ記事では0mmと30mmの画像を比較しています。比較によると、
  • 口径80mm、焦点距離400mmの対物レンズで集光された光は、200mm進むと光径が40mmになる。そこに口径20mmのエタロン手前のレンズが置かれるので、F値は口径から考えるF5ではなく、レンズ径による制限でF10になる。
  • エタロンとともにレンズの位置を後ろに下げると、光径が40mmより小さい位置にレンズが置かれることにより、実効的なF値の制限が緩和される。
  • 実行的な口径が大きくなったことに相当し、分解能が改善する。
  • 実際の画像で見る限り有意な改善が見られた。
というのが結論でした。エタロンを最も下げた33mmという位置では、その位置でピントを出そうとするとカメラを最も奥にPST側に差し込まなければならず、それ以上エタロン位置を下げようとすると、カメラをそれ以上差し込めないので、ピントが出ないのです。これまで使っていたASI290MMではエタロン位置が33mm後ろというのが限界でした。

新カメラのG3M678Mはアイピース型で、さらにPST側に差し込むことができるため、今回はエタロンを50mmまで下げることができました。

その時の撮影画像の結果です。露光時間0.25秒、gain 400 (= 2倍 = 12dB = ZWO換算で120)、100/500framesをAS4!でスタック、ImPPGで細部出しをしています。左がエタロン位置が0mmで、右が50mmです。画像処理過程は両方とも全く同じです。
スクリーンショット 2025-05-18 193130_8cm_G3M678M_0mm_50mm_cut

画像ををクリックして拡大しながら比べて頂きたいのですが、黒点や、黒点右上のダークフィラメントが比較しやすいでしょうか。明らかに50mm下げた方が分解能が出ています。前回の0mmと30mmの比較よりも今回の方が差がはっきりしていて、やはりレンズ径がF値を制限していて、それが緩和されるために分解能が改善されたと言えるのかと思います。

撮影している最中は、エタロン位置が後ろの方が、ヒストグラムで見ていると画面が明るくなっているのが確認できます。これはレンズ径での光のケラレがより少なくなることで説明ができます。実はその際、その明るさの違いから0mmより50mm位置の方が一見分解能が出ていないように見え、なんでだろうと思っていました。でもきちんと同条件で画像処理をして比較すると、やはり理屈通り50mm位置の方がより細かいところが見えたので、やはり考え方におかしなところはなさそうです。

ただし、エタロンが0mmの位置の場合と、50mmズレた位置の場合での、エタロンの効果の違いはまだ認識できていません。エタロンに入る光は少なくともどちらかは平行光からずれることになるので、エタロンの効果が変わってきて、その差がわかるのではないかと期待していたのですが、今のところどちらがいいと、どちらが悪いとかはまだ言えていません。やはりエタロンの鏡間の距離が0.1mm程度と極端に短いので、多少平行光からずれてもエタロンとしての機能は失わないのかと推測しますが、位置を50mmもずらしても、まだあからさまに何も変わらないというのは、ちょっと意外でした。


ROIによる画像サイズの縮小

他にも、画面の大きさを制限するROI機能を使ってみました。目的は2つで、
  • フレームレートを上げたいこと
  • 画像サイズを小さくしたいこと
です。

G3M678Mのフレームレートは23fpsくらいで、ASI290MMの60-70fpsに比べると明らかに落ちています。これは画素数が1936×1096=2121856から3840x2160=8294400へと増えていて、その比8294400/2121856 = 3.91にほぼ比例したフレームレートの低下になっています。ROIで画素数を制限することにより、これが改善しないかと思ったわけです。

太陽でほぼ真円に近い形で写るので、ROIを正方形の2160x2160にした撮影してみたましたが、フレームレートは全く同じの23fpsで何ら改善は見られませんでした。

これで一気にROIを使う動機が薄くなってしまいました。もちろん画像サイズは小さくなります。横幅が3840/2160=1.78なので、ファイルサイズも約1.8分の1になります。その一方、写せる範囲がが小さくなるので、ガイドずれなどに対する耐性は下ってしまうため、少し迷います。

serファイルは絶対量が大きくなるので、それが小さくなるのは少し魅力です。実際、今回500フレーム撮影した場合にできたserファイルは、ROI無しだと8.1GB、ROIで正方形にすると4.6GBです。ただし、全景の場合は枚数を多くとることはあまりないですし、枚数を写すタイムラプスは、SharpCapで直接スタック後の画像だけを保存することを考えているので、トータルサイズはそこまで大きな差にはならなさそうです。ディスク容量を見ながら影響がありそうなら正方形の2160x2160を使うことにするかもしれません。

