ほしぞloveログ

天体観測始めました。

カテゴリ:観測・撮影 > 太陽

6月1日の記事で書いたエタロン改善ですが、最後に少し謎が残っていました。
  1. なぜエタロンとカメラの間の距離を長くすると、両像範囲が拡大するのか?
  2. なぜエタロンとカメラの間の距離を長くすると、画面が暗くなるのか?
  3. なぜエタロンとカメラの間の距離を長くすると、分解能が良くなったように見えるのは気のせいか?
などです。その後、少し検証しました。


暗くなる理由

6月5日、平日ですが朝早くから試したところで、2の原因の一部は理由がわかりました。前の記事で推測はしていたのですが、先に答えだけ言ってしまうと、接眼部についているBF(ブロッキングフィルター)と呼ばれている、直径5mmの径の小ささが原因でした。

試したことは、まずは前回のようにカメラをできるだけPSTのアイピース口に対して浅く取り付けて、エタロンとセンサー面の距離を長くとります。具体的な順序は

PST -> BF+アイピース取り付け口 -> アイピース口延長筒(手持ちのVixen製のもの) -> カメラ(G3M678M)

となります。ピントが出るように、C8の主鏡位置移動のつまみを回して合わせます。前回同様に距離が短い場合に比べて画面全体が暗くなるので、再現性はあります。
スクリーンショット 2025-06-05 073153_01_75mm_PST_BF_VIXENextender

次に、接続順序を以下のように変更します。

PST -> アイピース口延長筒(PSTに付属していたもの) -> BF+アイピース取り付け口 -> カメラ(G3M678M)

スクリーンショット 2025-06-05 07375702_75mm_PST_extender_BF_camera

ようするに、エタ論とカメラ間の全体の距離を保ちながら、Vixen製の延長筒を外しBFとカメラセンサー面の相対距離を縮めたわけです。全体長を保つために、BFの手前に別途延長筒を取り付けています。ピントは、C8の調整つまみを回すのではなく、カメラをアイピース口に出し入れすることで調整しています。カメラ位置を変えることでピントが出たなら、そこは全長が同じだった位置ということになります。

視野の大きさや、分解能に見た目の変化はほとんどないですが、明るさだけは倍程度になりました。(見かけの明るさはヒストグラムに応じてオートストレッチしているので同じようになりますが、ヒストグラムの山の位置は変わっているので実際の明るさは変化しています。) これはBFの小径が通る光を制限していたことになり、BFの位置がより焦点近くに移動したために、BFでの光束径が小さくなり、より多くの光が通ることになったのかと思われます。

この結果を踏まえて、BFとセンサー面の距離がある程度短い方が有利ということで、PSTとBFの間に、PST付属のアイピース口延長筒をもう一つ追加 (PSTが2台あるのでもう一台から奪ってきたもの) しました。それでもまだカメラ位置はエタロンから遠い方が良さそうなので、さらにBFとカメラの間にVixen製のアイピース口延長筒を入れたものをデフォルトの設定としました。


視野が広がる理由がまだわからない

1については考察のみしてみます。

8cm鏡筒でエタロン位置の最適化を探った時、エタロンを対物レンズから遠ざけるほど、カメラ位置はPST側に押し込まなければピントが出なかったという経験をしています。

対物レンズの焦点距離をf1、エタロン手前のレンズの焦点距離をf2として、その2枚で得られる合成焦点距離fは、レンズ間の距離をdとすると
1/f = 1/f1 + 1/f2 - d/(f1 f2)

と書くことができます。エタロン内部で平行光を作る条件は、= ♾️なので、

0 = 1/f1 + 1/f2 - d/(f1 f2)
で両辺にf1 f2をかけて、

0 = f2 + f1 - d
なので

d  = f1 + f2
となる長さで、エタロン内部に平行な光が提供されます。エタロン手前のレンズは凹レンズで焦点距離はf2 = -200 [mm]とわかっているので、例えばよく使っている8cm鏡筒で、対物レンズの焦点距離f= 400 [mm]の場合は、d = 200 [mm]となり、実際にその辺りの距離にエタロンをおいて運用してうまく動いているようなので、間違っていないでしょう。

ここで、エタロン位置を対物レンズから遠ざけるということは、dを大きくするということです。これは合成焦点距離が正の無限大でない数になります。言い換えると、平行光にはならずに、光を有限の距離で収束させる合成レンズになるということです。わかりにくい場合は、具体的に数値を入れてみるといいでしょう。最初の式に、f= 400と f = -200を入れてみると

1/f = 1/400 - 1/200 + d/(400 x 200)
となります。右辺最初の2項を合わせると負になるので、

1/f = -1/400  + d/(400 x 200)

となり、右辺の初項と2項目が等しいとバランスが取れて平行光になります。dは正の数で、増えると2項目が増えて、右辺は正になるので、結局合成焦点距離fも正になり、光を収束することになります。

エタロン後部に置かれた焦点距離 f= 200 [mm]のレンズで集光するのですが、エタロンをより後ろに動かすと、もともとあった平行光が、dが伸びたことでより集光された状態になるので、カメラまでの焦点距離がより短くなる方向になります。なので8cm鏡筒で試したように、現実にカメラをPST側により押し込んだときに焦点が合うというのは、正しいと言えそうです。

以上のことを踏まえて、C8で起こったことを考えます。
  1. 今回は、カメラの位置をPSTから遠ざけるほど視野が広がりました。カメラをPSTから遠ざけてピントを出したということは、上の考察から「エタロンはより対物レンズに近づいた」ということになります。そして、エタロン後部のレンズを出た光が焦点を結ぶ距離は、より後ろに下がったということになります。
  2. その一方、センサー上で見えている太陽表面のエリアは広がりましたが、これは拡大率が変わったわけではなくて、センサー内に映る円の大きさが大きくなったために、より多くの範囲が見えているというだけです。
これら2つのことがどうしても一見対立しているようで、なかなかいい説明ができません。エタロンが相対的に対物レンズ(この場合主鏡)に近づいたということは、レンズ径やエタロン径の制限がより効く方向なので、視野が狭くなると思えるのです。

ここ1週間くらいずっと考えていましたが、いまだに結論は出ていません。


黒点撮影

というわけでまだ謎は残りますが、とりあえずこれで撮影してみます。

まずは黒点AR4100、4101周りです。30秒おきに1ms露光で200フレームづつ、合計60枚で約30分間撮影しました。シーイングはあまりよくなく、その中で一番いいものを画像処理しました。画像処理は、ImPPG、PixInsightのSolarToolbox、Photohopなどです。いつものように、モノクロ、カラー化、さらに反転させたものです。それぞれ端の方を少しクロップしています。

08_56_22_lapl2_ap3397_IP_2_50_mono_cut

08_56_22_lapl2_ap3397_IP_2_50_color_cut

08_56_22_lapl2_ap3397_IP_2_50_color_inv_cut

その後、タイムラプス映像も作りましたが、高々30分であることと、シーイングが良くない時間が多かったので、結構ボケボケです。参考程度に載せておきます。フレアが最後に収まっていくのと、次のフレアが起こる始めくらいが見えています。



