ほしぞloveログ

天体観測始めました。

2023年04月

一連のBXTによる再画像処理の4例目です。これまで以下のように3つの再処理例を記事にしてきました。





元々BXTで言われていた星雲部分の分解能、あまり話題になってなくて遥かに期待以上だった恒星の収差補正など、劇的な効果があります。

その一方、最近のM106の画像処理で分かったのは

  • BXTで銀河中心部の飽和が起きることがある。
  • BXTの恒星認識に引っかからない微恒星が小さくならなくて、恒星の明るさ位に対する大きさの逆転現象が起きる。
  • 光軸調整が不十分なことから起きる恒星の歪みはBXTで補正できなくてむしろ変な形を強調してしまうことがある。
  • BXTはリニア段階(ストレッチする前)で処理すべき(とBXTのマニュアルにも書いてあります)だが、LRGB合成はノンリニア(ストレッチしてから)処理すべきなので、リニアでできるRGB合成した後の段階ではBXTを使うことができるが、(額面通りに理解すると)LRGB合成した段階でBXTを使うことはできないということになる。
など、弊害や制限も少なからずあるということです。

M106も2度処理しているのである意味再処理なのですが、BXTを使っての「過去画像の」再処理という意味では、銀河を扱うのは今回初めてになります。これまで手をつけなかったことには実は明確な理由がありますが、そこらへんも記事に書いておきました。

そう言ったことも踏まえて、今回のBXTを使った処理では何が分かったのでしょうか?


子持ち銀河

ターゲットのM51: 子持ち銀河ですが、昨年4月に自宅でSCA260を使い、ASI294MM ProのRGB撮影で総露光時間4時間半で撮影したものです。

実はM51の再処理、かなり初期の頃に手掛けています。時期的は最初のBXTでの再処理の最初の記事の三日月星雲よりも前に試しています。銀河はBXTで分解能が上がることをかなり期待していました。でも改善がほとんど見られなかったのです。

BTX導入直後くらいに一度M51の再処理を試み、その後三日月星雲とかを処理してある程度技術的にも確立してきた後に、さらに再処理してみたM51です。
Image199_ABE_ABE_ABE_DBE_NTX_HT_CT_CT_NXT_CT2_cut1

同じ画角の元の画像を下に載せます。
64da897b_cut

再処理ではHαを載せていないので、派手さはないのは無視してください。2つを比較してみると、確かに少し分解能は上がったかもしれません。でも思ったほどの改善ではありませんし、むしろノイジーになるなど、悪くなっているところも見受けられます。なんでか色々考えたのですが、恐らくですが以前の処理はDeNoise AIを利用するなどかなり頑張っていて、すでにそこそこの解像度が出ていたということです。言い換えると、(今のところの結論ですが)いくらAIと言えど、画像に含まれていない情報を引き出すことは(例え処理エンジンは違っても)できないのではということです。逆に情報として含まれていないものを飛び抜けて出したとしたら、それは流石にフェイクということになります。

BTXとDeNoise AIを比べてみると、DeNoise AIの方が(天体に特化していないせいか)大きくパラメータを変えることができるので、おかしくなるように見えると思われがちですが、おかしくならない程度に適用する分には、BXTもDeNoise AIもそこまで差がないように思いました。DeNoise AIはノイズ除去と共にSharpen効果もあるのですが、BXTはノイズについてはいじることはないので、DeNoise AI = NoiseXTerminator + BlurXTerminatorという感じです。

それでは、DeNoise AIではなくBlurXTerminatorを使う利点はどこにあるのでしょうか?最も違うところは、恒星の扱いでしょう。DeNoise AIは恒星ありの画像は確実に恒星を劣化させるので、背景のみにしか適用できないと思っていいでしょう。その一方、BlurXTerminatorはAIと言っても流石にdeconvolutioinがベースなだけあります。星像を小さくする効果、歪みをかなりのレベルで補正してくれる効果は、BlurXTerminatorの独壇場です。恒星を分離した背景のみ、もしくは恒星をマスクした背景のみの構造出しならDeNosie AIでもよく、むしろノイズも同時に除去してくれるので時には便利ですが、やはり恒星をそのままに背景の処理をできるBXTとNXTの方が手間が少なく恒星のダメージも全然少ないため、天体写真の処理に関して言えばもうDeNoise AIを使うことはほとんどなくなるのかと思います。


