ほしぞloveログ

天体観測始めました。

カテゴリ:観測・撮影 > 星団・星雲

最近ずっと太陽の記事ばかりですが、夜の撮影も多少進めています。試したのは3月21日と23日で、SWAgTiでモンキー星雲を撮影してみました。


春霞がひどい

3月21日はひどい春霞でした。黄砂も来ていたらしいです。雲は見えないのに星も見えないという、訳のわからない日でした。明るい星がかろうじて数個見えるくらいです。しかも家の中にいても風がビュービュー吹く音が聞こえるほど強くて、決して撮影に適した日とはは言えませんでした。でも久しぶりの晴れだったので、とにかく何か撮ってみようと試してみたというわけです。

IMG_1076


機材は簡単に、RedCat51 + Uranus-C Pro + CBP+ SWAgTiです。CBPはあまり強くないフィルターですが、モンキー星雲なら電視観望で数秒露光でも普通は何か見えます。でもこの日はPCの画面で見ても限りなく淡です。結局この日は3分露光で66枚撮影しましたが、後から見たら風のせいでブレブレで、使えそうなものは約半分の32枚でした。しかも、過去が画像のモンキー星雲のRAWファイルと比べても淡いです。

気を取り直して2日後の3月23日、撮り増しすることにしました。というか、21日の画像が淡すぎたので、できれば一から撮り直したいと思っていました。でもこの日も霞がすごかったです。黄砂予報は少し緩和されたので多少マシかと思っていましたが、後で比べたら結局同じくらいの淡さでした。もしかしたら何か機器の方に問題があるかと思ったくらいです。ちなみに、23日にはε130Dでばら星雲も撮影していますが、こちらはまだ明るい機材のせいか、多少マシなようです。それでも普通から考えたらかなり淡かったです。2つの機器で淡いので、やはりこれは機材のせいではなく、単に春霞がひどいのでしょう。

天体撮影では天気だけはどうしようもないので、この23日もそのまま撮影を続行し、71枚撮って56枚を使うことにしました。21日の画像を比べてもほとんど変わりないくらい淡かったのと、すでに7時間撮影していて、使わないファイルを除いても4時間半分くらいあること、その後の天気があまり良くなかったので、もう諦めて画像処理に進むことにしました。


画像処理

撮影後の画像処理はすぐに始めたのですが、MGCでストップしてしまいました。フィルターにCBPを使っているのである意味ナローバンド撮影といっていいのでしょうか、MGCを適用すると補正画像がこんなふうになってしまいます。

integration_ABE_MGC_gradient_model

これだと肝心のモンキー星雲本体が大きく補正されて、かなり暗くなってしまいます。この時はSPCCやSPFCのフィルターをありあわせのもので適当に済ませてしまっていたので、これを直せばなんとかなるかと思い、この時点でしばらくお蔵入りになってしまっていました。

先週末までで太陽のブログ記事を書くのもすこし落ち着いたので、モンキー星雲の画像処理を再開しました。やったことはSPCC用のCBPと、Uranuns-Cのフィルターを作ることです。CBPはだいこもんさんが作ってくれたものを使い、Uranus-C用のIMX585のカラーレスポンスは以前作っていたので、グラフを読み取るとかの手間はなく、ただ単にCBPとIMX585のフィルター情報をFilterManager上で重ね合わせるだけでした。


MGCのバージョンアップ

でも結局フィルターを正しくしてもMGCの補正はほとんど変わりませんでした。MGCはちょうど3月21日ににバージョンアップしていて、MARS DR1 Database Version 1.1が使えるようになっています。


このバージョンアップはかなりの進化で、オリオン領域の露光時間を10倍くらいにしたとか、これまでのHαに加えてOIIIに対応したというアナウンスがされていてAOO画像に対応、さらにSIIもRを代用すればなんとかなるかもということです。

それならばCBPでも対応できるのかと思っていたのですが、フィルターをCBP+IMX585にしても、MGCでナローバンドを設定しても、結局はだめでした。ナローバンドの設定は、例えばBをOIIIにすると青の補正が全くされないとかです。補正するのところをナローに変えると補正されなくなるようなので、例えばRをHα、GをOIII、BをOIIIとかにすると、補正画像側の星雲本体部分が真っ暗で、暗い黒で補正するので星雲本体が明るくボケボケになってしまうような状況でした。

まだ探りきれていないのかもしれませんが、ナローバンド、特に今回のようなワンショットナローバンド画像は、もう少しこなれるのを待っていた方がいいのかと思います。

MGCでの補正はあきらめ、あとは普通通り処理しました。

(2025/4.29: 追記) MGCで星雲本体が補正される問題は、結局Gradient Scaleが小さすぎたことでした。以前勾玉星雲の時にGradient Scaleの値を探っています。ε130Dの迷光の跡を消そうとしてGradient Scaleを小さくして、そのときは256が一番結果が良かったので、そのまま鵜呑みをしてモンキー星雲にも256を使っていました。今回のような大きな星雲が真ん中にドンとあるときは、Gradient Scaleを小さくするのは過補正になる可能性があるということです。実際、Gradient Scaleを1024にすると補正画像からモンキー星雲本体の形が完全に消え、1段階小さい768だともう星雲本体が補正されてしまいます。元々のMGCの目的から考えると、大きな構造を補正する目的なので、細かすぎる補正は目的にそぐわないといっても良いのかと思います。臨機応変に対応しなければと、改めて反省しました。(追記終り)

あ、そういえば今回はセンサー面の埃が目立っていて、星雲本体の上に大きな丸が乗っかってしまっていました。
IMG_1075

なのでお気楽撮影という方針には反するのですが、フラット撮影して補正するという手間をかけてしまいました。といっても、自宅で明るい昼間に部屋の中の白い壁を写すだけなので、まあ大した手間ではありません。フラットはフラットダークを撮らないと色々面倒なことが起こる可能性が高いので、フラットダークも撮影しています。フラットもフラットダークも1枚あたり30ミリ秒秒とかなので、大した時間はかかりません。その一方、ダークファイルは撮影に時間がかかるので、今回もダーク補正は無しです。ここら辺はSWAgTiのお気楽撮影を守りたいと思っています。


結果は...

さて、結果です。

「NGC2174:モンキー星雲」
Image15_DBE_cut
  • 撮影日: 2025321203分-225620253231946分-2324
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: William Optics RedCat51(f250mm、F4.9)
  • フィルター: なし
  • 赤道儀: SWAgTi (SWAT-350V-spec Premium + AZ-GTi)
  • カメラ: Player One Uranus-C Pro(-10℃)
  • ガイド: なし
  • 撮影: NINA、Gain 120、露光時間3分 x 88枚 = 264分 = 4時間24
  • Dark: なし、Flat, Flatdark: Gain 220, 露光時間0.03秒x128枚
  • 画像処理: PixInsight、Photoshop CC

星雲本体の色は出ていますが、まわりの分子雲みたいなのは皆無です。と思って調べたのですが、モンキー星雲の周りってあまり分子運ないみたいなんですよね。その代わりに、モンキーの右下に青い丸ポチがある画像をいくつか見つけました。この青丸、出てる画像と出てないな画像に分かれるみたいです。出ている画像はRGBで、出ていない画像はナローでした。そう言った目で見てみると、ごくわずかですが青っぽい色が出ています。これは比較的弱いCBPを使ったからかと思います。特にCBPは青色領域を結構通すので、色が自然に近くなり処理がしやすく、私は結構好んで使っています。でもいつか、本当のBで撮影したいと思ったのですが、もう季節は過ぎてしまったので、来シーズンの課題とします。

恒例のアノテーションです。結構斜めになってしまっています。玄関に置いてあるのを出してそのまま撮影するので、あまり真面目にセットしていないのがこんなところからもわかってしまいます。
Image01_Annotated


過去画像との比較

比較のために、
以前撮影したモンキー星雲を再掲載します。6年前の2019年1月にFS-60QにEOS 6Dで撮影しています。約2年後の2020年12月にDeNoise AIが出た頃に、一度再処理しています。

light_BINNING_1_integration_DBE_PCC_HSVRepair_AS_all4_cut

色に関しては星雲も恒星も含めて今回の方が階調も出ているのでまだいいのですが、恒星の分解能はそれほど変わらず、星雲の分解能は以前よりも劣っていると言っていいでしょうか。これではベスト更新と言っていいのかどうか?