プロミネンス撮影

その後、プロミネンスを撮影し、タイムラプス化しました。前回記事の東端9時方向に出ていた大きなものです。カメラの回転角を変えて、長手方向に全体が入るようにしました。30秒おきに1ms露光で200フレームづつ、合計120枚で約1時間撮影しました。最後のffmpegのコマンドだけメモがわりに残しておきます。
  • ffmpeg -y -r 20 -i Blink%05d.png Blink_20.mp4
  • ffmpeg -i .\Blink_20.mp4 -vf "crop=3500:1900:175:125" Blink_20_cut.mp4
  • ffmpeg -i .\Blink_12_cut.mp4 -vf "scale=1920:-1" -vcodec libx264 -pix_fmt yuv420p -strict -2 -acodec aac .\Blink_12_cut_X.mp4


前回記事のものを再掲載しますが、やはり分解能の違いは明白で、全景からの切り出しでは細部を出すのは難しいことがわかります。


一度に全体と細部を撮る方法はないのか?口径が大きく、C8程度の焦点距離に、広い面積に渡り精度のいいエタロンを探して取り付け、ピクセルサイズの小さいフルサイズモノクロセンサーを使うとかでしょうか。まあ、技術的にも予算的にも全然無理な気がします。


カメラをASI290MMに戻すか?

ここまでの調整の甲斐もあり、G3M678Mで撮影範囲も広がり、かつ分解能も上がっています。その一方、今回の画像を見ても、まだ真ん中と端の方では差があり、これはHαの分解能なのか、収差などでピントがあっていないのかまだわかりませんが(エタロンがかなり無理をした位置に置いてあるので、後者の可能性も高いと思います。)、画角的には欲張りすぎな気がしています。

というわけで、カメラをASI290MMに戻すことを考えています。戻すことは結構利点があって
  • 大きな黒点が少なくなってきて、ある程度の狭角で撮らないと迫力が出ない。
  • G3M678Mだと、ワンショットあたりのファイルサイズが3-4GBで、すでに大きすです。ASI290MMだと800MB程度です。ちなみにこの6月5日に撮影したファイルの総量は600GB超えです...
  • G3M678Mのフレームレートが23fpsと結構遅いです。ASI290MMは60-70fpsくらい出ます。
  • 画素数もすでに多すぎる気がします。タイムラプス映像でYouTubeにアップするとしたら、横は1920ピクセルあれば十分です。G3M678Mはいわゆる4Kカメラで横幅3840ピクセルと倍もあり、今回もかなり削って、最後は横が1920ピクセルになるように縮小しています。
  • また、分解能に関してはシーイングの方が効きやすいので、2μmまでは必要ない気もしています。画像処理、特にImPPGでの細部出しの時に、1ピクセルレベルの細部が十分聞いていない気がしています。
  • G3M678Mを今後別目的(分光太陽撮影のための新機材のSGH700)で専用に使いたい、というかそもそもこのカメラを買ったのはSHG700のためです。
などの理由があります。

その一方、ASI290MMに戻すときの問題点がニュートンリングです。G3M678Mでは全く出なくなったニュートンリングですが、ASI290MMではカメラを傾けない限りはまた復活するでしょう。大きな違いはセンサー前の保護ガラスかと思っていて、一度ASI290MMの保護ガラスを外してニュートンリングが出なくなるかどうか見てみようと思います。


まとめ

結局視野が広がる謎は解けていませんし、さらにまだカメラ位置と画角と分解能の関係は印象だけで検証さえもできていませんが、実用的にはやれることは大体やったので、この時点でカメラをASI290MMに戻すことでほぼ問題ないでしょう。少なくとも以前よりは良い状態で撮影できるようになるはずです。

あとはエタロンそのものを探ることですが、これはさらに大変そうなのと、今の状態でも撮影結果にはそこそこ満足できそうなので、しばらく放っておきます。今後は撮影例を増やしていきたいと思います。

さて、いよいよ次回からは新機材、分光で太陽を撮影する「SHG700」の始動です。多分できることがものすごく増えるので、じっくり取り組もうかと思っています。


最近ものすごく忙しくて、土日も仕事のことが多いです。先週末の福島も行けずじまいでした。そんな忙しい状況ですが、先週のある晴れた平日に朝早く起きて、色々と試しました。結局この日は自宅にいたので、セッティングだけして撮影中はほったらかしにしておきます。しばらく梅雨で何もできそうにないので、しばらくこの日にやったことを記事にしていきます。


SharpCapでのリアルタイム処理

最初はSharpCapを使っての太陽全景のタイムラプス映像です。SharpCap単体で、リアルタイムでスタックして細部出し、さらにはカラー化からプロミネンスの炙り出しまでできるので、撮影さえしてしまえば、あとは動画化するだけになります。


上記記事にSharpCapでの太陽全景撮影のための設定は説明していますが、実際の長時間タイムラプス映像はまだ試せていませんでした。なので今回の記事はその続編ということにもなります。


撮影設定など

実際の撮影です。全景撮影で太陽の細かいところまでは見えないためシーイングはあまり関係ないので、午後からの撮影としました。シーイングがいい午前の撮影については、C8で高解像度のテストとしましたが、これについてはまた後日記事にします。

20秒に1枚で、トータル2時間25分の撮影で、数えたら422枚の大量の画像です。枚数は多いですが、ファイル量としてはトータルで高々10GB程度です。同じカメラで動画撮影する200フレームのserファイル換算だと、たった3本分程度です。ちなみに動画の場合は100本レベルで撮影したりしています。しかも処理ずみの画像が保存されるので、それ以上の画像処理も必要なく、心理的にもかなり気楽です。

撮影中はPHD2でのガイドと、SharpCapでのセンタリングを併用しています。SharpCapでの設定内容は以下のようにしました。
スクリーンショット 2025-06-05 150152_cut

以前に示した設定よりも少し凝った設定になっていますが、これでほぼ完全にセンターに保つことができました。後々の位置合わせは全く必要なく、全コマに渡り、見ている限りピッタリ位置が揃っていました。これはすごい。

ただし、このことは快晴だったからというのが大きいと思います。これまで雲がある時にタイムラプス用の連続撮影を試していますが、小さな雲の通過でも影響が大きく、長時間撮影では途中で位置がずれてしまったり、スタックがうまくいかなくなったり、プロミネンスの炙り出しがうまくいかなかったりしていました。なので、このSharpCap単体でのタイムラプス映像のための撮影は(あまり設定にかかわらず
)、本当に雲がないという意味での快晴の時でないと、うまくいかないと思います。


出来上がったタイムラプス映像

繰り返しにもなりますが、今回のやり方の利点をまとめておきます。
  • リアルタイムで、スタック、細部出し、カラー化、プロミネンス炙り出しなど、それ以上の画像処理が必要ないレベルで、画像を保存していくことができる。
  • トータルファイルサイズを節約できる。
  • 各画像の位置合わせの必要が、全くない。
  • あとは、動画化するだけ。
なので、ホントに保存された画像をそのままアニメ化します。今回はPixInsihgtのblinkで動画化しました。blink上でtifから一旦pngにして、mp4で書き出しています。その後、ブログに載せるために以下のコマンドでYoutubeに適したフォーマットにしています。

 ffmpeg -i .\Blink.mp4 -vf "scale=1920:1400" -vcodec libx264 -pix_fmt yuv420p -strict -2 -acodec aac .\Blink_X.mp4