ちなみに、今回ROIで正方形にしてserで撮影したものから画像処理を進めてみました。最初のG3M678Mの画像は8bitで撮影してしまいましたが、今回は16bitのRAW16できちんと撮影しています。ただし、この日は天気が悪かったので、上記エタロン位置を最適化する前にとりあえず撮影しているので、以下の画像ではエタロン位置やカメラ位置はまだ適当です。

10_57_04_lapl2_ap10495_IP
10_57_04_lapl2_ap10495_IP_color
10_57_04_lapl2_ap10495_IP_color_inv
  • 撮影場所: 富山県富山市
  • 撮影時間: 2025年5月11日10時57分
  • 鏡筒: iOpton R80 口径80mm、焦点距離400mm
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: Touptek G2M678M
  • 撮影ソフト: SharpCap 4.1 (64bit)
  • 画像処理: AS!4にてスタック、ImPPGで細部出し、PixInsightでカラー化など、PhotoshopCCで仕上げ


タイムラプスは次回以降に

その後はSharpCapのリアルタイムスタックを利用したタイムラプスを撮影したのですが、雲が出てきてわずか20分で中断、その20分も雲の通過で明るさが変わったり、プロミネンスのブーストを失敗していたりで、見るも無残で動画化するにも至っていません。


まとめ

G3M678Mの全景撮影の最適化も進んできました。天気が悪かったので、最低限の全景撮影と、やりたかったテストの一部だけしか進みませんでしたが、それでも8cm鏡筒での振る舞いがよりはっきりしてきました。

実は、この日のことはすでに記事を書いたものと思い込んでいて、すっかり記事を書くのを忘れていました。この前後も色々撮影はテストをしていますが、すでに書いた記事もありますし、まだ書いていないことも随時気示威していきたいと思います。特に、エタロンの良像範囲に対する検証がやっと進んできたので、こちらは早いうちにまとめたいと思います。






今週末は天気があまり良くないので、先週撮影した画像の検証をしてみます。


カメラセンサーの違い

前々回、口径8cmの鏡筒+PSTにTouptekのG3M678Mを使って太陽全景を撮影した記事を書きました。これまではASI290MMだったのですが、これに比べるとセンサーが1/3インチから1/1.8インチになったので、一辺で1.5倍長くなりより広角で撮影できるようになったこと。さらにピクセルサイズが2.9μmから2.0μmに小さくなったので、こちらも1.5倍くらい分解能が良くなったことが利点です。

SharpCapで全景をリアルタイムスタック撮影し、PNGに直接落とした画像は前々回掲載したのですが、同時に動画のserファイルでASI290MMでもG3M678Mでも撮影しておいたので、それらの動画ファイルからマニュアルでフル処理をして、どこまで細部が出るのか試してみました。

露光時間はASI290MMが1msで、G3M678Mが0.5msです。ピクセルサイズはG3M678Mの方が小さいのですが、画面での明るさはG3M678Mの方が上でした。ゲインはASI290MMは100(= 10dB = ~3倍)として、G3M678Mの方の設定が最初わからなかったので400として大体画面の明るさが一致しました。ZWOの場合だとgain = 400は40dBという意味で、100倍になります。でもG3M678Mの400はどう見てもそこまで明るくなく、後で分かったことですが、これはデジタル一眼レフカメラのISOと全く同じだと理解しました。すなわち、100はISO100でgain=1、400はISO400と同じでgain=4というわけです。SharpCapでカーソルを近づけると、なんと値が何倍まで含めて直接表示されるように進化していました。こう考えてもG3M678Mはかなり明るいカメラということがわかりますが、これは単にconversion factor [e/ADU]が小さいのかと思います。

その他の条件はほぼ同じにしてあります。それぞれ500フレームをserフォーマットで撮影して、そのうちAS!4で上位50%をスタックした後、ImPPGで同じパラメータで細部出しをしています。この状態で拡大して二つのカメラの比較してみます。左がASI290MMで右がG3M678Mです。