L画像を追加してLRGBに

さて、上の結果を見るとこのままの状態でBXTを使ってもあまり旨味がありません。根本的なところでは、そもそもの元画像の解像度がをなんとかしない限り何をやってもそれほど結果は変わらないでしょう。

というわけで、RGBでの撮影だったものに、L画像を新たに撮影して、LRGB合成にしてみたいと思います。当時はまだ5枚用のフィルターホイールを使っていて、Lで撮影する準備もできていくてLRGBに挑戦する前でした。この後のまゆ星雲ではじめて8枚用のフィルターホイールを導入し、LRGB合成に挑戦しています。

撮影日はM106の撮影が終わった3月29日。この日は前半に月が出ているのでその間はナローでHα撮影です。月が沈む0時半頃からL画像の撮影に入ります。L画像だけで合計47枚、約4時間分を撮影することができました。

ポイントはASI294MM Proで普段とは違うbin1で撮影したことでしょうか。RGBの時もbin1で撮影していますが、これはM51本体が小さいために高解像度で撮影したいからです。bin2で2倍バローを用いた時と、bin1でバローなど無しで用いた時の比較は以前M104を撮影した時に議論しています。


解像度としてはどちらも差はあまりなかったが、バローをつける時にカメラを外すことで埃が入る可能性があるので、それならばbin1の方がマシというような結論でした。

以前RGBを撮影した時は1枚あたり10分露光でしたが、今回は5分露光なので、ダーク、フラット、フラットダークは全て撮り直しになります。


画像処理

画像処理は結構時間がかかってしまいました。問題はやはりLとRGBの合成です。前回のM106の撮影とその後の議論で、理屈上は何が正しいかはわかってきましたが、実際上は何が一番いいかはまだわかっていないので、今回も試行錯誤です。今回下記の6つの手順を試しました。Niwaさん蒼月城さんが指摘されているように、LinearでのLRGB合成で恒星の色がおかしくなる可能性があるのですが、今回は際立って明るい恒星がなかったので、LinearでのLRGB合成がダメかどうかきちんと判断することができなかったのが心残りです。
  1. RGBもL画像もLinear状態で、LRGB合成してからBXT
  2. RGBもL画像もLinear状態で、BXTをしてからLRGB合成
  3. RGBもL画像もLinear状態で、だいこもんさんがみつけたLinLRGBを使い、HSI変換のうちIとL画像を交換
  4. RGBとL画像とLinear状態でBXTまでしてから、フルストレッチしてNon Linear状態にしてからLRGB合成。
  5. RGBとL画像とLinear状態でBXTまでしてから、フルストレッチしてNon Linear状態にしてからLab変換して、aとbをconvolutionでStdDev=5でぼかしてからLab合成。
  6. RGBとL画像とLinear状態でBXTまでしてから、少しだけストレッチしてLinearに近いNon Linear状態にしてからLab変換して、aとbをconvolutionでStdDev=5でぼかしてからLab合成。
と試しました。赤は間違ったやり方、紫はまだ検証しきれていないやり方です。

ちなみに
  • BXTはリニアで使うべし。
  • LRGBはノンリニアで使うべし。
というルールがあるので、最も正しいと思われる順番は
  • WBPP -> ABE or DBE -> RGB合成 -> RGB画像にSPCC -> RGB画像、L画像それぞれにBXT -> ストレッチ -> LRGB合成
かと思われます。この手順は4番に相当します。RGBがノイジーな場合には5番もありでしょうか。