実際に出来たタイムラプス映像です。

見てもらってもわかりますが、はっきり言って全然面白くないんですよね。理由はひとえに動きが少なすぎるからです。でも実際には一部動いていて、たとえば左の大きなプロミネンス部分を拡大してみると以下のようになります。

たしかに動いていはいるのですが、いつものC8のタイムラプス映像と比べると、まあ当然ですが解像度不足なのは否めません。また、拡大して見るレベルだと太陽表面とプロミネンスの境がさすがに不自然です。

全景動画をよく見てみると、まだ他にも動いているところはありますが、上の動画よりはるかに小さな動きでしかありません。

結局、実際に長時間撮影したものをタイムラプス化して面白かったことは、2時間半で太陽の自転がわかったことでしょうか。これはタイムラプスというよりは、最初と最後の画像を比べればいいでしょう。
Blink3

赤道付近の自転の周期が25日程度というので、半回転180度として、それをざっくり12日で回転するとしたら、1日あたり15度、2時間半だと1.5度程度回転するはずです。高々2時間半でこれくらいわかるので、夏場の朝から晩まで、1時間おきくらいに撮影して12時間くらいの自転を見るのも楽しいかもしれません。


問題点

さて、今回長時間撮影してわかった問題点もあります。今後の改善のために列挙しておきます。
  • SharpCapで保存されたtif画像が、階調8ビットで保存されてしまっています。SharpCapのタイムラプスの設定画面の下の方に、画面のストレッチをしたら8bitで保存されると書いてあるので、逆に言うとストレッチしていなければ16bitで保存されるはずなのかと思います。実際、以前PhoenixとASI290MMで撮影した過去画像を調べたらきちんと16bitで保存されていたので、何か方法があるはずです。でも8bitで保存されたとしても、すでにプロミネンスまで炙り出し済みなら、階調は問題でないのかと思います。
  • 黒点やダークフィラメントなど、何か構造が見えるところだけボケてしまっていて、アニメ化するとブレてしまっています。SharpCapから保存されてtifファイルの時点でもうボケが見えているので、スタックの問題か、変なノイズ処理が入っているからとかかと思うのですが、今の所不明です。今回はアニメ化してからこのことに気づきました。次回からは画像をとにかく1枚保存して、きちんと撮れているか確認しようと思います。ちなみに、このボケのため、太陽表面が動いているように見えるものはほとんどフェイクです。
  • 太陽表面の模様があまり出ていない気がします。シーイングがものすごく悪かったのか、設定が悪かったのか、今となっては確認できません。短時間でいいので、serファイルを別途撮影しておけばよかったです。
  • やはり全景では変化がなさすぎてつまらないです。拡大してみるとプロミネンスの変化などがわかるので、拡大を前提に楽しむべきか、それでも拡大するとすぐに分解能の限界でアラが見えるので、どこまで拡大するかのバランスが大事なのかと思います。
  • プロミネンスの境が不自然に見えます。リアルタイム処理なので仕方ないのかもしれません。
  • プロミネンスの境がブレるようです。アニメ化すると目立ちます。

色々問題点もありますが、それでもこれだけ簡単にタイムラプス映像ができるのは、魅力なのかと思います。


まとめ

やっとSharpCapのリアルタイムスタックを利用して長時間のタイムラプス映像まで辿り着きましたが、あまり面白くもないので、これを今後継続するかはちょっと迷っています。ただ、問題点はまだあることはわかったので、もう少しはマシになるはずです。これらの問題点をある程度解決してから判断しようかと思います。

前回記事の「エタロン良像範囲改善 (その1)」の続きになります。今回は主に新カメラG3M678Mを使ってエタロンの良蔵範囲を調査してみました。




ニュートンリング

7. ニュートンリングをあらわに見てみる

前回の記事は5月4日までにやったことですが、その次の5月5日に、やり残してあったニュートンリングのテストをしました。新カメラG3M678Mが到着したのがちょうどこの日なのですが、このテストはまだASI290MMを使っています。

元々、チルトアダプターの角度をほぼ最大限まで傾けて使っていました。ニュートンリングを完全に消すためにはほぼ最大角度まで傾ける必要があったからです。下の写真を見てもらえばわかりますが、USBケーブルが見えている方向の裏側から出てることからわかるように、センサーの長手方向が傾くようにチルトアダプターに角度をつけています。

IMG_1336

太陽を実際に撮影した画像だと模様がグシャグシャしていてわかりにくいのですが、ピントをずらしてフラットフレームを撮影するとニュートンリングがどれくらい出ているかよくわかります。その状態で比較してみます。まずは傾ける角度を0度にしてニュートンリングが最も出る場合です。かなり目立ちます。
スクリーンショット 2025-05-05 132111

いくつか角度を変えて試したら、センサーの上側方向に角度をつけるとニュートンリングが小さくなりました。上側を傾けて、その角度は最大の半分くらいにした場合です。干渉縞の幅が大きくなって多少ましになっているのがわかります。角度0度だと目立ちすぎるのと、かといって最大角度ではピントずれの場所が出てしまいます。ピントずれが出るか出ないかくらいの、とりあえずこれくらいを基準とします。
スクリーンショット 2025-05-05 133748_tilt_upper_half

多少ましとはいってもこんなに目立つニュートンリングですが、実際の撮影時にはフラット化するとほぼ目立たなくなります。

まず、フラット化をしない画像ですが、撮影中でもすぐにわかるくらいです。特に黒点下など、横に走る縞が多数見えているのがわかります。
スクリーンショット 2025-05-05 133932_tilt_upper_half

次にフラット化した画像です。前回の記事で示したものとほぼ同じですが、ニュートンリングは全く見えないと言っていいでしょう。
11_57_18_lapl2_ap3954_out

ところが、このまま撮影を長時間続けていくと、フラット補正ががずれてくるのかと思いますが、ニュートンリングが見えてきてしまいます。真ん中上部に明らかに縞模様が見えるのがわかるかと思います。
13_08_17_lapl2_ap3929_out

フラット補正直後の撮影始めは大丈夫かもしれませんが、これだと長時間撮影するタイムラプス映像は厳しいかと思います。

ちょっと結論が出ないので、とりあえずこの問題はこのままにして、次は新カメラのテストに移りました。


カメラ位置のテスト

8. より広角なG3M678Mでカメラ位置を変えて良像範囲を探る

その後は天気が悪くてじっくりとした時間が取れなかったので、せいぜい8cmの全景のテストだけが進み、再びC8でテストができたのは5月18日になります。ここからは新カメラG3M678Mでのテストになります。
  • 大きな違いは、長辺、短辺ともにセンサーの大きさが1.5倍程度になるので、面積だと2倍くらいになり、より広い範囲を見ながら判断できます。
  • もう一つの重要な違いが、アイピース型なので、センサー面よりPSTの奥まで押し込むことができることと、さらにBFとの距離を縮めることができることです。これは光束の径が最も小さくなるところを、一番径の制限されるBFのより近くに持ってくることができる可能性高くなります。

