連休ですが、富山は相変わらず天気はよくありません。こんな時はたまっていた課題を片付けます。
事の発端は、小海の星と自然のフェスタでスタベのアルバイトのK君がASI294のセンサー面を実体顕微鏡で見てみたいと言った事です。ASI294は電視観望用に持っていますが、うちにはたまたま実体顕微鏡もあります。下の子Sukeの自由研究のために2017年の原村星まつりで買ったものです。これならなんとかなりそうです。
ところがシベットさんからコメントで実体顕微鏡では倍率が低すぎるのではという指摘がありました。なぜかうちには倍率の高い生物顕微鏡もあります。これも同じく下のSukeの自由研究のために2016年の原村星まつりで購入しています。というわけで、必要なものはそろっているので実際に見ることにしました。果たして何が見えるのか?
手持ちの実体顕微鏡は対物レンズが4倍、接眼レンズが10倍で、40倍のものです。ここにASI294を置いてやればいいのですが、カメラ本体が大きすぎでレンズに近づき過ぎてしまいピントが出ません。仕方ないので、今回はもっと奥行きの短いASI224MCで試すことにします。K君、ごめんなさい。
ASI224MCのセンサーサイズは4.8×3.6mm、解像度は1304×976で一素子のサイズは3.75×3.75ミクロンとのことです。
センサーは思ったより小さく、周りに金色の線がたくさんつながっています。これを40倍の実体顕微鏡で見てみました。とりあえずiPhoneのカメラで撮ってみます。
よく見えていますが、センサー面はのっぺりしているだけでやはり全然倍率が足りないことがわかります。
でも実体顕微鏡は簡単には倍率を変えることができません。いろいろ考えて、手持ちのアイピースを利用することにしてみました。接眼レンズを片方外します。31.7mmのアメリカンサイズは径が大き過ぎたので、昔の1インチタイプのものを使いました。手持ちは20mmと12.5mmと9mmの3つ。
最初に20mmのもので見てみます。1インチサイズだと今度は径が小さすぎるので、とりあえず固定せずに穴に入れるだけです。
もともとついていた10倍のレンズより少しだけ大きく見えます。
10倍レンズは焦点距離25mmとか30mmくらいなのかと思います。この時点で50倍とか60倍相当かと思います。当然これだけだとまだ倍率は不十分なので、さらに倍率を上げるために12.5mmレンズを取り付けます。
これも穴に入れただけで固定していませんが、まあとりあえずそこそこ安定して見えるものです。像はというと、
接続線は大きく見えてきましたが、センサー面はほとんど変化なしです。最後9mmを試します。
ここでiPadのLEDで光を当てたこともあり、基板のパターンが見えてきました。しかもピントを調整してセンサーの端をよく見ると目盛りのようなものが見えます。
小さな目盛り10個につき大きな目盛りがあり、大きな目盛りを数えると長辺で14個、短辺で10個程度あります。センサーサイズが4.8×3.6mmなので、大きな目盛り2個で1mmはないくらいということがわかります。上2枚の写真のセンサーの枠の太さは同じなので、遡っていくと全体サイズまで直接比較することができると思います。
これで倍率は手持ちの1インチアイピースでは限界です。最終倍率は120倍程度かと思われますが、それでもセンサー面の構造は全く見えてきません。やはりもっと倍率の高い生物顕微鏡が必要なようです。
さて、生物顕微鏡に移ったのですが、ここで問題が発生しました。ASI224MCでも奥行きがあり過ぎて、ステージを一番下に下げても対物レンズの間に入らないのです。
最初はセンサーがついている基板を外そうかと思いました。
ですが、基板の右側についているコネクタをうまく外すことがどうしてもできなくて、泣く泣く諦めることにしました。ちなみに左上についている赤い検品シールは触るとすぐに崩れるタイプで、ネジを緩めるとシールが簡単にとれてしまいます。改造したかどうかのチェックを兼ねている様です。なのでこのカメラはもうメーカーのサポートは受けることができないと思っておいたほうがよさそうです。もし個人で分解する際は気をつけてください。