スクリーンショット 2025-05-08 2128402_cut

この比較は面白いです。前々回の記事でも示したのですが、口径からくる分解能の制限のほうが厳しいために、センサーのピクセルサイズはあまり効いてこないはずです。なので本質的な分解能はあまり変わりません。でも拡大しているのでピクセルの大きさ自体はすでに見えるくらいになっていて、オーバーサンプリング状態だとしてもピクセルサイズの影響は多少なりともあるようで、やはり右の新カメラの方が分解能がいい印象です。その一方、ピクセルサイズが小さいということは1ピクセルあたりの光子数は少なくなり、トータル露光時間も半分なので、ノイズ的には不利になるはずです。拡大して比べるとわかりますが、ピクセルごとの輝度のバラつき(=ノイズ)は左の方が多く見えます。もう一つの不安要素が、ピントを明るい中で合わせているのでどこまで正確かいまいち自信がないです。ピントが合っているとするなら、そこそこ理屈に近いような画像の比較になっているのかと思います。

カメラを触っていて、もう一つ新カメラが不利なところがあるのに気づきました。フレームレートが出ないのです。ASI290MMは60-70fpsくらいは出ていましたが、G3M678Mの場合は23fps程度でした。ROIで画面を小さくしてもフレームレートは変化がなかったです。もしかしたらこの低フレームレートは撮影によっては将来決定的に不利になるかもしれません。


全体画像

G3M678Mで撮影した画像を、その後PixInsightのSolarToolboxでカラー化し、最後Photoshopに渡して仕上げました。モノクロとカラーと反転バージョンを載せておきます。

15_06_36_lapl2_ap18975_IP2_mono_cut

15_06_36_lapl2_ap18975_IP2_color_cut

15_06_36_lapl2_ap18975_IP2_color_inv_cut

リムの内側の表面外周部の模様がそこまで出ていないのが少し不満なくらいでしょうか。 最周部と中央の間に少し段差があるように見えるのが不思議です。そもそもPSTエタロンなので、最近のPhoenixとかの0.5Åクラスのエタロンには勝てないですが、それでも十分楽しめるくらいにはなっているかと思います。


SharpCapとの比較

先週SharpCapで見えた全景をPNGに落としたものを前々回の記事でも示しましたが、それと今回のserファイルからマニュアルで画像処理したものを比較してみます。左がSharpCap、右がマニュアル処理です。

スクリーンショット 2025-05-10 135439_cut

思ったより違いがあります。SharpCapの方ももう少し見栄えを良くすることができるのかもしれません。まだまだテスト段階なので、今後もっと詰めていこうと思います。


まとめと今後

と、上のところまで書き終えて週末を迎えて、次の週(今週末)に再度カメラを立ち上げたときに、なんと上の撮影を全て8bitで撮影していたことに気づきました。SharpCapの比較で差が出たのは、ビット数が関係しているのかもしれません。

やっぱりまだ触り始めなので、見逃していることがあります。ちなみに、ゲインがISOだったことも今週気づきいたことです。







ゴールデンウィーク中の太陽の目玉は、何と言っても大型黒点でしょう。


名古屋市科学館での太陽

IMG_1304

5月3日の4連休の初日に実家の名古屋に行った際、名古屋市科学館に行きました。9時10分頃に到着したのですが、運よく10時からの一般向けの回のチケットを、残り10席くらいでとることができました。ゴールデンウィークなので次の11時20分からのファミリー向けの回の方が人気があったようです。

今回のプラネタリウムは土星の輪の消失の解説が面白かったです。名古屋市科学館はいつも生解説なのが魅力です。今回も素晴らしいトークでした。解説によると、3月24日に地球が土星の輪の平面内を通過するので一度輪が見えなくなっていて、次が5月7日なのですが、その時は今度は太陽が土星の輪の平面内を通過するために輪に平行にしか光が当たらなくなり見えなくなるとのことです。このことを、CGで土星の輪に乗っかって地球と太陽を見るという試みをしていました。非常に直感的でわかりやすくてよかったです。

科学館の常設展示の中で今回特に面白かったのは、太陽のリアルタイム映像でした。プラネタリウム中にも解説していたのですが、同じフロアで太陽の白色光を減光して投影していて、この日は話題の大型黒点がよく見えました。
IMG_1242
北が上になるように写しました。おおがた黒点が間も無く正面にくるくらいです。