カメラの差し込み位置を変えるということは、結局のところエタロンとセンサー面の間の距離を変えるということになります。その距離に合わせたピント位置を、C8の主鏡の位置で合わせるということなので、相対的には実質C8とエタロン間の距離を変えていることに他なりません。エタロンカメラ間の距離を保ったまま、C8エタロン間の距離を変えても結局C8主鏡でのピント合わせで補正してしまうので、実質ほとんど状況は変わらないということは、前回記事の「3. C8に対して、どれだけPST本体を押し込むか」で示しました。

ここからカメラ位置を変えた結果を、違いがわかる代表的なところをA-Eまでの5ヶ所で示していきます。

A. まずは、カメラを最も中に入れた位置です。ここを0mmとします。
スクリーンショット 2025-05-18 063445_01_0mm_min

B. カメラをPSTから約15mm引き抜いてねじで固定た場合です。周辺の黒いケラレが減っているのがわかります。
スクリーンショット 2025-05-18 063837_02_15mm_blueallout_noblackpart

C. カメラにフィルターを付けるための延長ノーズアダプターをカメラ側に取り付けて長くし、その分最初の位置から35mm引き出した状態です。明らかに良蔵範囲が広がっています。黒点と白いプラージュ間の距離を比べても、拡大しているだけではなくて、見える範囲が広がっていることがわかります。
スクリーンショット 2025-05-18 064615_04_35mm_oneringoutest

D. 別途手持ちのアイピース口の延長等をつけて、カメラを最初の位置から55mm引き出した場合です。良蔵範囲がほぼ全面に広がっています。また、ヒストグラムを見るとわかりますが、明らかに山の位置が左に行っていて、全体に暗くなっているのがわかります。
スクリーンショット 2025-05-18 065033_06_55mm_onering_extender_longest

E. カメラを最大引き出した70mmの状態です。ねじでカメラの伸ばしたアダプターの一部を固定しているだけなので、撮影をするには不安定ですが、テストのために確認してみました。55㎜よりも明らかに左右が改善されているのがわかります。ヒストグラムが示すように、さらに暗くなっています。
スクリーンショット 2025-05-18 065334_07_70mm_onering_exteder_longets

ここまでの結果でいくつかのことが判明しました。
  • カメラを引き出せば引き出すほど、良蔵範囲が広がり、全体が暗くなることがわかりました。
  • それにしても、これだけの違いで良蔵面積が2倍以上になっているのは驚きでした。
  • ただ、暗くなっている理由がまだわかっていません。制限がBFの径からきているのなら暗くなるのはわかりますが、その場合良蔵面積は小さくなるセンスだと思います。
  • 時間経過もあり、ピントがきちんとあっている保証がないので、どこまではっきり言えるかはわからないのですが、カメラを引き出せば引き出すほど分解能も増しているようにも見えます。これはエタロンにより平行光に近い光が入ったということなのでしょうか?
かなり大きな進展です。まだいくつかミステリーはありますが、とにかく引き出した方が面積、分解能がよくなる傾向で、暗くなることだけが不利なので、これはもう引き出す方向のほうがメリットが大きいと言っていいでしょう。


新カメラでのニュートンリング

新カメラG3M678Mに変えて一つ気づいたことがあります。それはニュートンリングが全く目立たなくなったことです。

これまでのASI290MMとの大きな違いは、センサーの前に保護ガラスが無くなったことでしょうか。もしそうだとすると、ZWOカメラでニュートンリングが出てくるのは、保護ガラス単体か、保護ガラスとセンサー面でニュートンリングが出ていた可能性が高いです。いずれにせよ、チルトアダプターをつける必要がなくなって、さらにアイピース口に差し込むタイプのカメラなので、これまでより対物側にかなり押し込めるようになりました。今回のC8での結果では、センサー面をより遠くにする方がいい結果が得られているので、逆センスなのが残念ですが、全景を8cm鏡筒で撮る場合は有利な方向に働きます。


PSTの光軸調整

9. PSTのC8に対するセンタリング(光軸調整)

5月18日にやった最後の検証です。実はここからC8に対してPSTを回転させて、良蔵範囲が変わるかテストしようとしてました。回転する前にPST固定のねじを緩めて、何の気なしにPSTを横に動かしてみると、画面の右手方向にさらに良蔵範囲が広がっていることに気づきました。最良のところは、これまで見ていた位置から画面の横手方向の半分くらいの長さ行ったところにあるようです。

これまでの固定位置です。いいところと悪いところがわかるように、フラット化を外して輝度差をあえて目立つようにしています。フラット化していないと、実質分解能が落ちたようにも見えるため、左側が暗く、ボケたように映ります。
スクリーンショット 2025-05-18 071127_11_70mm_longest_noflat_0deg

次に、最良方向に向けて黒点を画面中心あたりに持って来ました。これもフラット化はなしですが、明るさは均一に近くなっています。左端の分解能は上がっています。その一方、黒点右側の分解能が悪くなっているように見えます。さらにその右側は再びよくなっているようにも見えます。
スクリーンショット 2025-05-18 071557_12_70mm_longest_noflat_0deg_center

なぜこんな風に画面内途中で複雑に良蔵範囲が変化して見えるのかはまだ謎です。

その後、PSTのねじを固定すると「安定に」毎回最良位置から左側の所に固定されることがわかってしまいました。これまでずっと悪い位置で見ていたということです。また、前回の検証でASI290MMでPSTを回転させて良蔵範囲が改善していたのは、最良方向へ位置が少し移動しただけということもわかりました。

さて、どうやったらいい位置で固定できるかですが、とりあえず今回は対処療法で、PSTの差し込み部に1枚テープを張り、ねじを締めたときに良蔵方向へ傾いて固定されるようにしてみました。また、C8とPSTの固定部分がおそらくネックになっていて最も弱く、今のセッティングではここが一番揺れる可能性が高いこともわかってきました。固定方法はいずれ、強固にする方向で解決する必要がありそうです。


その後の撮影

ここで長時間撮影に移りました。その結果が、前々回の記事で示したものになります。



まとめ

5月後半はなかなか晴れなくて、太陽関連のやりたいことが溜まってしまっています。しかも最近は休日も忙しかったりするので、さらにチャンスが少なくなっています。今週末の福島も残念ながら参加できません。

ゆっくりですが、エタロン調整は一応進んではいます。そうは言っても、結局のところエタロン関連でここまでで有効だったことって、
  • 2のカメラのチルトをなくしたこと
  • 4、6、8のカメラ位置を遠くにしたこと
  • 9のC8に対するPSTの光軸調整
くらいです。どれもたいして難しいことはしていなくて、ある意味単純なことしかしていないんですよね。その一方、これだけ単純なことでもある程度検証しようとすると、手順は丁寧に、問題を切り分けて、一つ一つ確認していく必要があります。ここまででもいろんな不具合がわかり、ある程度改善もできてきましたが、今後必要ならもっと大変になってくるエタロンそのものにメスを入れることもあるかと思います。

そもそもPSTエタロンで自分が望むものが得られるいのか、もしくはより高性能なエタロンを手に入れる必要があるのか、はたまた自分が望んでいるものとはいったいなんなのか?