原因ははっきりとしていて、春霞で暗くてボケボケ、むしろよくここまで出たと言ってもいいくらいです。この撮影を通して思ったことは、やはり条件の悪い時は無理してももうどうしようもないと。その一方、機材や技術の進化で、昔の条件のいい時に撮ったものと、今の条件の悪い時に時に撮ったものが、まあ同じくらいの土俵に上がるので、実際にいろいろ進歩はしているはずです。


まとめ

北陸の晴れは貴重なので、春霞の中で無理をしてモンキー星雲を撮影しました。やっぱり晴れというだけではダメですね。私は機材とか画像処理とかに進歩があって、その結果を撮影して確認したいクチなので、ベスト更新ができないとかなり凹むこともわかりました。これからもう少し条件が良くなっていくと思うので、また別天体で今後梅雨までの期間を期待したいと思います。

でも、昼間の太陽撮影と夜の天体撮影はかなりきついです。まず、睡眠時間がとれません。撮影の日はやはり遅くまで起きてますし、太陽は朝の方が条件が良さそうなので早く起きます。昼寝とかすればいいのですが、太陽の画像処理は早めにやりたいし、その合間で夜の撮影の方の画像処理も進めます。さらにブログ記事まで書きたいので、流石にちょっと大変です。

性格的にやりたいことがあると延々と作業してしまうので、意識的に他のことをしないとダメみたいです。まだバラ星雲、M101、猫の手星雲、獅子座の銀河あたりの画像処理が残ってます。太陽も土日で大量に撮影とテストをしたので、まとめが全然追いついてません。ちょっとペースを落とした方がいいのかもしれません。


つい先日仕上げた勾玉星雲ですが、赤が強いのが気に入らなかったので再処理しました。


RGB画像の見直し

WBPPまでは同じですが、そこからはかなり方針を変えています。元々はAOOにRGBの恒星を加えたようなものでした。Hαはよく撮影できているので、この階調の豊かさを残したかったのです。問題はOIIIで、星雲本体の際中心部以外にはほとんど構造を持っていなくて、結局は背景を含むほとんどの場所が赤一色になってしまい、もうどうしようもないです。

そこで改めてRGB画像を見てみました。自宅撮影で背景光が明るくて、スカイノイズが支配的なためにノイジーなのですが、強炙り出ししてみるとそこそこ階調が残っていることがわかります。例えばHαとR画像を比較すると、

Hα画像:
MGC2048_5_10_better_BXT_HT_NXT_back_LHE_A_s

R画像:
Image22_R_s
と、Hα画像に比べてR画像はノイジーですが、同じような形の模様が見えています。

ところがOIIIとB画像を比べてみると

OIII画像:
integration_O_ABE2_SPFC_BXT_back_LHE_OIII_s

B画像:
Image22_B_s
B画像の方が当然ノイジーなのですが、より広い領域にわたり青成分が広がっているのがわかります。

ちなみにG画像は以下のようになり、これもOIII画像より構造を含んでいます。
Image22_G_s

というわけで、方針としてはRGB画像のRをHαと入れ替え、GとBは少しきつめのノイズ軽減をしてきちんと使い、OIIIは最初から使わないという方向でいきます。


比較

結果は
Image26_HT4_cut_s

となり、赤の諧調をそこそこ残しつつ、星雲本体の中心以外はほぼ赤一辺倒だったものから脱却し、多少なりともBとかGを生かすことができました。前回はMGCで頑張って調整したRGBをほぼ全く生かせてなかったのですが、これでMGCの結果も生かせたことになります。

ちなみにAOOベースのものはこれだったので、やはりかなり赤だけが相当強いのがわかります。
Image03_AOO2_s_brighter_cut

ただ、こうやってAOOベースと比べるとRGBベースはどうしてもノイジー感が出てしまいます。これは痛し痒しで、まあ彩度とノイズレスのどちらを取るかなので、仕方ないですね。


MARSデータベースのアップデート

3月21日にこの記事を書いているのですが、画像処理は昨日のうちに終えています。ちょうど今朝、新しいMARSデータベースがリリースされたとアナウンスされました。なんとOIIIデータが含まれたらしいです。これでAOOは可能になり、SAOもRをSに適用することで簡易的に可能となったとのことです。あと、オリオンのデータの露光時間が68分から11時間と約10倍になったとのことですが、もうオリオンも季節終わりなので、実際に使えるのは来シーズンでしょうか。

今回のRGB+Aでの画像処理ですが、せっかくのMARSアップデートなので、今一度OIIIを復活させて再再処理してみてもいいかもしれません。

手持ちの未処理画像のうち、最後のもの取り掛かりました。昨年9-10月に撮影した勾玉星雲です。


撮影 (記録によると)

撮影日は2024年の9月30日。もうだいぶ前のことなので、ほぼ記憶はゼロです。記録から書き起こします。

この日の前半は、ε130Dで (これも少し前にやっと画像処理を終えた) 網状星雲の撮り増しをしていました。でもこの日、カメラの凍結防止ヒーターを入れ忘れて、途中から画面中心が結露してしまいました。しかもずっと気づかなかったので、かなりの範囲で結露してしまったみたいで、カメラの温度を0度より上に上げるだけでは全然解消しません。一旦常温まで戻して、30分程度放っておいたのですが、まだ結露は完全に取れず。次に、凍結防止ヒーターを入れて、温度をとりあえず5度くらいまで下げて、さらにしばらく待つと、やっと結露が無くなりました。

その間に網状星雲の撮影可能時間も過ぎてしまい、後半になって何を取るか迷ったのですが、カメラを回転させることなくちょうど画角的に入りそうな、勾玉星雲を撮影することに決めました。勾玉星雲は2018年12月に撮影しているので、6年ぶりになります。


前回の撮影は6年前のことなので、機材は鏡筒、カメラ共に進化しました。フィルターは少し迷いましたが、時間も限られているので、まずはRGBとHαにしてみました。以前カモメ星雲でHα領域と、BとかGで色調がうまく出たので、RGBで恒星、RGB背景のRをHαの背景で置き換えるという、同じ手を使う予定でした。ところが、途中から雲が出てしまったようで、R画像とG画像はほとんど使いものになりませんでした。

この日は、ヒータ以外にももう一つ大きなミスをしていて、bin2で撮るつもりがNINA上で設定するのを忘れていてbin1で撮ってしまいました。bin1でファイルサイズが大きくなってしまったこと、ピクセルサイズが小さいということなのでS/Nで考えると露光時間が実質短くなったのと同等なこと、bin1のダーク、フラットファイルが必要になることなどがデメリットです。メリットは分解能が出ることですが、そこまで細かい模様を見たいわけではないので、あまりbin1のメリットは効かないでしょう。

その後、10月11日の夜の後半にチャンスがあったので、初日の撮影と同じく泣く泣くbin1にして、RとGの撮り増しと、あとOIIIも追加で撮影しました。

その後、秋は紫金山アトラス彗星とSWAgTiでの撮影がしばらく続いたので、ε130Dでの撮影はしばらくお蔵入りになっていて、今に至ります。彗星は新鮮度が大事なこと、SWAgTi画像の処理は楽なので先に済ませてしまい、最後に残ったのが今回の勾玉彗星というわけです。残ったというか、残しておいたというか、とにかく北陸の冬場の天気は全く期待できないので、未処理のものを手持ちで置いておきたかったのですが、CP+も終わり落ち着いたのと、どうも今週末くらいからやっと冬場の天気を脱却しそうな予報になっているからです。年が明けて体力も戻ってきたので、また撮影を再開していきたいと思います。


RGB画像へのMGCの適用

さて画像処理ですが、今回はMGCのパラメータを少し探ってみました。その結果、RGBはある程度一意のパラメータに落ち着きました。RGBでやったことの順序と結果を書いておきます。


Gradient scale:
まずは大きな影響のあるGradient scaleを変えてみます。Gradient scaleが小さくなるほど、細かい構造で補正します。
  1. Gradient scale: 1024、Structure separation: 3、Model smoothness: 1
  2. Gradient scale: 512、Structure separation: 3、Model smoothness: 1
  3. Gradient scale: 256、Structure separation: 3、Model smoothness: 1
  4. Gradient scale: 128、Structure separation: 3、Model smoothness: 1
01_RGB
01_grad
画像は1枚目がMGC補正後のRGB画像をBoosted Auto Streatchしたもの、2枚目がMGCでどれだけ補正したかの画像をBoosted Auto Streatchしたものになります。2枚とも、左上からZ字順に比較の1、2、3、4になります。

このパラメータを決定するには2つの要因があります。まずはε130Dを使っていて、迷光の影響 (網状星雲ダイオウイカ星雲スパゲティ星雲おとめ座銀河団)がある (ε130Dだけでなく、強度に炙り出していくと、おそらく反射型一般に同様の迷光があっておかしくないと考えています) こと。この画像の右下の円弧の部分がわかりやすいです。これをきちんと取り除くためには1024と512では不足で、256以下にする必要があるとわかりました。128にすると、補正画像を見ると渦上の構造が出てしまうようで、これは不自然だとして却下しました。これでGradient scaleは256で決定とします。

というか、これでε130Dで散々悩んでいた欠点がとうとう解決するに至ったというわけです。ただし、今のところRGB画像だけ有効で、しかもMARSのデータがある領域が限られているという問題もあります。でもかなり大きな一歩です。


Structure separation:
次に、Structure separationの比較をします。小さい数だと独立した大きな構造内での相対輝度差が小さくなり、大きな数だと構造の相対輝度差を強調するとのことです。直訳ですが、いまいち意味がわかりませんでした。結果を見てパッと理解できたのは、小さな数の方が細かい補正をしていることくらいでしょうか。デフォルトは3です。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 1
  2. Gradient scale: 256、Structure separation: 3、Model smoothness: 1
  3. Gradient scale: 256、Structure separation: 5、Model smoothness: 1
11_RGB
11_grad
画像は左上から1、右上が2、左下が3です。