結局今回は仕方ないので、下の写真の様に顕微鏡のステージを取り外すことにしました。
ステージに置くことができないので、CMOSカメラを手で持ちながら見ることになります。バランスが悪いのですが、何度か撮影すればいい位置とピントで写ることもあり、何とかなりそうです。
倍率は対物レンズが4倍、10倍、100倍。接眼レンズが10倍と15倍のものがあります。
とりあえず対物4倍と接眼15倍で目で見てみます。明かりがもっと欲しかったので、先日中身を取り替えたパワータンクの強力LEDで照らすことにしました。この状態で目で見てみると、手でカメラを押さえながらですが、何とか見ることができます。
ここで秘密兵器登場。今回の撮影のために、SVBONYの顕微鏡の差込口に挿すことができるアダプターを買っておきました。
これはT2ネジが切ってあるので直接ZWOのASIカメラに取り付けることができます。
これを生物顕微鏡の接眼レンズの代わりに取り付け、直焦点撮影をします。
最初はASI294MC Proを撮影用のカメラとして使いました。まずは最低倍率の4倍の対物レンズで撮影します。撮影はMacのASICAPを使いました。
すでに先ほどより大きく写り、遥かに精細に写っています。だんだん楽しくなってきました。
対物レンズの倍率を4倍のものから10倍のものに上げます。
おお!とうとうセンサー面の構造が見えてきました。
もっと倍率をあげたいのですが、100倍の対物レンズはセンサー面に相当近づけなければならなく、保護カバーを外さなければピントが合わなさそうです。さらに、かなり暗くなることがわかっているのであまりやりたくありません。いろいろ考えて、ASI294MCよりも一素子のサイズが小さくて分解能の高いASI178MCを使ってみることにしました。その結果がこちらです。
もうセンサー面の構造もはっきりと見えます。
でも構造は見えますが、RGBフィルターとかの影響がわかりません。目盛りがついているところから少し中に進むと紫のエリアがなくなる境目があるのですが、わかるのはこれくらいです。この頃になるとカメラの固定方法の工夫でかなりピントも合わせやすくなってきました。下はピントや撮影カメラのゲインを相当合わせ込んだ場合です。
かなりはっきり見えて、センサー10素子で目盛りが一つ進むこともわかります。なので目盛りはセンサーの数を表していたんですね。でも、これでも全部同じ素子のように見えてしまっています。
どうやっても進展がないので、ここでかなり悩みました。最後にとった方法が、わざとカメラを回転させて素子を45度傾けてみること。理由ははっきりとわかりませんが、これでやっとうまく見ることができました。最終結果です。
見事にRGGBフィルターの配列を見ることができます。これを見て改めて思うのですが、これだけの微細構造を作る技術は見事なものです。これが民生レベルで安価に購入できるというのはなんと幸せな世の中なのでしょう。
最後に、その時の撮影風景です。
とりあえずセンサー面の構造とRGGBフィルターの存在を確認することができました。対物レンズの倍率を上げ、十分な灯りを用意することができれば、もっと微細な構造を見ることができるかもしれません。
RGGBフィルターがかかっている部分と、かかっていない部分の境目もはっきりとわかります。RGGBフィルターは全面にかかっているわけではなく、センサーの端の方はフィルターはないことがわかります。
問題はここから何を引き出すかです。K君と話した時、サッポロポテト現象を解明したというようなことを言っていた気がします。サッポロポテト現象はあぷらなーとさんも困っているようです。
サッポロポテト現象は各素子についているマイクロレンズ効果が原因のようですが、はっきりとした解決策はあまりないようです。今回はやっとCMOSセンサーの素子の構造が見えたくらいなので、まだゴールまでは程遠いと思います。
今回の結果をどう活かすのかが今後の課題でしょう。
とりあえず今回分かったことは、
課題としては
K君、遅くなってすみませんでした。やっとなんか見えるくらいにはなってきました。
CMOSセンサーを顕微鏡で見るとどうなる?