まだまだ道は長そうです。


今回は、4月から撮影の合間にずっと続けているエタロンの調整についてです。現段階でまだ結論は出てませんが、かなり溜まってきたので、途中経過を一旦記事にまとめておきます。


はじめに

4月30日に書いた記事の中で書いた目標の最後の9番、C8+PSTでの良像範囲の改善です。今回の記事の範囲ではカメラはASI290MMを使っています。次回以降の記事では新カメラも使っていきます。

エタロンの調整はなかなか難しいので、簡単でわかりやすいところから順番に丁寧にやっていきます。この記事の後に試したことで、答えがわかっていてすでに意味がないこともありますが、それを飛ばして書くと意味がつながらなくなることもあるので、基本はやったことを順に書いておくことにします。

作業に入る前に、前提条件を書いておきます。
  • エタロンの回転角の自由度による不定性をどうするか? -> 画面中央が暗くなる位置で、ほぼ一意に決まると考える。
PSTのエタロンは、調整リングを回転させ、エタロンに圧力を加えることで鏡間の距離を変化させ、透過波長を調整します。現在の手持ちのエタロンは良像範囲は狭いのですが、暗い部分が画面中心にくることで中心波長を判断していて、その位置さえ再現すれば回転角はほぼ一意に決まるので、毎回その角度に持ってくるようにして一連の作業を進めています。もちろんん多少の誤差はありますが、今回の調整範囲程度では十分再現性もあると考えています。

(補足) 以前は入射光に対するエタロンの角度を変えて中心波長を調整すると思っていましたが、それだと計算上十分な角度変化が取れなさそう (今考えるとFSRの10%くらいは変わっていいはずで、当時の計算は2%) なので、ずっと疑問に思っていました。PSTを作ったCoronado社が持っている特許と、実際に実装されている方式を見る限り、圧力式と思って間違いないと思われます。2024年春までに一連の特許が切れたために最近のエタロンに採用されたようです。Phoenixのエタロンも、後部のスポンジの存在など、見ている限りPSTのものに酷似しています。

もう一つ、今回の一連の作業で困難と思われることを書いておきます。
  1. エタロンへの入射光の平行光度と、エタロンがきちんと働いているかの関係がまだよくわかっていない。
  2. 良像かどうか、スタックして細部出しをしないとわからないことがある。
  3. ニュートンリングが撮影時に確認できない。
などです。

1については、前回前々回の記事で、8cmでエタロン位置を0-5cm程度動かして、エタロン内に入射する光を平行光からずれた状態を作ったはずなのですが、結局エタロンの働きに差を見出すことはできませんでした。鏡間距離が短いことと、フィネスが低い( = 光の折り返し回数が少ない)ことが要因だと推測していますが、もっと動かしたら違いがわかるのか、実はすでに影響が出ていて気づいていないだけなのか、もう少し検証が必要です。

2は結構厄介です。はっきりとした悪い像はリアルタイム見てもわかるのですが、中にはリアルタイムで(まだボケた状態で)見て問題無いと思っていても、スタックした後で(これもまだボケた状態で)見て問題無いと思っていても、ImPPGで細部を出すと、なんかボケ気味だという場所が画面の中の部分的に存在することがあります。撮影時に確かめられるといいのですが、かなり最後の方まで画像処理して出てくるので、すぐに判断ができなくて調査が進みません。この一部がボケる原因そのものも、まだよくわかっていません。

3は、今回以降の一連の検証作業の途中で、カメラの角度が問題だということがわかってくるのですが、カメラの角度を変えるとニュートンリングが出てくることがあります。ニュートンリングを避けたいのですが、軽いものだと太陽表面の模様などに隠れて、撮影中はよくわからないのです。これも画像処理を進めていく過程、特にタイムラプス映像まで作ると、リング上の模様が動いているのがわかることがあります。撮影時に判断ができないので、困りものです。


PSTを回転

最初にやったのはかなり簡単なことです。

1. PSTとC8の取り付け相対角度を変える

まずいつもの通りC8+PST+ASI290MMで太陽表面のHα画像を撮影します。上に書いた通り、エタロンリングの調整は画面中央付近が一番暗くなるところを選ぶので、ほぼ一意に決まります。少しわかりやすいところを選びましたが、いつものように画面右側が明らかに模様が出ていないのがわかります。

スクリーンショット 2025-04-26 141939

次に順次PSTをC8に対して90度づつ回転していきます。その際、同時にCOMSカメラも順次90度回転させていき、視野の角度が回転しないように補正するようにします。PSTを90度や180度回転させただけではそこまで違いがわからなかったのですが、270度回転させた時には明らかに改善が見られました。

IMG_1198

その時の画像です。見ている場所が違うので少し比較しにくいですが、明らかに右側が改善しているのがわかると思います。

スクリーンショット 2025-04-26 141435_270

この状態で、500フレーム撮影し、改善するかどうか比較してみました。
14_37_04_lapl2_ap2782

うーん、右側は思ったより改善してません。この日(4月26日)はここでおしまいとなりました。


もしかしてエタロンのではない?

2. チルト角度調整

4月30日の記事で書いたように、上のテストの次の日 (4月27日) に粒状斑を撮影しています。そこでふと気づいたのですが、ここでも同じように右側がボケボケなんですよね。クロップしていない画像を改めて載せておきます。

13_34_29_lapl2_ap3983_out

PSTで右側がボケていたのはエタロンの透過中心波長がHαからズレていたと思い込んでいたのですが、粒状斑の撮影では白光なのでエタロンは全然関係ないはずです。ということは、これはC8かカメラから来ているでは?と考えたわけです。

ここで怪しいのは、カメラの手前に入れてあるチルトアダプターです。もともとの目的は、焦点距離が長くなりF値が大きくなると、直線的に入ってくる光が多くなるためにニュートンリングが発生しやすくなるので、それを回避する目的でカメラを傾けて取り付けるために入れています。ただ、その傾き角をかなり大きく取ってしまっているので、もしかしたらそれで焦点が合っていないだけなのではないかと思ったわけです。

IMG_1336

しかも、午前と午後では赤道儀が反転するので、画面で見て上側を北に保つためにCMOSカメラを午前と午後で180度回転するのですが、たまにこの180度回転を忘れてしまう時があって、その忘れた時はボケが右から左に移動してるのを思い出しました。もしこのボケがエタロンからきているなら、ここでボケの左右反転は起きないはずですが、もしこのボケがチルトアダプターからきているとしたら、カメラとチルトアダプターの取り付けはねじ込み式なので相対角度は常に保たれているので、左右反転が起きるはずで、今ある現象を説明することができます。

この推測を確かめるために、ゴールデンウィークの5月4日の午後の曇りの中の晴れ間を利用して、実際にチルトアダプターを変更してみました。

結果は上から順に、チルトアダプターが 1. これまで通りほぼ最大角、2. 半分の角度、3. 傾きなしとなります。
スクリーンショット 2025-05-04 152454_01_original
スクリーンショット 2025-05-04 153620_02_hal;f
スクリーンショット 2025-05-04 153912_03_0degree