まず、Structure separationが5の場合は、補正画像で渦上の構造が出てしまい却下です。1と3はあまり差はないですが、本来大きな構造で処理するはずの1の方がよく見ると細かいところも補正できていたりします。とりあえず1を採用しましたが、3でもよかったかもしれません。


Model smoothness:
最後、Model smoothnessを変えてみます。数を大きくするとよりスムーズなモデルを使って補正し、小さくするとエッジや不連続なジャンプを描くようです。デフォルトは1です。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 1
  2. Gradient scale: 256、Structure separation: 1、Model smoothness: 5
  3. Gradient scale: 256、Structure separation: 1、Model smoothness: 10
21_RGB
21_grad
画像は左上から1、右上が2、左下が3です。

5と10は粗くなって、再び迷光の影響で右下の円弧が出てきたので、却下としました。

結論としては、RGB画像では
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 1
を採用し、理由は必要な細かさの補正をしつつ、やり過ぎないというものです。ただし、必要な細かさは撮影画像によって違うと思いますし、補正のかけ過ぎは避けたいものです。


Hα画像へのMGCの適用

次にアンドロメダ銀河の時にはできないと思っていた、Hα画像でもMGCを試してみました。

まず、Hα単体の画像もMGCで処理できることはわかりました。でもパラメータ設定はRGBに比べてはるかに難しいです。理由ですが、かなりの推測も含みますが、おそらく基準となる画像が基本的にRGBで撮影されていることかと思います。ようするに、Hαで見えるような輝線成分の明るさやコントラストがデータの中に含まれれていないので、下手をするとのっぺりしたり、過分に処理し過ぎて、RWA画像にあった豊かな構造やコントラストが崩されてしまう可能性があります。そのため、適用するとしてもかなり緩やかに適用する必要がありそうです。

元画像はこれです。
integration_A_ABE1_SPFC_f

PIのWBPPでの処理をした直後で、標準的な処理かと思います。表示だけは強度のブーストオートストレッチをかけてますが、まだストレッチ前です。見ている限り、かなり淡いところまで出ていることがわかります。面白いのは、HαやOIIIには明光の影響があまり出ないことでしょうか。これまでもそうだったのですが、RGBではあからさまに見えるリングなどがナローではほとんど目立つことがありません。理由は今のところ不明です。

まずはSPFCを適用しますが、narrow band filter modeを選びます。Gray filterだけHαの656.30nmとし、RGBは効いてない考え、適当にそれぞれ656.30nm、500.70nm、500.70nmとしました。RGBの設定がこれでいいのかはよくわかってません。とりあえずモノクロのHα画像にこれを適用し、次にMGCとします。

まずRGBでいいと結論づけた
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 1
01_integration_A_ABE1_SPFC_MGC256_1_1
としましたが、全くダメです。細かすぎで、あからさまに変になっています。細かく補正し過ぎていると思われますが、これは参照データがRGBなのでHαの情報を含んでいないためだと思われます。


Model smoothness:
細かすぎるので、まずはよりスムーズな補正になるように、Model smoothnessを増やしてみます。
  • Gradient scale: 256、Structure separation: 1、Model smoothness: 10
02_integration_A_ABE1_SPFC_MGC256_1_10

としました。これでもまだ細か過ぎで全然ダメです。


Gradient scale:
埒が開かないので、Gradient scaleを増やします。
  1. Gradient scale: 256、Structure separation: 1、Model smoothness: 10
  2. Gradient scale: 1024、Structure separation: 1、Model smoothness: 10
  3. Gradient scale: 2048、Structure separation: 1、Model smoothness: 10
01_RGB
11_grad
1024だとかなりまともになりますがまだ落ち込みが見え、2048でやっと許容範囲くらいになりました。256でどれくらい補正しているかを改めて見てみると、Hαでうまく出ているところをことごとく打ち消してしまっています。これは元データがHαベースのものではないことを示唆していますが、まだパラメータを探り切ったわけではないので、もしかしたら上手い回避方法があるのかもしれません。


Structure separation
ここで、Structure separationを変えてみます。
  1. Gradient scale: 2048、Structure separation: 1、Model smoothness: 10
  2. Gradient scale: 2048、Structure separation: 5、Model smoothness: 10
12
画像の上2つがRGB、下2つが補正量です。左が1で右が2です。

補正量を見るとStructure separationが5の方がより細かいというか、滑らかというか、スムーズな階調で補正しています。補正された画像を見ると、Structure separationが1の方が少し落ち込みが見え、5の方がその落ち込みが少ないようなので、ここでは5を採用します。


Model smoothness:
念の為、再びModel smoothnessを変えてみます。
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
21_integration_A_ABE1_SPFC_MGC2048_5_1_bad

としましたが、星雲本体の形を補正してしまっていて、落ち込みがひどく、即却下です。

さらに、念の為
  • Gradient scale: 1024、Structure separation: 5、Model smoothness: 10
integration_A_ABE1_SPFC_MGC1024_5_10_bad

も見ますが、こちらも同様に落ち込みがひどく、却下です。


Hαの結論

Hα画像の結論としては
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
を採用したのですが、果たしてMGCを適用した方が良かったのか、元のままでも良かったのかの検証を最後にしてみます。

元画像の方がのっぺりしているのですが、MGC補正後の方は少し落ち込みがあるようにも感じます。でもその落ち込みは、星雲本体をより際出させているとも言える範囲なので、今回はMGCで補正したものを採用とします。


OIII画像へのMGCの適用

OIII画像も試しましたが、Hαと同じ
  • Gradient scale: 2048、Structure separation: 5、Model smoothness: 1
が一番まともでした。Gradient scaleを1024にすると、星雲本体の暗い部分が落ち込んでしまいます。Hαと大きく違ったのは、Model smoothnessを10にするとMGC補正前も補正後もしほぼ変化は見られず、同様にStructure separationを5にしてもほぼ変化は見られなかったことです。これはOIIIの背景には元々構造がほぼなくて、同様に参照データの青成分の背景にも構造がほぼないため、補正しても効果がそもそも出ないためだと思われます。Hαの背景には複雑な構造があり、参照データの赤成分の背景は軽い構造があり、その差が変な補正を生みやすくなっていたことが、OIIIとの違いなのかと推測しています。

でも結論としては、OIIIにはMGCを適用しないものを採用しました。理由は、MGCによって星雲本体の特に淡い部分の一部が薄くなってしまうからです。これはOIIIで見える部分が、参照データに入っていないためで、OIIIでせっかく出た星雲本体の淡い部分を余分なものと捉えてしまい、消そうとする方向に働くからだと思われます。


MGCのまとめと所感

と、ここまでRGBとHαとOIIIについてMGCを議論しましたが、2つの画像で適したパラメータが全く違っていることから分かるように、どのパラメータがいいとすぐに言える状況ではないようです。どのような方針で探っていけばいいかを、ざっくりとだけまとめておきます。
  1. Gradient scaleは違いがわかりやすいので、まずはこれを変えてみるのがいいのでしょう。
  2. Structure separationは結果を見てもそこまで大きな差はないので、デフォルトの3でもいいのかと思います。
  3. あとは、Model smoothnessを1と10で変えてみて大きな差が出ないか、問題ないならデフォルトの1で、違いがあるのなら5も試してみて、いい値を探るとかするのがいいのかと思います。

さて、MGCについて少し個人的な所感を書いておきます。

1. 元々個人的にもかなり期待していた期待していたMARSデータを使った補正で、MGCという名前でやっと実用化されたわけですが、チュートリアルと、最初に使って、「あれ、これ結構まずいのでは?」とも思いました。MGCはMRASの参照画像と自分で撮影した画像の差を見て、その差がないように撮影画像を補正します。端的に言うと、例えば超短時間撮影などで星雲情報をがほとんど得られなかった画像に、同じ領域の星雲情報が入っているMARSデータを使ったら、撮影画像に入っていなかった星雲が浮かび上がるのではないかと思ったのです。

BXTが出た当初、AIの元データにハッブルなどのものを使っているなら、それを適用してしまうのは問題ではないかと言う意見がありました。これは補正した画像がハッブルのものになってしまうのではという杞憂だったと思うのですが、AIは直接それらのデータを利用するのではなく、ある意味普遍的な補正法則を学んでいると考えると、特に問題ではないと考えることができ、最近ではBXTの効果に大きな疑問を呈する意見はあまり聞きません。でもMGCの場合はMARSデータを直接参照して、比較、補正しています。

でも実際にはこの考えは、今の段階では杞憂でしょう。MGCでの補正はあくまで背景に相当する空間波長の低い(粗い)補正のみです。今回の検証でも細かすぎる補正は、逆に見た目でも(今回は渦模様でしたが)変な補正になるようなので、極端なパラメータを使う方がおかしくなるのかと思います。でも原理的には差を見てそれがなくなるよううに補正することはできるはずで、極端な方向に進むと、まずいところは全て補正してしまって、理想とする画像にどれも近づいてしまうという危険は含んでいるのかと思います。