事の発端は、小海の星と自然のフェスタでスタベのアルバイトのK君がASI294のセンサー面を実体顕微鏡で見てみたいと言った事です。ASI294は電視観望用に持っていますが、うちにはたまたま実体顕微鏡もあります。下の子Sukeの自由研究のために2017年の原村星まつりで買ったものです。これならなんとかなりそうです。
ところがシベットさんからコメントで実体顕微鏡では倍率が低すぎるのではという指摘がありました。なぜかうちには倍率の高い生物顕微鏡もあります。これも同じく下のSukeの自由研究のために2016年の原村星まつりで購入しています。というわけで、必要なものはそろっているので実際に見ることにしました。果たして何が見えるのか?
まずは実体顕微鏡
手持ちの実体顕微鏡は対物レンズが4倍、接眼レンズが10倍で、40倍のものです。ここにASI294を置いてやればいいのですが、カメラ本体が大きすぎでレンズに近づき過ぎてしまいピントが出ません。仕方ないので、今回はもっと奥行きの短いASI224MCで試すことにします。K君、ごめんなさい。
ASI224MCのセンサーサイズは4.8×3.6mm、解像度は1304×976で一素子のサイズは3.75×3.75ミクロンとのことです。
センサーは思ったより小さく、周りに金色の線がたくさんつながっています。これを40倍の実体顕微鏡で見てみました。とりあえずiPhoneのカメラで撮ってみます。
よく見えていますが、センサー面はのっぺりしているだけでやはり全然倍率が足りないことがわかります。
でも実体顕微鏡は簡単には倍率を変えることができません。いろいろ考えて、手持ちのアイピースを利用することにしてみました。接眼レンズを片方外します。31.7mmのアメリカンサイズは径が大き過ぎたので、昔の1インチタイプのものを使いました。手持ちは20mmと12.5mmと9mmの3つ。
最初に20mmのもので見てみます。1インチサイズだと今度は径が小さすぎるので、とりあえず固定せずに穴に入れるだけです。
もともとついていた10倍のレンズより少しだけ大きく見えます。
10倍レンズは焦点距離25mmとか30mmくらいなのかと思います。この時点で50倍とか60倍相当かと思います。当然これだけだとまだ倍率は不十分なので、さらに倍率を上げるために12.5mmレンズを取り付けます。
これも穴に入れただけで固定していませんが、まあとりあえずそこそこ安定して見えるものです。像はというと、
接続線は大きく見えてきましたが、センサー面はほとんど変化なしです。最後9mmを試します。
ここでiPadのLEDで光を当てたこともあり、基板のパターンが見えてきました。しかもピントを調整してセンサーの端をよく見ると目盛りのようなものが見えます。
小さな目盛り10個につき大きな目盛りがあり、大きな目盛りを数えると長辺で14個、短辺で10個程度あります。センサーサイズが4.8×3.6mmなので、大きな目盛り2個で1mmはないくらいということがわかります。上2枚の写真のセンサーの枠の太さは同じなので、遡っていくと全体サイズまで直接比較することができると思います。
これで倍率は手持ちの1インチアイピースでは限界です。最終倍率は120倍程度かと思われますが、それでもセンサー面の構造は全く見えてきません。やはりもっと倍率の高い生物顕微鏡が必要なようです。
生物顕微鏡なら見えるか?