下にフラット補正時のヒストグラムが残ってしまっているので少し比較しにくいですが、右側が明らかに改善されていきます。傾きをなくした時にもニュートンリングはパッと見は確認できません。傾きなしが一番いいので、とりあえずこれ以降は傾きなしでさらに調整を進めます。(その後、別の黒点画像を連続撮影し、タイムラプス映像にしたところで、明らかにニュートンリングの存在がわかりました。なので、傾きをなくす場合は、何らかの対策が必要です。)


C8に対するエタロン位置調整

3. C8に対して、どれだけPST本体を押し込むか

次に試したかったことは、鏡筒に対するPST固定位置の変更でした。でもその前に、カメラ位置の自由度を高めるために、ここでいったんチルトアダプターを外してカメラをより押し込む方向に動かしました。その結果を載せます。

スクリーンショット 2025-05-04 154255_04_notilter

右側の見え方が有意に悪くなっていますが、理由はまだよくわからないので、一旦は放っておきます。ここでのテストは上の画像がスタートになります。

鏡筒に対して、レンズ込みのエタロン位置を相対的に変えるために、手持ちの2インチの延長アダプターをC8とPSTの間に挟み込みます。これでエタロン位置も含めてPST全体が3cmほど後ろに下がったことになります。ここから更にPSTの入れ込み度合いを調整することで、もう少し位置を変化させることができ、最大で6cmくらい下げることができます。その際のピントは、C8側で合わせます。C8の主鏡の位置をずらすということですが、この調整範囲がかなり広くて、以降のテストで様々な個所の位置を変えていますが、すべてピントを出すことができます。この調整範囲の広さはC8を選んだ利点の一つです。

結果になります。上から順に 1. 2インチ延長アダプター挿入後で初期位置から3cm下がった状態、2. さらにアダプターに浅くPSTを入れることでさらに3cmほど、合計で6cmほど後ろに下げた後となります。
スクリーンショット 2025-05-04 154649_05_2inch_adapter

スクリーンショット 2025-05-04 155148_07_2inch_adpter_faresr

上3枚を比較してみると、最初の位置からエタロンを変化させても、予想に反して右側の映り具合はほとんど変化しません。これは8cm鏡筒でのコメントの議論がヒントになって謎が解決しました。gariさんが「PSTの黒箱を望遠鏡に挿してピントを合わせられる場合、対物がいずれの場合でも焦点位置からだいたい200mm手前の位置に-200mmのレンズが配置されることになるので、いずれの対物でもほぼ平行光になります」と言っていて、その後、私から「PSTの場合、レンズ位置とカメラの位置が固定だから、ここをいじれない限り大きく状況は変わらないということですね」と返しています。今回はPSTのピント調整を使わずに、この段階ではカメラ位置も調整していなくて、手前のC8のみでピントを合わせていることになります。結局エタロン以降でのセンサー面までの光の状態に(ほぼ)違いはないので、コメントでの議論が実証されたような形になるのかと思い、納得できました。


カメラ位置の調整

面白いのはここからです。

4. カメラの位置を変えて、エタロンとカメラセンサー面の間の距離を変える

上の最後の状態から、カメラをPSTに対して浅く差し込むようにして、エタロンから遠くで固定するようにしてみました。右側に明らかな改善が見られ、細かい模様が出ています。
スクリーンショット 2025-05-04 155839_09_2inch_adapter_faethest_tilter_far

ここに載せている状況以外でもいろいろ試してみましたが、やはりカメラを遠くに付ける方が右側のボケが少なくなるのは確実なようです。なので結局、C8とPSTの間の2インチ延長アダプターは外して、チルトアダプターを再度取り付けました。その時の画像が以下です。

スクリーンショット 2025-05-04 160149_10_no2inchadapter_tilter_camera_far

ただしこれがベストかというと、たぶんまだ結論を出すのは早そうです。まず画面右側はいいのですが、逆に左側の分解能が出ていない気がします。また、画面上にニュートンリングっぽい回転状の模様が出ているようにも見えます。でも見分けはかなり微妙で難しくて、明らかな差が出るような状況にない限りは自信をもってこれがいいというのは難しいです。


再度PSTを回転

5. PSTをC8に対して、再び回転させてみる

上の状態をもう少し改善できないかと思い、ここから、再度前週に試したPSTの取り付け角度を探ることにしました。書き忘れてましたが、この日のテストは再びPSTを0度で取り付けていて、前週の270度ではなくなっています。正直に言うと、単に270度のことを完全に忘れていただけで、何の疑いもなく最初からいつも通りに0度に取り付けてしまっていました。

0度から順に変えていきます。上から0度、90度、180度、270度です。
スクリーンショット 2025-05-04 162401_01_0deg_original_tilter0deg
スクリーンショット 2025-05-04 162931_03_90deg
スクリーンショット 2025-05-04 163133_05_180deg
スクリーンショット 2025-05-04 162709_01_270deg

これら4枚を比べると、特に画面左側が、有意に180度 > 90 or 270度 > 0度となっていると言えそうです。前週の270度がよかったというのは、やはりチルトアダプターでの右側のピンボケの効果が含まれた複合原因だったといってよさそうで、今回の180度の方がより独立した正しい判断だと言うことができそうです。


更にカメラを遠く

6. カメラを最大限遠くに固定

この日の最後に、カメラ位置をもっと遠くにしたらどうかということで、カメラのところに1インチの延長アダプターを挟み込んでみました。下が結果になります。

スクリーンショット 2025-05-04 164049_06_180deg_externder_best_but_darker

大きく変わったことが2つあります。まず、明らかに全体が暗くなりました。画面での見かけ上はストレッチを駆使して同じくらいになるように調整していますが、ヒストグラムの山の位置を比べて見ると明らかに左に移動しているので、実際は暗くなっているのがわかります。この暗くなるのが、BFの径が小さいことによる制限からきているのか、エタロンの働きが変わってよりHαに合ったので暗くなったのか、もしくは全く別の理由なのかは今のところ不明です。ただ、全体的に分解能はよくなったようにも見えますが、これは時間にも依るものなのかもしれないのでまだ結論は出ていません。

まとめ

と、今回の記事はここまでとしたいと思います。

ここ最近ずっとこのエタロン調整のことを考えています。週末の天気が悪くて、何の検証もできなかったのが不満なのか、昨晩はとうとう夢の中にエタロンが出てきて、全く訳のわからない調整を延々としていました。もうちょっとした末期症状です。

この後、より画角の広いG3M678Mが来て、さらにいろんなことがわかるのですが、これまた長くなるので、次回以降に書くことにします。


2025年5月18日の日曜日、前日の土曜の天気が悪くて悶々としていたところ、この日は朝から太陽が出ていて、6時頃には起きて早速太陽撮影の準備です。でも肝心の天気はというと、結構雲もあり、晴れ間を見つけて撮影とかになりそうでした。


エタロンの調整


IMG_1372

この日、最初にやりたかったことは、C8でのエタロンの調整です。ここ一か月くらい色々試していて、なかなか結果が出ていないのですが、この日新カメラのG3M678Mを使ったことで、少し進展がありました。ただし、まだ調整の余地がありそうなので、もう少し続けようと思っています。