2. MGCがあるから、これで背景補正は完璧だと思ってしまうことは危険です。所詮元データとの比較だけなので、当然ですが補正後の結果は元データに依ります。元データのMARSデータベースが理想的かどうかは誰にもわからず、今わかっているのは35mmと135mmレンズで撮影された、全天とはいかないまでもかなり広い範囲の背景データであるということです。ただしアマチュアレベルではないので、ある程度の基準になっていると思ってもいいはずで、それを共通の財産として広く使えるようにしようとする方向性は相当な評価ができるのかと思います。

特に、ε130Dで突き当たった迷光は、どうやっても解決できなかったもので、それを解決できる手段の一つとして使えるというのは、個人的にはとても助かっています。そもそもこのε130Dの迷光問題、以前検証したページにも書いていますが、
  1. フルサイズセンサーくらいの面積で初めて出てくること
  2. さらに一眼レフカメラなどでは上下の蹴られの影響の方がはるかに大きく、それを回避したフルサイズのCMOSカメラなどを使い
  3. その上でかなり積極的な炙り出しをして初めて出てくること
です。なのでε130Dを使って撮影しても、実際に問題なるケースはそこまで多くはないでしょう。でも突き詰めていくと必ず出てくる問題なので、これを解決できる方法が提唱されたことは、とても嬉しいことです。

3. MGCは、分子雲に満たされた背景を、広い範囲と矛盾なく強力に補正してくれます。これは特にモザイク合成の接続に強力な威力を発揮するでしょう。他人の撮影画像とのモザイク合成も可能にすると思われます。

4. RGBだけでなく、Hα、OIII、SIIなどのメジャーなナローバンドでの参照データベースでの補正もいつか可能にして欲しいです。現段階ではナローバンドはまだ実用的とは全然言い難いという印象です。


その後の画像処理

ここまでMGCについてかいてきましたが、でも結局はRGB画像のMGCはほとんど活かすことはありませんでした。Hαに比べて背景の構造が出ていないので、結局Hαで上書きされてしまうからです。なので一番検証できたRGB画像なのですが、本当にMGCの検証というだけの意味合いになってしまいました。

というのも最初はRGB画像とHαとOIII画像をPhotoshopに送り、RGB画像のRとBに混ぜたりしたのですが、どうもHαの階調がうまく出ずに赤でのっぺりしてしまいました。そこで方針を変えて、PixInsightの段階でAOO画像を作り、それをベースにRGBの恒星と、一部星雲中心のRGBでしか出てこないような構造をくわえることにしました。

bin1のままだとファイルサイズが大きくなりすぎるので、全ての処理が終了して一旦JPEGで出力してか、そのJPG画像の解像度を変えてbin2相当にしています。

「IC405 勾玉星雲とIC41」
Image03_AOO2_s_brighter_cut
  • 撮影日: 2024年10月1日1時1分-3時36分、10月12日1時11分-4時42分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 6.5nm、R、G、B
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin1、Gain 100、露光時間5分、Hα: 17枚、OIII: 8枚、R: 10枚、G: 13枚、B: 12枚の計60枚で総露光時間5時間0分
  • Dark: Gain 100、露光時間5分、温度-10℃、37枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 1秒、OIII: 1秒、R: 0.05秒、G: 0.05秒、B: 0.05秒で全て128枚
  • 画像処理: PixInsight、Photoshop CC
Hαの階調をできるだけ残すことと、赤一色にならないように、GやBを活かしつつ、OIIIも混ぜています。それでもやはり全体に赤っぽくなってしまうのは、まだまだ今後の課題でしょう。でもこの構造がHαにしか含まれれていないことを考えると仕方ないです。最近はHαをRだけに適用するのではなく、GやBに入れ込んでもいいのかと思うようになってきました。

恒例のアノテート画像です。
Image03_AOO2_s_brighter_annotted


過去画像の再撮影です。
light_BINNING_1_integration1_AS_DBE_cut
違いですが、
  • 鏡筒が口径6cmから13cm。
  • カメラがEOS 6DからASI6200MM Proなので、カラーからモノクロになっていて、フルサイズなのは同じですが、解像度は倍近くになっていて、ピクセルサイズも半分近くになっています。
  • フィルターはQBPだったのが、今回は実質AOO合成です。
  • 露光時間は52分から5時間と伸びています。
今回はナローバンドフィルターを使っているので、さらにコントラストは良くなるはずなので、露光時間を含めて、QBPとの直接の比較は意味がないかもしれませんが、ハード的な進化は大きいでしょう。それに加えて、StarNetやBXTなどのソフト的な進化もあります。あ、今回NXTの新バージョンも使いましたが、これはまたそのうちに検証したいと思います。


まとめ

やっと未処理画像が無くなりました。天気が良くなるまでにまだ時間があるなら、過去画像の再処理やボツにした画像の処理、特にボツにしたモザイク撮影の処理などをやってもいいかと思います。

今回はMGCを特にいじってみましたが、なかなか一意の方針を示すことは難しそうなので、このようなやり方で攻めていけばいいという指標くらいでしょうか。

もう少し赤っぽい印象を押さえつつ、階調を確保する方法が欲しいです。多分暗い空に行ってRGBで撮影するのが正解なのかと思います。結局前回の網状星雲と同じような悩みかと思うので、自宅でこれを解消しようとすると、またものすごく苦労しそうなので、もう少し何かいい方法がないか考えてみます。

今後の撮影ですが、少しSCA260を復活させてみたいと思います。SCA260用の、少し面白そうなアイテムを手に入れたので試してみることを考えています。

網状星雲は今回で4度目の挑戦になります。2020年8月にFS60CB+EOS 6DでフィルターにCBPを使って初撮り、2021年10月には同じセットアップでフィルターをDBPにして、2023年5月にはε130D+ASI6200MM ProのテストとしてナローのAOOで撮影しています。だいたい1年半おきくらいでしょうか。なんだかんだ言って結構コンスタントに撮っていることになります。






4度目の撮影の目的

3度目はε130Dを買ってすぐでの撮影でした。まだ鏡筒のテスト段階で、HαとOIIIのみのAOOです。撮影時間も十分に取れていませんでしたが、この明るい鏡筒でどこまで出るか試していて、かなり淡いところまで出ていたので、明るさ的には十分な鏡筒だということが確認できました。この時の反省点としてはRGBを撮っていなかったので、恒星の色が赤っぽくなってしまったことでしょうか。あと、ε130Dを含む横側に接眼部が付いている鏡筒一般に出ると思われれる、迷光によるリング上の迷光の跡が残ってしまっていますが、当時はまだテスト開始時で何が原因かも分かってなかったですし、あまり問題視もしていませんでした。

また、既にこの時にも書いていて、今回の撮影のきっかけにもなっていますが、網状星雲の右側がいつも何か暗くなることに気づいています。2020年の最初のCBPの時にも既にその傾向が見えていることも確認ができました。これが分子雲か何かなのか?その正体を暴きたいとずっと思っていました。昨年の夏に、風の民さんが大きなヒントをくれました。


これを見る限り、明らかに分子雲と思われます。ナローバンドフィルターを使っていると出てこないようで、これはブロードで撮らないと出ないのではと思っていたのですが、上記画像もやはりノーフィルターでブロード撮影したとのこと。

これらのことから、今回の目的は、
  1. 恒星をRGBでまともな色にすること
  2. 鏡筒ムラをなくす
  3. 右側にあると思われる、広い範囲に広がる淡い分子雲のようなものを、ブロードで撮影して出す
などとすることにします。


迷走状態の撮影

撮影は長期にわたりました。HαとOIIIに関しては、前回の3度目の撮影の時に、光害地の自宅でもそこそこ出ることはわかったので、そこはあまり時間をかけませんでした。それよりも、右側の淡い分子雲と思われるものがこの自宅から撮影できるかどうか、全然見通しが立たなかったので、むしろRGBの方に撮影時間を割きました。

ε130DでR、G、Bフィルターでそれぞれ別撮りした画像を、RGB合成したものを見てみます。撮影は4日に渡っていて、約6時間分になります。
Image20_org

これで見る限り、分子雲と言えるようなものはほぼ何も見えていないと言っていいでしょう。この画像は4日分ですが、初日に2時間分くらいでRGB合成した時にも全く分子雲が写らず、本当に見通しが立っていませんでした。

それでも分子雲があるはずだという根拠の一つが、R画像でもG画像でもB画像でもいいのですが、スタック後に背景と恒星を分離して、恒星側を見てみると、右側3分の1くらいの領域の星が明らかに暗くなっていることがわかるのです。
star_mask
ここでの推測は、おそらくですが分子雲に遮られてその背景に見える恒星の光が遮られてしまい暗くなっているのではと考えました。過去3度の撮影でも右側の恒星が暗くなる傾向はあったので、たまたまとかではないはずです。

また、F3.3のε130Dではまだ暗いのかと思い、とにかく明るくという方針で手持ちのF1.4のシグマの105mmのレンズと画角をある程度揃えるためにUranus-C Proで撮影してみたのが下の画像です。背景の色の違いがわかるように恒星を分離しています。かろうじて茶色の分子運の濃淡がわかりますが、解像度がイマイチで使えるレベルではないようです。さらにノーフィルターで撮っていたので、やはり網状星雲自身の色さえもあまり出なくて、5時間くらい撮影しましたがお蔵入りとしました。

4144x2822_EXPOSURE_60_00s_RGB_integration_ABE_ABE

その後再びε130Dに戻り、RGB画像の撮影枚数を増やしていって、あるとき105mmレンズで分子雲を見ようとした時みたいに、恒星と背景を分けて背景を見てみたら、何か写るのでは?と気付きました。恒星分離して、ABE、DBE、HGC、GraXpert、マニュアルでの迷光補正など、ありとあらゆることを試しましたが、下の画像くらいが限界でした。
Image16_ABE

それでも網状星雲本体の右上に、少なくとも何か構造が写っているのがわかります。自宅の光害地でもRGBで何か写ることがこの時点でやっとわかりました。但し、ε130Dの迷光で出るリングくらいの淡さのにしか出ていません。これで進めてしまうか、それともRGBはお蔵入りして、AOOだけにするか、その後ずっと迷走していて時間だけが過ぎ、夏から撮影していたはずなのにあっという間に年末近くになってしまいました。


MGCでとうとう進展が!