他にも、5階の天文コーナーがいろいろ変わっていました。円形の部屋の壁全面を利用して、一周で宇宙のスケールを距離で表している展示があって、かなりわかりやすい試みだと思います。
IMG_1261
ここがスタート。

IMG_1267
壁全面に、宇宙の果てまでの距離に応じた展示があります。

この日は特別展で科学館の地下で「鳥」展が開催されていました。かなり人気らしくて、入場のところから並んでいて、中もすごい人でした。いろんな鳥が各「目」に分かれていて、たくさんのはく製が展示されています。「目」での分類は、ある意味鳥の進化の歴史でもあるようで、鳥の進化そのものがわかるという内容で、とても充実していました。
IMG_1287
IMG_1288
こんな展示が44目(多分)まで続きます。

私は鳥にはそこまで興味はないごくごく普通ののですが、非常に興味を引くように展示が工夫されていて、鳥に詳しくないとしてもとても面白いと思います。


天文ショップスコーピオでの太陽

その後、大須方面まで歩いて移動し、上前津から地下鉄に乗り、伏見で東山線に乗り換えて八田駅まで行き、天文ショップのスコーピオに顔を出しました。早速店長さんが口径76mmの太陽望遠鏡Heliostarを見せてくれました。
IMG_1322

CP+で話したPhoenixも良かったですが、Heliostarは口径が76mmとPhoenixの40mmの倍近くになり、特にアイピースの焦点距離を短くして拡大した時は、見応えも格段に良くなります。今回は標準の20mmアイピースに加えて、10mmと5mmのアイピースで見させてもらいました。5mmは126倍とかなり拡大して見ることになるので、流石に少しは暗くなりますが、それでも元の口径が76mmと大きいので、不満のない十分な明るさで見ることができます。ここまで拡大しても細かいところまでよく見えるのは、やはり76mmの恩恵でしょう。これで拡大して見た大型黒点は、かなり細かい模様も見えて大迫力でした。

IMG_1331
スマホで撮影してみましたが難しいです。
目で見た方がはるかに迫力があります。

この大黒点は肉眼黒点の可能性もあり、スコーピオの店長さんと太陽フィルムで見てみました。肉眼黒点としてはそこまで大きなものではないので、かなり小さかったですが確かに何の拡大もなく見ることができました。


Hαで太陽大黒点を撮影

次の日の4日には富山の自宅に帰ってきて、今回の黒点を撮影しようとしました。午前中は曇りで諦め、午後からHαで撮影したのですが、少しの晴れ間を狙っての撮影だったので時間をかけられずに、大した解像度は得られませんでした。むしろこの日はいろんな調整に時間を費やしました。この日のことはまたまとめて記事にします。

天気予報では次の日の5日は朝から快晴のはずです。張り切って朝の5時半には起きたのですが、外はなぜかどん曇りです。その場でSCWを見直してもWindyを見直しても雲はないはずです。もう状況がよくわからないので、ふてくされてガストのモーニングで時間を潰します。10半頃にはかなり晴れてきたので自宅に戻り、11時頃にはほぼ快晴、11時半頃には準備も完了して、前日あまりうまくいかなかった撮影を始めました。機材はいつものC8+PST+ASI290MMです。赤道儀は簡単に出せるCGEM IIです。

30秒インターバルで1ショットあたり200フレームで120ショット余り撮影しましたが、シーイングは普通よりは多少いいくらいだったでしょうか。撮影した中の、連続の2ショットがかなりシーイングが良かったので、2ファイル分の合計400フレームのうちPIPPで上位300フレームを選び、その300フレームをすべてAS4!でスタックしました。その後はImPPGで細部出しですが、最近の精細な画像ではsigmaは0.5一択で、あとは適時調整します。コントラスト出しやカラー化などはPixInsightのSolar Toolboxで、その後仕上げにPhotoshopに回しています。