エタロン調整はまだ結論まで出ていないので、もう少しまとまったら、また別途記事にします。


黒点周りをより広角で

朝の早い時間を利用したかったので、エタロン調整の成果を試すべく、すぐに撮影に入ります。まずは黒点周りです。

1ショットあたり200フレームで、いいシーイングを逃したくなかったので30秒に1回、トータル30分で合計60ショットとしました。30分の短時間にしたもう一つの理由がファイルサイズです。カメラをこれまでのASI290MMかG3M678Mに変えたので、前回計算したとおりピクセル数は約4倍になるため、ファイルサイズも単純に4倍くらいになります。ディスク喰いなので、長時間撮影を何度もできないということに気づきました。

撮影後、全60ショットを仮処理して、細部出しまでしてから改めて分かったのですが、この日は相当シーイングが良かったです。以前のかなりシーイングがいい日と思った日の、1-6までランク付けしたときの基準に合わせてみると、悪い方のランク6と5は皆無、4もほぼないと言っていいでしょうか、全部3以上で、ランク1の枚数が多かったです。ただし晴れ間は続かなくて、撮影したうちの3分の1程度はほぼ真っ暗で捨てることになりました。多少暗くなっているだけのものは残しています。そのうち、ランク1の中で、実際そこまで差はないのですが、一番いいと思われる時間帯の、ほぼ連続した4ショットを処理しました。モノクロ、カラー、カラー反転版を載せておきます。

07_51_59_pipp_lapl3_ap15534_IP

07_51_59_pipp_lapl3_ap15534_IP_color_s

07_51_59_pipp_lapl3_ap15534_IP_color_inv._mod_sjpg
  • 撮影場所: 富山県富山市
  • 撮影時間: 2025年5月18日7時51分
  • 鏡筒: Celestron C8 口径203mm、焦点距離2032mm
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: Touptek G2M678M
  • 撮影ソフト: SharpCap 4.1 (64bit)
  • 画像処理: AS!4にてスタック、ImPPGで細部出し、PixInsightでカラー化など、PhotoshopCCで仕上げ

まず、カメラをこれまでのASI290MMかG3M678Mに変えたので、画角が縦横ともに1.5倍くらい、面積では2倍以上増えています。それでも良像範囲が増えているのは、エタロン調整の効果です。しかも揺れも少なく安定していたせいか、四隅を含めてほぼ全面にわたって使える画像になっています。今回はクロップを何もしていないので、ずれたところも含めて表示していますが、細い枠程度でほとんど影響がないくらいの範囲で収まっているのがわかります。

ピクセルサイズが小さくなったせいなのかわかりませんが、ASI290MMの時に比べて明らかにノイジーになっています。もしかしたら、ImPPGが細かすぎる画像が苦手なことがあるので、その生の可能性もあるかもしれません。ここら辺はもう少し経験を積む必要があるでしょう。

あと、黒点の右側など、まだピントが合っていない部分が変な形であるように見えます。エタロンのせいなのか、C8やカメラのせいなのか、なぜかはまだ謎で、ここら辺をもう少し突き詰めていきたいと思っています。


プロミネンス

次はプロミネンスです。大きなものがいくつか出ていましたが、午後4時半方向の南西に出ているものが大きかったので、それがカメラの長辺になるようにカメラを回転して撮影しました。プロミネンスを撮影したカメラもG3M678Mなので、これまでより広い範囲で撮影ができています。

黒点撮影の時より、さらにシーイングが安定だったみたいで、ほぼ全ての画像でかなりの解像度が出ていました。どれが一番いい画像が選ぶのが難しくて、いっそのことタイムラプスにしてしまおうと、少し処理を進めました。

本当は1時間撮影する予定でしたが、途中で雲が出てしまい、結局連続で使えた部分は午前8時19分から8時46分までのわずか26分間でした。その26分の間も多少雲が通過して少し暗くなってしまったショットもありました。明るさ調整は多少できますし、暗い時に出るノイズもタイムラプスで動画にしてしまうと目立ちにくいので、それでとれる最大の26分を使いました。そうは言っても高々26分の52コマなので、タイムラプスとしては短くて全然期待していなかったのですが、ある程度拡大しているからなのでしょうか、連続で見ると結構動いているのがわかります。

output-palette2

上の動画は、ブログ上で動くのが見やすいようにgifファイルにしていますが、サイズがかなり制限されてしまいます。HDMIサイズにした動画はYoutubeに挙げておきましたので、よかったらご覧ください。

今回はシーイングが相当良かったので、1枚1枚の画像処理をかなり抑えています。多少ノイジーなところは残っていますが、細かい様子も十分残っていて、短時間ながら迫力ある映像になったのではないかと思います。

これだけの良好なシーイングだったので、もしずっと晴れていたらと思うと、とても惜しかったです。


全景

IMG_1377
もうかなり雲が出てきています。この後、全面を覆うようになっていきます。

最後は太陽全景です。この頃には一つ一つの雲が大きくなってきていて、鏡筒を変えて導入するときも、ピントを合わせるときも、一瞬太陽が出たところで素早く合わせていました。時間がたつほど全面が雲に覆われてきて、撮影時はかなり待ちながら本当に一瞬で出たところを何ショットか狙いました。何度かの途中で雲が通る程度での撮影したあと、9時46分に、やっと全く雲が通らない1ショットが撮れて撤収としました。

画像処理はこれまで通りで、こちらもモノクロ、カラー化、反転バージョンを作ってみました。

09_46_31_lapl3_ap2937_out_mono

09_46_31_lapl3_ap2937_out_color

09_46_31_lapl3_ap2937_out_color_inv

PSTでここまで撮れるならかなり満足です。解像度もピクセルサイズが2μmと小さいので、拡大して見てもある程度耐えうるくらいに、十分に出ています。今回の撮影では分解能を出すために、エタロン位置を、8cmの口径が効くように、かなり後ろにしています。後ろにする理由は前回記事をご覧ください。


その後の処理

撮影後は完全に曇ってしまって時間ができたので、画像処理に移りました。

簡単そうなので先に処理を始めた全景は、その日のうちに済んでXに投稿したのですが、C8で撮影した黒点周りとプロミネンスは新カメラということもあり、思ったより時間がかかってしまいました。天気がイマイチで雲が結構な頻度で通り、少し暗くなった画像をどうするか迷ったのと、画角が広くなった分のエタロンの調整がまだ不十分で、どこまで採用するかを迷ってしまったからです。特に、プロミネンスは静止画にするかタイムラプス化するか迷いました。タイムラプスの処理過程は静止画より遥かに複雑で、前にやったものを思い出しながら、しかもカメラが違うのでパラメータも違い、思ったより時間がかかってしまいました。


まとめ

処理した画像は、まだ一部の個所に不満はありますが、全体としてはそこそこ満足です。これはシーイングがかなり良かったのが主な理由です。このクラスのシーイングで、天気が良く、別の大容量外部ディスクなども用意して、思う存分撮影し、処理もルーチン化して慣れた状態で短時間でできるなら、もう夢のようですね。エタロンの調整は、まだ余地があるならもう少し続けたいと思います。