長い時間をかけて処理をしている間に、PixInsightが2024年12月末に1.8.9から1.9.0に、


そこから程なくして1.9.2までアップデートされました。Lockhartですか...、私はどちらかというとKisaragiの方が...。懐かしいですね。

アップデートの際、WBPPの過去のインスタンスが使うことができなくなってしまいました。正確にいうと、一部使えるものもあるのですが、少なくとも1.8.9で網状星雲の処理に使っていたWBPP設定は内容を確認することもできなくて、全て最初からやり直しとなってしまいました。

WBPPはとりあえず置いておくとして、今回のアップデートで重要なのはとうとうMARSプロジェクトを利用したMGC(Multiscale Gradient Correction)が使えるようになったことです。これまでも背景処理にはシンプルなABEから、DBE、GradientCorrection、PI以外でもGraXpertなど、さまざまなフラット化処理がありました。それでも背景が分子雲で満たされているような場合は、処理によってずいぶん結果に差が出てしまい、何が正しいのか指標となるようなものがほとんどなかったというのが実情でした。MGCはMARSと呼ばれる35mmと135mmレンズで撮影された、全天とはいかないまでもかなり広い範囲の背景データを用いて、分子雲に満たされた背景を広い範囲と矛盾なく強力に補正してくれます。これは特にモザイク合成の接続などにも威力を発揮するようなので、これまで試しても結局仕上げを諦めていたモザイク合成もまた試してみようと思います。

今回の網状星雲でMGCを実際に試したところ、やはり威力はかなりのものです。触ったパラメータはGradient Scaleだけですが、デフォルトの1024から段階的に256まで変えたところで下の画像のように相当な改善が見られました。
Image20

あからさまに右側に分子雲と思われるものがはっきりと出ているのがわかります。これまでのフラット化の処理は画面内で閉じていたので、このように例えば左右で明らかに輝度に差がある背景などはうまく処理する方法がありませんでした。同様のことはこれまで例えばかもめ星雲でもありました。

本当はかもめの頭の上の画面の半分くらいが暗いはずですが、この時はなんとか誤魔化して処理しています。こういったものに使うことができるはずです。


画像処理

それでも、そこからの画像処理は難航を極めました。分子雲に加えて、Hαの赤と、OIIIの青がどこまで淡いところが出るかも一緒に表現したいのです。Hα単体、もしくはOIII単体ならそこそこ出ることがわかります。特にHαに見える、星雲本体を左から上側に取り囲むような淡いリングをなんとか表現したいと思います。
Image118_DBE1

Image91

ちなみにOIIIフィルターですが、これまではBaaderの眼視用のものを使っていてハロが出ていたりしましたが、やっと今回からBaaderの「撮影用」の6.5nm透過のものを使うことになりました。福島の星まつりで買ったものです。OIII画像を見る限り、ハロが出なくなったことと、コントラストがより出るようになったのかと思います。

HαとOIII2つを重ねるのがとても難しいです。明るいところは白くなりがち、淡いところは両色ともなかなかうまく表現できずと、単色の迫力からはどうしても劣ってしまいます。
Image108

これらと、さらに分子雲のRGB画像、RGB画像から作った恒星画像を重ねていきます。


結果

出来上がった画像です。

「網状星雲」
Image20_9_cut
  • 撮影日: 2024年7月5日0時9分-2時57分、9月10日22時35分-9月11日1時24分、9月11日23時8分-9月12日2時37分、9月14日1時2分-3時9分、10月9日20時14分-21時10分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 6.5nm、R、G、B
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 28枚、OIII: 20枚、R: 35枚、G: 29枚、B: 10枚の計121枚で総露光時間10時間5分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

MGCを使ったとしても、その後の画像処理が入っているので、分子雲がどこまで正しいのかよくわかっていません。それでも少なくとも何か存在することはわかったので、今回の目標は達成と言っていいかと思います。分子雲は主にRとGによく写っていて、B画像やHαとOIIIなどのナローバンドではほとんど写らないこともわかりました。

ただし、RGB画像のみだと網状星雲本体が出てこないので、同時にHαとOIIIで星雲本体もやはりあったほうが見栄えがいいでしょう。赤いリングもなんとか表現できたのではないかと思います。

それでも特にHαはやはり撮影時間が絶対的に足りていないです。左のリングを無理して出しているので、同等の明るさの中心部の淡いところの諧調が出ていません。OIIIももっと露光時間を伸ばしても良かったかもしれませんが、2024年は秋から冬にかけて富山の天気が全然ダメで、網状星雲の季節も過ぎてしまい、諦めざるを得ませんでした。実際、1年半前の前回の撮影の時の方がHαもOIIIも撮影時間が長く、淡い階調もきちんと表現できていたので、この画像を足そうかとも思いましたが、画角が微妙に違っていたので諦めました。来年以降に持ち越しでしょうか。


まとめ

いろいろ時間がかかりましたが、それでもとうとう網状星雲が分子雲込みで撮影できました!ε130Dでやりたかったことがまた一つ達成できたことになります。

OIIIフィルターもやっとまともなものになったので、今後も淡いOIIIに挑戦できるかと思います。

その一方、光害地でギリギリを攻めるのに疲れてきているのもあるので、しばらくはSWAgTiで明るくてよく出る対象にするかもしれません。でもSCA260でも試してみたいことがあるんですよね...。春になって天気が良くなったら考えることにします。


日記

しばらくブログ更新ができていなかったので、ちょっと事情を。

年末年始の休暇が終わった段階で、今回の網状星雲の画像処理はある程度目処をつけていました。でももう少しだけ直したくて少し放っておいたら、また体調を崩してしまいました。平日はかろうじて最低限の仕事だけして基本早めに寝て、休日はほとんど寝てるというのがしばらく続きました。1月も終わり近くになり、やっと体調も戻りつつあり、今回の画像処理とブログ書きとなりました。

やはり体調管理はとても大切で、調子が悪いとほとんど何もできなくなることを再認識しました。あまり無理をせずに、できる範囲で楽しみたいと思います。

2024年12月2日、前回のM31 アンドロメダ銀河に続いて、同じくSWAgTiを使ってM45 プレアデス星団 (すばる) を自宅で撮影しました。画像処理もサクサク進んだので、早速記事にしておきます。

これまでM45に関しては二度撮影しています。前回は4年前の2020年で、TSA120での撮影になります。


masterLight_integration_DBE1_PCC_HSV_AS_PIP_all6_cut

この時は2週に続けて撮影しましたが、1週目はFC-76で、多分結露か何かでおかしな画像になり、2週目にリベンジしたのですが、今思い出すと画像処理に疲れて途中で投げ出したような気がします。これは今の技術ならもっとよく出るのかと思います。

一度目は更に4年前の2016年11月に、牛岳での撮影です。前回の記事でM31も4年周期で撮影と書きましたが、M45も全く同じく4年周期ということになります。特に狙っていたわけではないのですが、それもそのはずで、2016年11月はM31もM45も同じ日に2対象で撮影しています。この時初めてオートガイド撮影が成功して喜んでいた覚えがありますが、回り回って今回はSWAgTiでガイド無し撮影になったので、進化なんだか退化なんだか...。まあ、研ぎ澄まされた退化とでもしておきましょうか。

と思って過去記事を調べていたら実は更に前に一度、これも2016年11月ですが、上の撮影より一週前にM31とM45を同じ日に2対象で撮影しています。


M45up

まだノータッチガイド(死語)で露光時間も伸ばせなかったことですが、画像処理に初めて有料ソフトしてステライメージを使ったので、私の中では本格DSO撮影の最も初期にあたります。

M31とM45は今後の撮影技術の進化の指標ともなるいい選択なのかと思います。前回までは私としては珍しく牛岳、数河高原と、自宅でない暗い環境での撮影です。今回は自宅なのではるかに光害の多いはずです。しかも前回のM31の撮影では使っていたUV/IRカットフィルターも外して、完全ノーフィルターです。すばるの青い淡いところが、この厳しい環境でどこまで出るのか?挑戦のしがいがあります。