それぞれの場合にどうなったか、結果だけ書きます。赤はダメだったこと、青は良かったことです。
  1. 星雲の明るい部分に青飛びが見られた。(極端に明るい恒星はなかったので)恒星などの飛びは見られなかった。LRGB合成した後でBXTをかけるので、本来恒星が小さくなると期待したが、うまく小さくならず、変な形のものが残った
  2. 星雲の明るい部分に青飛びが見られた。(極端に明るい恒星はなかったので)恒星などの飛びは見られなかった。1に比べて恒星が明らかに小さくなった。
  3. 星雲の明るい部分に青飛びが見られた。(極端に明るい恒星はなかったので)恒星などの飛びは見られなかった。1に比べて恒星が明らかに小さくなった。ちなみに、LinLRGBはPixInsightに標準で組み込まれているものではなく、Hartmut Bornemann氏が作ったもので、ここにインストールの仕方の説明があります。
  4. 青飛びが少し改善した。1に比べて恒星が明らかに小さくなった。ただし最初にストレッチしすぎたせいか、解像度があまり出なかった。
  5. 青飛びが無くなった。1に比べて恒星が明らかに小さくなった。ただし最初にストレッチしすぎたせいか、解像度があまり出なかった。
  6. 青飛びが無くなった。1に比べて恒星が明らかに小さくなった。ストレッチしすぎてなかったせいか、一番解像度が出た

というわけで、正しいと思われる4番は悪くないですが、青飛びを完全に解決できなかったことと、ストレッチの度合いがRGBとLが別だとどこまでやっていいかの判断がつきにくく、結局6番を採用しました。でもストレッチをあまりかけずにLを合成することが正しい方法なのかどうか、いまだによくわかっていません。その一方、Lab変換でabをボカしたことが青飛びを完全に回避しているので、手段としては持っておいてもいいのかもしれません。


仕上げ

その後、Photoshopに渡して仕上げます。分解能を出すのにものすごく苦労しました。AstrtoBinでM51を検索するとわかりますが、形の豪華さの割に、大きさとしては小さい部類のM51の分解能を出すのはなかなか大変そうなのがわかります。物凄く分解能が出ている画像が何枚かあったので「おっ!」と思ったのですが、実際にはほとんどがHubble画像の再処理でした。1枚だけHubble以外でものすごい解像度のものがありましたが、望遠鏡の情報を見たら口径1メートルのものだったのでさすがに納得です。それよりもタカsiさんが最近出したM51の解像度が尋常でないです。口径17インチなので約43cm、これでAstroBinにあった口径1メートルの画像に勝るとも劣りません。43cmでここまででるのなら、自分の口径26cmでももう少し出てもおかしくないのかと思ってしまいます。今回私の拙い技術で出せたのはこれくらいです。クロップしてあります。

「M51:子持ち銀河」
masterLight_ABE_crop_BXT_BXT_Lab_conv5_Lab_CT_bg2_cut_tw

  • 撮影日: RGB: 2022年4月2日20時32分-4月3日3時50分、LとHa: 2023年3月29日20時17分-3月30日4時34分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader RGB、Hα
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 240で露光時間10分がR: 7枚、G: 7枚、B: 10枚、Gain 240で露光時間5分がL: 47枚、Hα: 21枚の計27枚で総露光時間240+340 =580分 =9時間40分
  • Dark: Gain 240で露光時間10分が64枚、Gain 240で露光時間5分が128枚
  • Flat, Darkflat: Gain 240で露光時間 RGB: 0.03秒、L: 0.01秒、Hα: 0.2秒、 RGBがそれぞれ64枚、LとHαがそれぞれ128枚
  • 画像処理: PixInsight、Photoshop CC

元の大きさではこうなります。ただしbin1のままだと画素数が多すぎてブログにアップロードできないので、解像度を縦横半分のbin2相当にしてあります。

masterLight_ABE_crop_BXT_BXT_Lab_conv5_Lab_CT_bg2_lowreso

中心部を比較してみます。左が昨年のRGBだけのもの、右がL画像とHα画像を撮り増ししたものです。
comp

見比べると、明らかに今回のL画像が入った方が分解能が増していることがわかります。ただすでに画像処理がキツすぎる気もしています。今の機材でこれ以上の分解能を求めるにはどうしたらいいのでしょうか?