新カメラのTouptek社のG3M678Mを使うと、8cm鏡筒での太陽全景でエタロン位置をさらにずらし、像が改善するはずです。実際にやってみました。これはちょっと前の2025年5月11日、あまり天気の良くない日に、晴れた瞬間瞬間を狙ってなんとかやれたテストです。


エタロン位置の最適化 (その2)

8cm鏡筒を使ったエタロン位置の検証は4月末に一度ASI290MMを使って試しています。鏡筒にPSTが当たる最前の位置0mmから、最大33mmまでPSTを後ろに下げることができ、以前のブログ記事では0mmと30mmの画像を比較しています。比較によると、
  • 口径80mm、焦点距離400mmの対物レンズで集光された光は、200mm進むと光径が40mmになる。そこに口径20mmのエタロン手前のレンズが置かれるので、F値は口径から考えるF5ではなく、レンズ径による制限でF10になる。
  • エタロンとともにレンズの位置を後ろに下げると、光径が40mmより小さい位置にレンズが置かれることにより、実効的なF値の制限が緩和される。
  • 実行的な口径が大きくなったことに相当し、分解能が改善する。
  • 実際の画像で見る限り有意な改善が見られた。
というのが結論でした。エタロンを最も下げた33mmという位置では、その位置でピントを出そうとするとカメラを最も奥にPST側に差し込まなければならず、それ以上エタロン位置を下げようとすると、カメラをそれ以上差し込めないので、ピントが出ないのです。これまで使っていたASI290MMではエタロン位置が33mm後ろというのが限界でした。

新カメラのG3M678Mはアイピース型で、さらにPST側に差し込むことができるため、今回はエタロンを50mmまで下げることができました。

その時の撮影画像の結果です。露光時間0.25秒、gain 400 (= 2倍 = 12dB = ZWO換算で120)、100/500framesをAS4!でスタック、ImPPGで細部出しをしています。左がエタロン位置が0mmで、右が50mmです。画像処理過程は両方とも全く同じです。
スクリーンショット 2025-05-18 193130_8cm_G3M678M_0mm_50mm_cut

画像ををクリックして拡大しながら比べて頂きたいのですが、黒点や、黒点右上のダークフィラメントが比較しやすいでしょうか。明らかに50mm下げた方が分解能が出ています。前回の0mmと30mmの比較よりも今回の方が差がはっきりしていて、やはりレンズ径がF値を制限していて、それが緩和されるために分解能が改善されたと言えるのかと思います。

撮影している最中は、エタロン位置が後ろの方が、ヒストグラムで見ていると画面が明るくなっているのが確認できます。これはレンズ径での光のケラレがより少なくなることで説明ができます。実はその際、その明るさの違いから0mmより50mm位置の方が一見分解能が出ていないように見え、なんでだろうと思っていました。でもきちんと同条件で画像処理をして比較すると、やはり理屈通り50mm位置の方がより細かいところが見えたので、やはり考え方におかしなところはなさそうです。

ただし、エタロンが0mmの位置の場合と、50mmズレた位置の場合での、エタロンの効果の違いはまだ認識できていません。エタロンに入る光は少なくともどちらかは平行光からずれることになるので、エタロンの効果が変わってきて、その差がわかるのではないかと期待していたのですが、今のところどちらがいいと、どちらが悪いとかはまだ言えていません。やはりエタロンの鏡間の距離が0.1mm程度と極端に短いので、多少平行光からずれてもエタロンとしての機能は失わないのかと推測しますが、位置を50mmもずらしても、まだあからさまに何も変わらないというのは、ちょっと意外でした。


ROIによる画像サイズの縮小

他にも、画面の大きさを制限するROI機能を使ってみました。目的は2つで、
  • フレームレートを上げたいこと
  • 画像サイズを小さくしたいこと
です。

G3M678Mのフレームレートは23fpsくらいで、ASI290MMの60-70fpsに比べると明らかに落ちています。これは画素数が1936×1096=2121856から3840x2160=8294400へと増えていて、その比8294400/2121856 = 3.91にほぼ比例したフレームレートの低下になっています。ROIで画素数を制限することにより、これが改善しないかと思ったわけです。

太陽でほぼ真円に近い形で写るので、ROIを正方形の2160x2160にした撮影してみたましたが、フレームレートは全く同じの23fpsで何ら改善は見られませんでした。

これで一気にROIを使う動機が薄くなってしまいました。もちろん画像サイズは小さくなります。横幅が3840/2160=1.78なので、ファイルサイズも約1.8分の1になります。その一方、写せる範囲がが小さくなるので、ガイドずれなどに対する耐性は下ってしまうため、少し迷います。

serファイルは絶対量が大きくなるので、それが小さくなるのは少し魅力です。実際、今回500フレーム撮影した場合にできたserファイルは、ROI無しだと8.1GB、ROIで正方形にすると4.6GBです。ただし、全景の場合は枚数を多くとることはあまりないですし、枚数を写すタイムラプスは、SharpCapで直接スタック後の画像だけを保存することを考えているので、トータルサイズはそこまで大きな差にはならなさそうです。ディスク容量を見ながら影響がありそうなら正方形の2160x2160を使うことにするかもしれません。

ちなみに、今回ROIで正方形にしてserで撮影したものから画像処理を進めてみました。最初のG3M678Mの画像は8bitで撮影してしまいましたが、今回は16bitのRAW16できちんと撮影しています。ただし、この日は天気が悪かったので、上記エタロン位置を最適化する前にとりあえず撮影しているので、以下の画像ではエタロン位置やカメラ位置はまだ適当です。

10_57_04_lapl2_ap10495_IP
10_57_04_lapl2_ap10495_IP_color
10_57_04_lapl2_ap10495_IP_color_inv
  • 撮影場所: 富山県富山市
  • 撮影時間: 2025年5月11日10時57分
  • 鏡筒: iOpton R80 口径80mm、焦点距離400mm
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: Touptek G2M678M
  • 撮影ソフト: SharpCap 4.1 (64bit)
  • 画像処理: AS!4にてスタック、ImPPGで細部出し、PixInsightでカラー化など、PhotoshopCCで仕上げ


タイムラプスは次回以降に

その後はSharpCapのリアルタイムスタックを利用したタイムラプスを撮影したのですが、雲が出てきてわずか20分で中断、その20分も雲の通過で明るさが変わったり、プロミネンスのブーストを失敗していたりで、見るも無残で動画化するにも至っていません。


まとめ

G3M678Mの全景撮影の最適化も進んできました。天気が悪かったので、最低限の全景撮影と、やりたかったテストの一部だけしか進みませんでしたが、それでも8cm鏡筒での振る舞いがよりはっきりしてきました。

実は、この日のことはすでに記事を書いたものと思い込んでいて、すっかり記事を書くのを忘れていました。この前後も色々撮影はテストをしていますが、すでに書いた記事もありますし、まだ書いていないことも随時気示威していきたいと思います。特に、エタロンの良像範囲に対する検証がやっと進んできたので、こちらは早いうちにまとめたいと思います。


このページのトップヘ