といっても、以前半分遊びで企画したSCA260の拡大撮影で、自宅でM45を撮影しています。F5でそこそこ青も出ることは確証を得ているので、同じF5鏡筒のRedCat51でも同じくらいは出るのではないかと期待しています。



Image06_PCC3_cut


SWAgTiでの撮影

長い振り返りになってしまいました。とにかくポイントは、自宅で青い星雲がどこまで出るかの挑戦です。

北陸の天気はもう冬型になっていて、晴れの日はとても貴重です。月曜でしたが、天気予報ではほぼ一晩中晴れ。このチャンスを逃す手はないのですが、問題はかなりの強風だったことです。撮影開始時はまだましでしたが、夜中寝ている頃に風の音で何度が起きるくらいだったので、相当な強風だったと思います。撮影後の画像を見ても、基本的に星像は小さくなく、一方向にぶれている画像もたくさんあり、あからさまな雲を除くと、143枚中16枚撮影をブレで落としています。その16枚も結構甘く見積ったので、もう少し落とすべきだったかもしれませんが、今回星像はあきらめてBXTの力に期待することにしました。

機材は
  • SWAT350 V-Spec Premium + AZ-ZTiのSWAgTi。
  • 三脚はGitzo GT3840Cをシステマティック化したもの。
  • 鏡筒はRedCat51。
  • カメラはM45がちょうど入る画角ということで前回交換したASI204MC Proから今回はUranus-C Proにまた戻しています。ゲインはHCGがオンになる220としました。オフセットは定番の40です。露光時間は3分としました。
  • 極軸調整用にUnitecの極軸微動ユニット2を三脚とSWAgTiの間に挟んでいます。SharpCapの極軸調整機能とこの極軸微動ユニット2で簡単に極軸を取ることができます。
  • ハロなどを避けるために、今回はUV/IRカットも含めて、フィルター無しです。

撮影ソフトと手順は、
  1. 極軸調整とピント合わせ、カメラ回転角調整にSharpCapを使います。極軸調整はガイド鏡がないので、主鏡とメインカメラをそのまま使ってしまいますが、特に問題はありません。
  2. AZ-GTiの操作としてPCにインストールしたSynScan ProをWi-FiでAZ-GTi接続。初期アラインメントと、SynScan ProのSynMatrix AutoAlign機能を使いプレートソルブまでしてしまいます。プレードソルブが終われば、SynScan Proで初期導入まで済ませます。
  3. ここでSharpCapからNINAに切り替えて、カメラを接続し冷却開始。オートガイド無しでディザーのみ使うために、ガイドソフトとして「Direct Guider」を選択します。
  4. NINAのシーケンサーで露光時間や枚数などを設定後、撮影開始とともに、自動追尾をSynScan Pro (恒星追尾をオフにする) からSWAT (追尾モードを「DEC」から「STAR」に切り替える) に移し替えます。
  5. 最終的な画角をSynScan ProやNINAの望遠鏡の矢印ボタンなどで微調整します。
  6. 露光を開始します。

12月で新月期なので夜が長いです。天文薄明終了から開始までの撮影は11時間7分も取れるとのことでしたが、カメラ交換などで戸惑って撮影開始は19時56分だったので、2時間くらいロスしています。終わりも途中から雲が出てきて、午前3時38分までの画像が使えました。雲を除くと、合計で143枚撮影し、127枚使ったので、採択率は89.9%でした。除いた16枚は全て強風でのブレです。


SWAgTiでの子午線反転

今回の撮影は長時間に渡ったので、SWAgTiにとってはある特殊なことが必要でした。そうです、子午線反転です。なぜこれが特殊になるかというと、SWAgTiでは恒星追尾を精度の良いSWATに任せるために、AZ-GTiでの追尾を止めて撮影します。そのため、AZ-GTは自分ではもう追尾をしていないと思い込んでいるわけです。

この状態でもNINAとは「望遠鏡」として接続されていて、NINAからAZ-GTiに信号を送り赤経、赤緯とも動かすことはできます。でも天体が子午線近くになり、そのまま子午線反転してしまうと、AZ-GTiは撮影開始位置に留まっていると勘違いしているので、全然明後日の方向に向かって導入してしまうというわけです。

実際に試してみました。
  1. M45が子午線近くに達したので、撮影のための露光をストップします。その後、試しにSynScan ProでM45を導入してみました。
  2. AZ-GTiで自動導入すると、対象まであとどれくらいの角度があるかが表示されます。子午線反転にあたるので、自動導入直後は本来180度くらいずれていると表示されるはずです。でも表示されたずれは50度くらい。これは20時頃に撮影を開始した位置からAZ-GTiが動いていないと思っているため、正しい値と思われます。(実際にはさらに180度ズレるはずですが、どうも180度以上になると180度を引いた値が表示されていると思われますが、ちょっと不明です。)
  3. その結果、鏡筒は明後日の方向を向きます。同時に、SynScan Proの恒星追尾が自動的にオンになってしまいますが、これは仕様のようです。その結果、SWATの自動追尾と二重で追尾することになるので、星がずれていきます。ここで一旦SWATの自動追尾モードを「DEC」に戻して切ります。
  4. ここでおもむろに、再度SynScan ProのSynMatrix AutoAlign機能を使い、アラインメントし直します。これがかなり強力みたいで、数10度とかのオーダーで全然ずれていても、強制的にきちんとしたアラインメントに戻してくれます。しかも、今回2ポイントでアラインメントして、そのうち2ポイント目が建物の方を指してしまい星が何も写らなかったのですが、1枚目のプレートソルブだけで「完了した」と表示されました。
  5. その後、再びSynScan ProでM45を自動導入すると、かなり真ん中に近いところに導入されました。
  6. ふたたび、AZ-GTiの恒星追尾をオフにして、SWATの追尾モードを「STAR」に切り替えオンにします。
  7. 最終的な画角をSynScan ProやNINAの望遠鏡の矢印ボタンなどで微調整します。
  8. 露光を再開します。

これは大きな収穫でした。AZ-GTiから自動追尾をSWATに受け渡しているのは、SWAgTiで天体を再導入する時に原理的な弱点になります。今回のような子午線反転や、一晩に複数の天体を撮影する場合は、どうしても撮影中断時にアラインメント情報を失ってしまっているのです。これまでは一旦ホームポジションに戻して一から初期アラインメントをするなどして、対処療法的に回避していましたが、このSynMatrix AutoAlign機能を使うことで、いつでもSWAgTiとしてののアラインメント情報を再取得できることになります。


画像処理と結果

風は仕方ないのですが、子午線反転を含めて撮影は極めて安定でした。ShapCapを使い極軸をかなり正確に合わせてあるので、8時間程度の撮影でもドリフト(画像の一方向のずれ)も全く許容範囲内です。NINAでのガイド無しディザーも問題なく適用されています。

画像処理は、これもお気軽SWAgTi定番の、ダーク補正無し、フラット補正無し、バイアス補正無しです。今回、センサー面にホコリが付いてしまっていて、少しリング状の模様が出ましたが、そこまで深刻ではなかったので、淡いところを出しすぎない目立たない範囲での画像処理に抑えました。センサーを綺麗に保つことは、画像処理を楽する上でかなり重要だと再認識しました。センサー面を綺麗に保てないなら、お気軽画像処理は諦めてフラット補正は必須になります。

さて、お楽しみの結果ですが、どうでしょうか?

「M45: プレアデス星団 (和名: すばる)」
3856x2180_180.00s_RGB_GC_SPCC_BXT_AS_MS_NXT5_cut
  • 撮影日: 2024年12月2日19時56分-3時38分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: William Optics RedCat51(f250mm、F4.9)
  • フィルター: なし
  • 赤道儀: SWAgTi (SWAT-350V-spec Premium + AZ-GTi)
  • カメラ: Player One Uranus-C Pro(-10℃)
  • ガイド:  なし
  • 撮影: NINA、Gain 120、露光時間3分 x 127枚 = 381分 = 6時間21分
  • Dark, Flat: なし
  • 画像処理: PixInsight、Photoshop CC

自宅で光害防止フィルター無しでここまで青が出たことに、まずは驚きです。これまで牛岳、数河高原と暗いところに行って撮影したものより、はるかに淡いところまで出ています。刷毛ではいたような模様もよく見えていて、背景の淡いところもそこそこ出ています。

アノテーションです。
_3856x2180_180_00s_RGB_GC_SPCC_BXT_AS_MS_NXT5_cut_Annotated1


自宅撮影は不利ではないのか?