結果はモノクロ、カラー、カラー反転の3つを示しておきます。
12_04_42_pipp_lapl2_ap3929_IP2_05_13_50

12_04_42_pipp_lapl2_ap3929_IP2_05_13_50_color

12_04_42_pipp_lapl2_ap3929_IP2_05_13_50_color_inv

今回のゴールデンウィーク中の目的の一つ、大黒点の撮影がある程度分解能よくできました。このように目立つ黒点が出た時も、確実に分解能よく撮影する手法が確立して、それが実践できるようになってきたのかと思います。また、少なくとも静止画に関しては撮影、選別、画像処理のルーチンはほぼ出来上がったと言っていいので、処理もその日のうちに終わり、今回も当日のうちにXに投稿しています。太陽は時間勝負のところもあるので、ここら辺の早い処理というのも目的の一つでした。


お客さんと太陽を見る

C8での撮影を終えて、全景用に鏡筒を変更しようとして家の中に入っているときに、玄関のチャイムがなりました。最近近くに引っ越してきた、アメリカ在住時代からの古くからの友人が、お嬢さんを連れてやって来ました。何でもお嬢さんの方が、私のXの投稿で朝から太陽をやっているのを見て、興味を持って来たとのことです。実はお嬢さんは赤ちゃんの頃に顔を見ているだけで、聞いたらもう中3とのことで、はじめましてではないのですが、実際にははじめまして状態でした。わざわざ太陽なんかに来てくれるくらいなので、星のことには結構興味があるみたいで、話してみると色々詳しくてちょっとびっくりでした。

まずは、太陽グラスで黒点を見てもらいますが、大黒天と言っても肉眼だとやはり小さくてわからないようです。そこで、星座ビノに太陽グラスをテープで固定して見てもらうことにしました。
IMG_1344

これだとさすがに黒点も十分に見えるはずで、二人とも「見えた!」と叫んでました。

太陽と言っても、C8の撮影は撮り続けて待っているだけなのですが、太陽全景ならSharpCapでリアルタイムで色付きで見えるので、多少は楽しいはずです。というわけで、鏡筒交換の準備を続けながら太陽全景を一緒に見てもらうことにしました。


8cm鏡筒用に太陽用ファインダーとガイド鏡

口径8cmの鏡筒も改良が進んでいます。玄関のチャイムが鳴った時は、ちょうど太陽ファインダーを取り付ける準備をしているところでした。C8の場合は鏡筒内からの反射光のスポットが補正版に当たるので、それが中心に来るようにアラインメントを取ればいいので目安があって簡単なのですが、口径8cmの場合はそのような指標がなくて、毎回導入に手こずっていました。10cmに取り付けていた太陽ファインダーがあったのを思い出し、それアルカスイス互換のクイックシューを取り付け、8cm鏡筒の下部に取り付けたアルカスイス互換プレートにそのまま取り付けられるようにしました。

IMG_1354

写真のようにアルカスイスプレートの前方にファインダーを取り付けるのですが、導入後は取り外して、撮影時は下に写っているガイド鏡に交換します。今後は、この後に出てくる新カメラで一度に太陽全景が撮れるようになるので、タイムラプスなどの長時間撮影をしたい時にガイド鏡が活躍するはずです。

こんなふうに実物を見せながら、ファインダーの動作原理から、取り付けの際のアルカスイス互換リリースの取り付け、鏡筒に固定してからの導入などもお客さん二人に説明しながら、いよいよ太陽像を見てもらいます。


太陽撮影用新カメラG3M678M

今回の目玉は新カメラの投入です。ToupTekのG3M678Mという機種です。
IMG_1342
中身は至ってシンプルで、マニュアルもドライバー関連も入っていません。
左上の黒いアダプターを使うと、
アメリカンサイズのフィルターを取り付けることができます。

IMX678センサーを使っていて、ピクセルサイズが2μmとかなり細かい撮影が可能です。これまでのASI290MMが2.9μmなので、約1.5倍くらい細かくなるわけです。同センサーのカラータイプはZWOからもでていますが、モノクロで天体用はToupTekからだけのようです。 (追記: 2025/5/8) ZWOでも同センサーでASI678MMが出ていますが、いずれも売り切れや取り寄せなど、日本の代理店を通してだと入手が大変そうなのと、値段がかなり上がります。海外では太陽でG3M678Mの実績が多数報告されているので、初期不良や故障の場合は少し面倒かもしれませんが、今回はG3M678Mを選びます。(追記ここまで) 分解能を考える場合は、カラーとモノクロではモノクロの方が単純に2倍細かくなるので、単波長の太陽撮影では同じセンサーならモノクロタイプの方が圧倒的に有利です。センサーサイズは1/1.8''と、これまでのASI290MMの1/3インチよりこちらも1.5倍くらい大きくなるので、今回は大きな面積を取ることができ、かつ細かく撮影できると、いいことずくめです。