考えられる改良点は、
  • シーイングのいい時に撮影する。
  • Lがフィルター無しなので、UV/IRカットフィルターを入れて赤外のハロなどをなくす。
  • 振動が問題になる可能性があるので、三脚の足に防震シートなどを入れる。
  • 読み出しノイズに制限されているわけではなさそうなので、揺れ対策で1枚あたりの露光時間を3分ほどにしてみる。
  • Lの総露光時間をもっと増やす。
  • 暗い空で撮影する。
  • バローを入れて焦点距離を伸ばし、かつbin1で撮影する。
などでしょうか。小さな天体を撮影する際の今後の課題としたいと思います。


まとめ

BXTという観点からはあまり大したことは言えていません。分解能という観点からはDeNoise AIとそこまで能力は差がなさそうなことがわかりますが、恒星の収差補正などに利点があり、今後DeNoise AIを使うことはほぼなくなるでしょう。リニアなステージで使うことが正しそうで、RGBとLで別々に処理して合成しても問題なさそうなことがわかりました。BXTなしとありでは分解能に圧倒的に差が出て、今回もM51としてはそこそこの分解能になっていますが、まだ鏡筒の性能を引き出し切っているとは言い難いのかと思います。

RGBだけの場合と、Lがある場合では分解能にあからさまに差が出ることが改めてわかりました。でもなぜそこまで差が出るのか、自分自身本質的にはあまりよくわかっていません。単にLの露光時間が長いからなのか? R、G、Bとフィルターで光量が減るので、それに比べて全部の光子を拾うLが得なのか? それとも他に何か理由があるのか? 一度、R、G、B、Lを全て同じ時間撮影して、RGB合成したものからLを引き出して比較してみるのがいいのかもしれません。

とまあ色々議論したいことはありますが、庭撮りで着実に進歩はしてきていて、M51がここまで出たこと自身はある程度満足しています。でももう少し出るかと淡い期待を抱いていたことも事実です(笑)。


少し前に到着したε130、色々準備をしていたり、あまり天気が良くなかったりで延び延びになっていましたが、やっとファーストライトと相成りました。といっても、撮影するにはまだ準備不足なので、まずは試しに電視観望です。


赤道儀への取り付け準備

まずは箱から出して組み立てです。タカハシの純正鏡筒バンドとプレートは一緒に購入したので、適当な位置に鏡筒を固定します。問題はどうやって赤道儀に取り付けるかです。

そもそもタカハシの鏡筒バンドはプレート固定のための二つのネジの幅がかなり広くて、一般的なロスマンディー規格のアリガタの幅よりも広いので、鏡筒バンドとアリガタを直接固定することができません。そのため、まずは同じくタカハシ純正のプレートに鏡筒バンドを固定して、このプレートに空いている穴を介して別のアリガタなどに固定する必要があります。

サイトロンで一緒に購入したAskarのドブテイルバー(ロスマンディー規格のアリガタ)はネジ位置が合わなくて取り付けることができないのはわかっていたので、手持ちのものを探しました。以前スターベースで特価で購入したロスマンディー規格のアリガタに、なんとか取り付けることができそうです。でもアリガタの先端の方のネジを2箇所で止めることができるくらいなので、もしかするとパタパタするかもしれなくちょっと不安定です。タカハシ純正プレートにはあまり加工したくないので、アリガタに穴を新たに空けるか、もしくは後でTSA120などで使ったMOREBLUEの軽量鏡筒バンドに替えるかもしれません。でもまだ予算を他に割り当てる必要があるので、優先度は低いです。

最低限赤道儀に取り付けることができるようになったので、一度実際に取り付けてみて、特にネジの頭とかの干渉などないかチェックします。赤道儀はCGEM IIを使うことを標準としました。Advanced VXでもよかったのですが、ε130の本体自体は5kgと重くはなくても、今後フィルターホイールやカメラ、ガイド鏡などをつけていくとそこそこの重さになるのと、やはり撮影がメインなので少しでも耐荷重が大きくて頑丈な赤道儀の方がいいと思ったからです。