今回の方が光害は酷いはずなのに、なぜここまで出たのか?少し冷静になって考えてみました。
  • 鏡筒は4年前のTSA120がF7.5で、今回のRedCat51がF4.9なので、今回の方が有利です。でも明るさで高々(7.5/4.9)^2 = 2.3倍です。
  • S/Nは口径もセンサーサイズも関係無いのは前回のアンドロメダの時にも書きましたが、それよりも1ピクセルのサイズが重要で、6Dが1辺6.5μmでUranus-C Proが2.9μmなので明るさ比較で(6.5/2.9)^2 = 5.0倍前回の方が有利。
  • 露光時間は前回4時間15分で、今回6時間21分で、(381/255) = 1.5倍今回の方が有利。
機材としては明るさ比較で5/2.3/1.5 = 1.4倍なので、S/Nだと更にルートで高々1.2倍前回の方が有利なだけで、あまり差がありません。

空の明るさを考えると、
  • 数河高原は天の川が普通に見えるので、6等星は見えるとしましょう。
  • 一方自宅は、北極星はたまに見えない時もありますが、大抵見えます。こと座の形やはくちょう座の形はたまに見えるときがあり、年に1-2回ものすごく透明度のいい日に天の川がうっすら見えるくらいです。普通の日は3等星が見えるくらいと思っていいでしょう。
ざっくり3等分の差があるとすると、1等ぶんで2.5倍明るさが違うので、2.5^3で16倍くらい前回の方が有利になるはずです。スカイノイズの差と考えるとS/Nはやはりルートで効いてきて、√16 = 4倍くらい差が出ます。これは無視できない有意な差で、前回の方が有利で、今回の方が不利ということです。

こう考えると圧倒的に前回の方が有利なのです。この差を覆るものが何かと考えると、画像処理と考えることもできますが、今は私としてはカメラの違いだと考えています。前回まで使っていたEOS 6Dは低ノイズの一眼レフカメラで長らく天体写真に適したカメラとして使われていますが、発売開始が2012年でもう12年も前のことになります。ここを見ると分かりますが、撮影時のISO1600だとダイナミックレンジは11bitを切っています。


一方、最新のCMOSカメラに近いUranus-C Proはここにある通り、HCGでダイナミックレンジは12bit近くになります。


ホットピクセルやアンプグローなど、新しいセンサーではグラフに出てこない有利な点がかなりあるのかと推測できます。というのも、最新カメラに近いASI2400MC Proで青い馬星雲を撮影したときも、ノイズ処理が楽で、データだけでは説明しきれないような有利さがあったと感じました。

分かりやすい例はEOS 6Dで自宅で撮影した青い馬星雲です。光害地の自宅で6Dだと、どうしようもない限界を感じましたが、


牛岳でASI2400MC Proで撮影した青い馬星雲はもう雲泥の差で、もちろん牛岳の空が暗いのはありますが、カメラの根本的な性能差を実感して、この時にはじめてフルサイズ6DをフルサイズCMOSカメラに代えてもいいかと思いました、


結局フルサイズのカラーCMOSカメラはまだ手に入れていないのですが、サイズこそ違えど最新のCMOSカメラはさすがに10年以上前の一眼レフカメラとは一線を画す性能と思って良さそうです。

というか、これくらいしか今回自宅でM45がここまで出る理由が思いつきません。その一方、もちろんセンサーサイズが小さいので解像度は出ないのですが、すばるの大きな模様の変化を見るにはこれでも十分な気がします。drizzleなどを使う手もあるかと思いますが、お気軽撮影とお気軽画像処理も捨て難いので、ここまで出るならもう十分なのかと思っています。


まとめ

自宅で綺麗な青を出すのは、ある意味一つの目標でした。

SCA260のM45のRGBでの拡大撮影である程度出ていたのですが、今回こんなシンプルな機材で、ここまで青がきれいに出るとはあまり予想していませんでした。出にくい青と言っても、M45くらい明るくて、撮影時間さえ十分に確保できてS/Nが取れるなら、無理してあまり暗いところに行かなくてもいいのかもしれません。星を始めた時の「自宅でそこそこ写せたらいいなあ」というのが、やっと実現できてきた気がします。

「そこそこ」の中には、あまり無理をしないでという意味も入っていて、今回のSWAgTiはガイドやダーク、フラット補正を省いたりして簡略化できているので、その意味でも「そこそこ」がやっと本当に実現できてきたのかなと思っています。


前回までの紫金山アトラス彗星もやっと落ち着きましたが、その後は天気がずっと悪かったり、忙しかったり、イマイチ盛り上がらなかったりで、ブログ記事はしばらく休んでいて、少しのんびり画像処理を進めていました。今回は10月にSWAgTiで撮影したM31アンドロメダ銀河についてです。


自宅に着いてから、さらに撮影

10月12日、昨日の馬頭星雲の撮影に引き続き、まだ天気が良さそうだったのでそのままのセットアップで撮影続行です。昼間は置きっぱなましだったので、極軸を取り直さなくていいので楽でした。

この日はアンドロメダ銀河狙いです。実はこの日は2セット出していて、RedCat51+ASI294MC Pro+SWAgTiでカラー、ε130D+ASI6200MM Pro+CGEM IIでHαで、後で合成する予定ですが、まずは今回は簡単なカラー画像のみの処理までです。

アンドロメダ銀河は結構大きいので、SWAgTi撮影の方の画角を少し広げたくて、カメラをこれまでの1/1.2インチのUranus-C Proからフォーサーズの上記ASI294MC Proに変更しました。あと、銀河なので、これまで入っていた2インチのDBPを外して、同じく2インチのUV/IRカットに変更しました。

SWAgTiを含む架台側のセットアップはそのままでよかったのですが、鏡筒の方を色々いじっていたら結構時間が経っていて、月が沈む0時過ぎをとっくに超えてしまい、撮影開始は午前1時過ぎになってしまいました。

IMG_0177
朝、片付け前の様子。

撮影ソフトはNINAで、ガイドなしでディザーありのSWAgTi特有の「お気楽、でも縞ノイズは出ないよ」撮影になります。撮影時のミスを避けるなどを考えると、SharpCapよりもNINAの方が圧倒的に気を遣わなくて楽で、SWAgTiではこの「NINA、ガイドなし、ディザーあり」がほぼデフォルトになってきました。

RedCat51にASI294MC Proを付けての初撮影だったので露光時間を少し迷いましたが、とりあえず1枚あたり3分としました。3分露光だと、250mmくらいの焦点距離でも、普通の赤道儀ではピリオディックモーションが避けきれなくて採択率が下がってしまうおそれがあります。ここはSWAT350 V-SPEC Premiumの高精度追尾のおかげで普通に100%の採択率を目指すことができます。

ゲインはHCGがオンになる120一択です。HCGのおかげで13stopsくらいのダイナミックレンジを取ることができます。stopsはbitと同じで、2の13乗 = 8192階調で輝度を表すことができるということです。

ゲイン120一択と言いましたが、選択できるゲインは露光時間と密接な関係があります。もし高精度追尾が無ければ、露光時間を十分に伸ばすことができないので、対象天体の淡いところを出そうとすると、その分ゲインを上げなくてはいけません。ゲインを上げることで淡いところの輝度を読み出しノイズより大きくして撮影する必要があるからです。ゲインというのは、「露光時間を延ばせない環境下において、淡い部分を読み出しノイズ以上に持ち上げてダイナミックレンジ内に入れる」という、非常に便利な機能であると考えることもできます。その一方、ゲインを高くすると、当然「ダイナミックレンジを犠牲にしてしまう」ので、恒星などが飽和する可能性が高くなってしまいます。

このように考えると、SWAT350 V-SPEC Premiumの高精度追尾は単にガイド無しで1枚あたりの露光時間が延ばせるだけでなく、「最適なゲインを選ぶ選択肢を持てる」ということが利点の一つになるのかと思います。ただし単に1枚あたりの露光時間だけ伸ばすことができても、トータルで長時間露光を目指すと縞ノイズがどうしてもついて回るので、SWAgTi特有のガイド無しディザーで縞ノイズを避けるというわけです。改めて考えてみても、SWAgTiはかなり理にかなっているのかと思います。

さて、こんなSWAgTiですが、撮影が一旦始まってえば、あとは基本放置で楽なものです。今回の撮影は0時46分スタートで、午前5時1分終了でした。といっても、自宅なので寝ていただけで、後でチェックしたら天文薄明開始の午前4時半頃からあきらかに明るくなっているのでカット。それ以外で省いたものは合計7枚で、7枚のうち4枚は人工衛星がかなり明るく写っていたので、Integration時のsigma clippingなどで綺麗に取り除けない可能性を考えて除きました。残り3枚は連続していて、どれも赤径方向の星像のジャンプで、特にそのうちの1枚はかなり大きなジャンプでした。原因は不明ですが、機材トラブル、風、地震、周りに車や人がいたなどの可能性が考えられます。結局使えたのは全80枚のうち64枚で合計3時間12分です。あえて除いた天文薄明と人工衛星を無視すると67枚のうち64枚なので、96%程度の採択率が今回のSWAgTiの実力と言っていいでしょうか。