さて、生物顕微鏡に移ったのですが、ここで問題が発生しました。ASI224MCでも奥行きがあり過ぎて、ステージを一番下に下げても対物レンズの間に入らないのです。
最初はセンサーがついている基板を外そうかと思いました。
ですが、基板の右側についているコネクタをうまく外すことがどうしてもできなくて、泣く泣く諦めることにしました。ちなみに左上についている赤い検品シールは触るとすぐに崩れるタイプで、ネジを緩めるとシールが簡単にとれてしまいます。改造したかどうかのチェックを兼ねている様です。なのでこのカメラはもうメーカーのサポートは受けることができないと思っておいたほうがよさそうです。もし個人で分解する際は気をつけてください。
結局今回は仕方ないので、下の写真の様に顕微鏡のステージを取り外すことにしました。
ステージに置くことができないので、CMOSカメラを手で持ちながら見ることになります。バランスが悪いのですが、何度か撮影すればいい位置とピントで写ることもあり、何とかなりそうです。
倍率は対物レンズが4倍、10倍、100倍。接眼レンズが10倍と15倍のものがあります。
とりあえず対物4倍と接眼15倍で目で見てみます。明かりがもっと欲しかったので、先日中身を取り替えたパワータンクの強力LEDで照らすことにしました。この状態で目で見てみると、手でカメラを押さえながらですが、何とか見ることができます。
ここで秘密兵器登場。今回の撮影のために、SVBONYの顕微鏡の差込口に挿すことができるアダプターを買っておきました。
これはT2ネジが切ってあるので直接ZWOのASIカメラに取り付けることができます。
これを生物顕微鏡の接眼レンズの代わりに取り付け、直焦点撮影をします。
最初はASI294MC Proを撮影用のカメラとして使いました。まずは最低倍率の4倍の対物レンズで撮影します。撮影はMacのASICAPを使いました。
すでに先ほどより大きく写り、遥かに精細に写っています。だんだん楽しくなってきました。
対物レンズの倍率を4倍のものから10倍のものに上げます。
おお!とうとうセンサー面の構造が見えてきました。
もっと倍率をあげたいのですが、100倍の対物レンズはセンサー面に相当近づけなければならなく、保護カバーを外さなければピントが合わなさそうです。さらに、かなり暗くなることがわかっているのであまりやりたくありません。いろいろ考えて、ASI294MCよりも一素子のサイズが小さくて分解能の高いASI178MCを使ってみることにしました。その結果がこちらです。
もうセンサー面の構造もはっきりと見えます。
でも構造は見えますが、RGBフィルターとかの影響がわかりません。目盛りがついているところから少し中に進むと紫のエリアがなくなる境目があるのですが、わかるのはこれくらいです。この頃になるとカメラの固定方法の工夫でかなりピントも合わせやすくなってきました。下はピントや撮影カメラのゲインを相当合わせ込んだ場合です。
かなりはっきり見えて、センサー10素子で目盛りが一つ進むこともわかります。なので目盛りはセンサーの数を表していたんですね。でも、これでも全部同じ素子のように見えてしまっています。
どうやっても進展がないので、ここでかなり悩みました。最後にとった方法が、わざとカメラを回転させて素子を45度傾けてみること。理由ははっきりとわかりませんが、これでやっとうまく見ることができました。最終結果です。
見事にRGGBフィルターの配列を見ることができます。これを見て改めて思うのですが、これだけの微細構造を作る技術は見事なものです。これが民生レベルで安価に購入できるというのはなんと幸せな世の中なのでしょう。
最後に、その時の撮影風景です。
考察
とりあえずセンサー面の構造とRGGBフィルターの存在を確認することができました。対物レンズの倍率を上げ、十分な灯りを用意することができれば、もっと微細な構造を見ることができるかもしれません。
RGGBフィルターがかかっている部分と、かかっていない部分の境目もはっきりとわかります。RGGBフィルターは全面にかかっているわけではなく、センサーの端の方はフィルターはないことがわかります。
問題はここから何を引き出すかです。K君と話した時、サッポロポテト現象を解明したというようなことを言っていた気がします。サッポロポテト現象はあぷらなーとさんも困っているようです。
サッポロポテト現象は各素子についているマイクロレンズ効果が原因のようですが、はっきりとした解決策はあまりないようです。今回はやっとCMOSセンサーの素子の構造が見えたくらいなので、まだゴールまでは程遠いと思います。
今回の結果をどう活かすのかが今後の課題でしょう。
まとめ
こんなふうに工夫でどんどん見えてくるような実験は超面白くて大好きです。
とりあえず今回分かったことは、
- 実体顕微鏡ではCMOSセンサーの構造を見るには倍率が低すぎる。
- 生物顕微鏡を使うことでCMOSセンサー面の構造、RGBフィルターの様子を見ることができる。
- センサー1素子そのものを十分な解像度で見るには至らなかったが、まだ拡大率を上げる手は残されているので、1素子をもう少しはっきり見ることもできるかもしれない。
課題としては
- センサーを置く架台をしっかりしたほうがいい。
- センサー面についている保護ガラスを外して、高倍率で撮影してみる。
- 動画撮影でスタックするとさらに解像度が上がるかもしれない。
- ASI294MCのセンサー面を見てみる。
K君、遅くなってすみませんでした。やっとなんか見えるくらいにはなってきました。
K君、次は何を見てみたいですか?