ガイド鏡取り付け位置

ガイド鏡を取り付ける位置は少し迷いました。最初鏡筒上部に手持ちバーを兼ねたアルカスイスプレートを付けようとしたのですが、やはり鏡筒バンドの上部にあるネジ穴の幅が広すぎて直接取り付けることができないことがわかりました。色々考えた末、結局SCA260でやっているように小判鮫状態にしました。アリガタは40cmの長さでじゅうぶんながいので、前方に飛び出ている部分の下面にアルカスイルプレートを取り付けるわけです。

1C429718-3AE4-4C1A-B0C7-D01DB77C44F5
ロスマンディーのアリガタの下に、
アルカスイスプレートが取り付けてあるのがわかりますでしょうか?

この方法の利点は二つあります。
  1. 一つは鏡筒を赤道儀に乗せるときにそのアルカスイスプレートがストッパーになって、鏡筒から片手を離してもずり落ちるようなことがないことです。
  2. さらにこのアルカスイスプレートは前後に長いネジ穴があいているので、前後位置をスライドさせることができます。そのため、一度前後の重量バランスを合わせてしまってアルカスイスプレートをその位置で固定してしまえば、それ以降は鏡筒の前後バランスを取る必要はなく毎回同じ位置に取り付けることができることです。
これらの利点はSCA260で同手法を運用しているうちに気づきました。


光軸チェック

このε130は展示されていたものなので、光軸がずれてしまっている可能性があります。そのため、コリメーションアイピースを使い、光軸をチェックします。あらかじめ副鏡も主鏡にもセンターマークが付いていたので、チェックは簡単でした。とりあえず見ている限り全てのセンターマークが、コリメーションアイピースで見てセンターに来ています。主鏡が作る大きな縁も同心円上になっているようです。気づいたのは、接眼部のアラインメント調整機構がないので、コリメーションアイピースで見た時に副鏡のセンターを指していない時は、副鏡自身を平行移動などしなくてはダメなところでしょうか。でもこれも原理的に自由度が足りないとかではないので、まあ問題ないでしょう。今回は特に問題なさそうなので、とりあえず何もいじらずによしとしました。あとは、実際の撮像を見て評価したいと思います。


電視観望準備

本当は休日前とかのほうがのんびり試せるのでよかったのですが、天気の関係で平日の夜になってしまいました。でもこの日が良かったかというと、黄砂か春霞なのかうっすら雲がかかっているようで、透明度がかなり悪く北極星さえ肉眼で全く見えません。でもこの日を逃すと次はいつになるかわからないので、とりあえず庭に機材を出すことにしました。

カメラはASI294MCで、そのままアイピイース口に取り付けます。でもこのままだとピントが出ませんでした。色々アダプターを付け替えたりして試しましたが、思ったよりフォーカサーの調整範囲が狭くて、結局補正レンズを外してやっとピントが合いました。そのせいなのか四隅の星像が崩れるのは仕方ないにしても、中心部の焦点が合い切らずに星像の鋭さが全く出ません。これは後日補正板をつけて、バックフォーカスもきちんと合わせてから評価し直すことにして、とりあえずこの日はこのまま進めることにしました。


M42: オリオン大星雲

春も半ば過ぎに来ているので、もうオリオン座は早いうちに西の空に沈みます。しかも最近は日も長いので、ますますオリオン座を見る時間が少なくなってきています。とにかくM42オリオン大星雲だけは派手で見やすく、冬季節の電視観望の基準の星雲と言うべきもので、これが沈まないうちに画面に映し出します。

下の画像はgain420で露光時間1.6秒、ライブススタックで22枚、総露光約35秒のもの、フィルターはCBPです。隣の家に沈む寸前(実は一旦屋根に沈んだのですが、今一度赤道儀の位置を変えて家と家の間に見えているところを電視観望したもの)で、しかも透明度が悪い日の西の低空なので、全く見栄えは良くないのですが、まず思ったことが「速い」でした。