画像処理

下は、3時間12分の画像をPixInsightでスタックまでしてオートストレッチだけの画像です。色などは何もいじっていません。例の如く、お気軽撮影を目指しているので、ダーク補正もフラット補正もバイアス補正も無しです。

masterLight_BIN-1_4144x2822_EXPOSURE-180.00s_FILTER-NoFilter_RGB

まず心配だったのは、ダーク補正をしないことによるIMX294センサー特有のアンプグローです。実際に右上に少しだけ明るい部分が見えていますが、高々この程度です。これを消すためにダークフレームを撮影して、ダーク補正するという手間をかけて、かつダークカレント起因のダークノイズを増やしてしまうことを考えると、ASI294MC Proでもダーク補正をあえてする必要もないかと思います。

1/1.2インチのUranus-C ProよりもフォーサーズのASI294MC Proの方がセンサー面積が大きくなったので、周辺減光も少し心配でした。フラットフレームを撮影していないので、かなり大雑把な見積もりですが、ABEの2次と4次で補正した時のbackground画像の輝度から推測するに、最大でも4%程でした。この程度なら、ホコリなどの局所的な欠損さえ無ければ、光学的なフラット補正はなくても十分なのかと思います。

繰り返しになりますが、上の画像はスタック直後にオートストレッチだけしたもので、彩度アップなどの色調も何もいじっていないです。それでも星の色も分かりますし、M31本体の色もある程度出ています。簡単セットアップで、3時間放っておくだけで、スタック以外特に画像処理もせずにこれだけの画像が撮れるなら、SWAgTiでのこのセットアップはかなりすごいのかと思います。

次が、PixInsightでABEの4次、SPCC、BXT、MaskedStrerch、NXTをかけたものです。次のPhotoshopでの処理のために、輝度は少し抑えています。

4144x2822_180_00s_RGB_integration_ABE4_SPCC_BXT_AS_MS_NXT

こちらも色調整はSPCCのみで、あえて彩度はいじっていませんが、更に色がはっきりしてきています。


仕上げの色使い

もう上の画像でも十分かと思いますが、最後にPhotoshopに持っていって、少しだけ仕上げします。

仕上げはかなり迷いました。アンドロメダ銀河の色って、人によって本当に千差万別ですね。AstrobinのM31で検索した結果を見ると何が標準か全くわからなくなります。派手なものは真ん中が金色に輝いていて、端の方はかなり青に寄っています。地味なのは全体に緑色っぽいものでしょうか。上の画像だとかなり地味な色居合いになります。緑の代わりに黒と白でモノクロっぽくして、あえて赤ポチを目出させているようなカッコイイものもあります。

前回のM31の撮影は4年前の2020年でFC-76とEOS 6Dを使っています。


4年前の時も4年ぶりの撮影とか言っているので、4年枚にメジャー天体を撮影し直すようなペースになっているということでしょうか。6Dのカラー撮影で赤ポチを少しでも表現しようとするような無理をしている感じで、かなり派手目な色使いになっています。今回はHαは別撮りのものがあるので、ここでは比較的シンプルな銀河っぽい感じにしてみました。

「M31: アンドロメダ銀河」
4144x2822_180_00s_RGB_integration_ABE4_SPCC_BXT5_cut
  • 撮影日: 2024年10月13日0時46分-4時33分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: William Optics RedCat51(f250mm、F4.9)
  • フィルター: UV/IR cut
  • 赤道儀: SWAgTi (SWAT-350V-spec Premium + AZ-GTi)
  • カメラ: ZWO ASI294MC Pro (-10℃)
  • ガイド:  なし
  • 撮影: NINA、Gain 120、露光時間3分 x 64枚 = 192分 = 3時間12分
  • Dark, Flat: なし
  • 画像処理: PixInsight、Photoshop CC

銀河のシンプルさに比べて、恒星の色をある程度出しました。上にある明るい青い恒星と、散りばめられたオレンジの恒星のおかげで、寂しさはあまり感じられないと思います。

銀河中心が飽和しないように、また腕の構造がある程度はっきり出るようにしてみました。色は私の中ではかなりおとなしめですが、これはのちの赤ポチで派手になることも見越して少し抑えています。


恒例のアノテーションです。周りにすごい数の銀河があることがわかります。
_4144x2822_180_00s_RGB_integration_ABE4_SPCC_BXT5_cut_Annotated

PGCを無くしたこっちの方がシンプルでいいでしょうか?でもちょっと寂しぎですかね?
_4144x2822_180_00s_RGB_integration_ABE4_SPCC_BXT5_cut_Annotated1


過去画像との比較

ちなみに4年前の画像を再掲載しておきます。
masterLight_DBE1_PCC_AS_all4

今回のものと比較してみると、やはり見た目が全然派手です。あと、私はもともと恒星の処理が苦手で、この頃はまだStarNetで恒星分離ができ始めた頃で試行錯誤をしている最中で、今見るとかなり酷いです。さらに今回はBXTも使えるので、恒星に関しては進歩があったのかと思います。

機材でいうと、口径は76mmから51mmに減っていますが、F値では8から4.9になっているので、単位面積あたりの光子数が多くなっていて、今回の方が有利になります。画角はほぼ同じ(微妙に今回の方が広角)なので、その分センサー全体の大きさは違いますが、S/Nは単位面積あたりの光子数で決まるので、S/N比較ではあまり関係ないです。S/Nはピクセルサイズと密接に関係があり、6Dの6.5μmとASI294MCの4.6μmなので、信号が1ピクセルの面積に比例し、1ピクセルあたりの読み出しノイズは同じと仮定して、その他ノイズを無視してS/Nを考えると、計算上では(8/4.9) / (6.5/4.6) = 1.15とほとんど差は無くなってしまいます。

仮にトータル露光時間が同じとすると、信号Sが1.15^2倍前回の方が今回大きく、ノイズNが1.15倍だけ今回増えるので、S/Nは前回よりも今回の方が1.15倍いいことになるということで、機材としては今回の方が有利ということです。その代わりに分解能が前回の5472×3648から、今回は4144×2822と悪くなっています。S/Nをとるか、分解能を取るかですが、それぞれ別個のパラメータで、このように数値的に比較ができるものなので、画像と合わせてどちらをとるか考えればいいのかと思います。

実際には前回の露光時間が4時間35分で、今回が3時間12分なので、Sqrt(275/192)=1.20となり前回の方が有利なので、先の1.15倍と相殺してS/Nはほぼ同じと思っていいでしょう。分解能は6Dの方がいいので、機材と撮影条件では前回の方が良かったということになります。

それでも見かけでは今回の方がかなり良く見えるのかと思いますが、この違いは鏡筒自身の性能の差、さらにはカメラ自身の性能の差、あとは主に画像処理によるものかと思います。画像処理はBXTなどの分解能をソフト的に上げる効果もあるので、そこら辺も効いているのかと思います。


まとめ

4年ぶりのアンドロメダ銀河の撮影でしたが、機材はSWAgTiのおかげもあり鏡筒と合わせて軽くシンプルになり、撮影もガイドなしでかなり楽でした。ある意味、ここが一番大きな進化だと思います。実際の仕上がりの差はすでに出ていますが、L画像を別途撮影してさらに分解能を増すという手もあるかと思います。

SWAgTiは私の環境ではサブの標準機材としての位置を完全に確立しました。手軽だけれど信頼度は十分です。最近はずっと天気が悪いのですが、冬の星座も出てきているので、天気がいい機会があればパッと出して貪欲に狙っていきたいと思います。



日記: 金沢星の会70周年記念展示会@21世紀美術館

昨日の土曜日、午前中に金沢で用事があったので、午後から21世紀美術館に行って、金沢星の会の70周年記念の展示会に顔を出してきました。

IMG_0521

たまたま私の顔に気づいたNさんが声をかけてきてくださって、いろいろ案内してもらえました。今回70枚展示したとのことですが、70周年で70枚で、狙っていたわけではないですが圧巻でした。というのも、21世紀美術館は北陸では随一の規模を誇る美術館で、集客量もすごくて、今回訪れている間もひっきりなしにお客さんが訪れています。来ている方は星好きというよりは、ごく一般の方がほとんどのような印象でした。このような大きな場所での展示会はかなりインパクトがあり、参考にできるところが数多くありました。準備などもかなり大変だったと想像しますが、それだけの価値があるものだと思います。

展示は星景、季節ごとのDSO、太陽、月、惑星、彗星など多岐に渡り、奥の部屋ではタイムラプス映像を常時流していました。その部屋にも壁に写真が飾られていて、テーマは「能登の天体写真」ということです。今年初めの能登半島地震からの復興を意識しているのかと思います。これも全国から観光に訪れる金沢で、代表的な観光スポットにもなっている21世紀美術館で展示会を開くことが、意義に繋がっているのだと思いました。

天体写真は会員の方達の個性がとても出ていて、撮影者の名前を見ていると、この人はこんな傾向だとか、この人はこんな色使いが好きなんだなとか、いろいろ楽しむことができました。今回の記事と同じアンドロメダ銀河も大きなパネルに引き伸ばして飾ってあり、とても綺麗でした。ちょうど会場にアンドロメダ銀河を撮影した方が来ていたので、話をすることができましたが、ε160と6Dで撮影したとのことで、自分の環境と比較できるので面白かったです。

自分が所属する富山県天文学会も長い歴史があるので、今後何十周年とかなる時には、今回の展示会を参考にできればと思いました。

このページのトップヘ