その一方で、もちろん犠牲にするものがあって、それはピクセルサイズが小さくなることによる感度の低下と、センサー面積が大きくなることで高価になることでしょうか。でも太陽撮影で十分明るいものを見るので感度はそこまで問題ではないでしょう。またセンサー面積が大きくなったと言っても、たかだか惑星用カメラの面積なので大したことはなく、CMOSカメラとしてはまだ安価な部類でしょう。しかも今回はじめてAliExpressを使って安いところを探して購入してみました。ToupTekの日本語のページもありましたが、ただ単に日本語化しているだけのようで、ドル払いで、しかも割高なので、結局AliExpressにしました。支払いもPayPalでできたので、直接カード番号を入れるとはしなくてよく、多少安心です。発注から到着まで20日ほどかかるとのことでしたが、実際には15日くらいで少し早めに来て、ちょうどこの日C8から8cm鏡筒に交換している最中に到着したので、タイミング的なこともありますが、ゴールデンウイーク中に使うことができて、結構好印象です。


太陽全景撮影

さて、今日の太陽全景です。まずはいつものようにASI290MMで撮影し、特に問題ないことを確認します。その後、今回の新カメラに交換します。このカメラはアイピース径と同じ筒タイプのカメラなので、アイピース口の中に押し込んでセンサー面をより鏡筒側に近くにすることができます。

IMG_1348

今回はカメラの差し込み位置などの最適化はまだできていないので、適当な位置に入れてピントが出るかどうか試したくらいです。ドライバーとかはあえて何もインストールしなかったのですが、SharpCapではそのまま認識して、接続までできました。

さて実際にSharpCapで見てみると太陽全景が一度に入っていることがわかります。こんなふうに撮影まで何のトラブルもなくできたので一安心です。

スクリーンショット 2025-05-05 150358
とりあえずの細部出しです。今後パラメータを調整していきます。

スクリーンショット 2025-05-11 141625
Stabilization/Alignmentの設定を見たいというリクエストがあったので、
フォルダーモニター機能で保存してあったファイルを再生し、追加しました。
ガイドが前提なので、最低限の設定になっています。

PCでこの画面を見て、高分解、モノクロで、やっと一度に太陽全体が入って、かなり嬉しかったです。このカメラは今後の太陽撮影に色々使えそうで、今回の全景撮影はまだほんの一例に過ぎないです。

この状態で、とりあえずリアルタイムスタックでカラー化とプロミネンス鏡長をしたものを、PNGで画像を保存してみました。SharpCap以外での画像処理はしていません。(ブログにアップロードする関係でサイドの黒いところをクロップして、jpgに変換だけしてあります。)
15_03_37_Sun_00001 15_03_37_WithDisplayStretch

ここまでがワンステップで出るので、これまでやっていたかなりのことを省くことができて、相当楽になります。今後は、気軽に全景のタイムラプスとかもできそうなので、どんどん試していきたいと思います。

今回はASI290MMで撮影したものもありますが、まだG3M678Mの方の最適化ができていないので、比較は次回以降にします。とりあえずのパッと見では差がほとんどないか、まだASI290MMの方が少しいいみたいです。たとえ口径8cmだとしても、焦点距離が400mmと短いために、ピクセルサイズの小ささが効くような状況ではないからだと推測しています。この件はもう少し詳細に調べます。


まとめ

今年のゴールデンウィークは太陽三昧でした。大黒天の撮影もうまくいきましたし、新カメラも到着して全景撮影にも進展がありました。もう少し晴れの時間が欲しかったですが、天気が悪い時には画像処理やブログを書いていました。名古屋に行ったり、お客さんが来たりもしたので、かなり充実していて楽しかったです。

ブログに書いたこと以外でも、まだエタロン良像範囲の調整を数週間前からずっと続けています。こちらは今の段階でも進展はありますがまだ途中なので、もう少し結論が出てからまとめるようにします。





このページのトップヘ