01

こんなひどい状況では綺麗に見えるまでにライブスタックを続けてかなり待つ必要があるのですが、さすがFS-60CBの約4倍の明るさです。「速く」星雲が浮かび上がってくるのは、ある程度わかっていたこととはいえインパクトが大きかったです。


バラ星雲

この印象は次のバラ星雲でも全く同じでした。

この日のフィルターはアメリカンサイズのCBPで、カメラにつけたノーズアダプターの先に取り付けています。ただ、この位置に取り付けると周辺減光が顕著になってきます。まずはCBPなしの場合。ゲイン420で3.2秒露光で一回露光だと、バラ星雲とはほぼわかりません。
03

次がCBPありの場合です。30秒露光なので、上の画像と直接比べることはできませんが、朧げながらバラの形がわかります。見て欲しいのは周辺減光で、ストレッチ具合はそう変わらないのに、CBPをカメラ先端につけると明らかに周辺減光が増えています。ε130は明るい鏡筒でセンサーに対する光の入射角が急になるので、フィルターをつけるとしてももっとセンサーに近いところにつけた方がいいことがわかります。
04

上の画像をライブスタックしていくと、わずか2分半で下の画像位になります。空は相当に悪い状況ですが、それでもこの速さはやはりε130の威力といったところでしょうか。
05


三つ子銀河

しし座の三つ子銀河です。天頂に近いので透明度は低いところよりはマシですが、それでもこの日の透明度はかなりイマイチです。

まずは30秒露光です。これだけでも十分に存在はわかります。
08

2分露光です。かなりきれいに見えてきました。
09

10分露光です。周辺減光が目立つので、中心だけ少し拡大しています。画像を拡大してみるとわかりますが、そこそこ分解能も出ていて、銀河一つ一つの構造もよくわかります。
10


M81とM82

M81とM82です。北の空で富山の街明かりで明るいのですが、高度はそこそこあるので先の西の低い空よりははるかにましです。繰り返しますが、肉眼で北極星は見えない状況に変わりはないので、それでここまで見えるなら上等でしょう。

2分露光です。
11

10分露光です。10分露光すると、細部もそこそこ見えてくることがわかります。
13


M51: 子持ち銀河

最後は同じく北の空でM51です。2分露光と
14

10分露光になります。
15

例えば観望会をやったとして、10分でここまで見えるなら、まあ十分ではないでしょうか。


まとめ

かなり状況の悪い日でしたが、やはりε130での電視観望は「速い」です。必要な露光時間は近い焦点距離のFS-60CBの4分の1くらいで、実感としてもこれくらいです。例えば40分待たなければならないのが10分ではっきり出てくるようになったと考えると、やはりかなりの威力でしょう。

ε130にフォーサーズのASI294MCと合わせるとすると、焦点距離としてはM31アンドロメダ銀河が画角一杯、北アメリカ星雲単体はなんとか入りますが、ペリカン星雲と一緒には入らないので、もう少し短焦点でもいいかもしれません。その一方、三つ子銀河がそこそこの解像度で見えるので、電視観望で銀河専門と考えなければ、これ以上長焦点にする必要もないでしょう。短時間の電視観望で次々と天体を入れてくのだと、(焦点距離はもう少し短くてもいいので)分解能的には少しオーバースペックな気がしますが、長時間ライブスタックして天体写真にも仕上げたいという場合には適度な焦点距離かと思います。

いっそのことASI2400MC Proのようなフルサイズのカメラと合わせるなら、ε130は最大限威力を発揮するのかもしれません。さらにこれ以上を求めるなら、あとはRASA8とかになるのでしょうか。


今後

やはりε130君は撮影鏡筒だと思うので、次はきちんと撮影で使ってあげたいと思います。準備状況ですが、
  • 今2インチのフィルターホイールはちょっと前に買ってあります。
  • 2インチフィルターですが、RGBフィルターはZWOのものを買い、
  • ナローバンドフィルターはBaaderのものをHαとOIIIを星まつりで安く買い漁ってあります。SIIはSAO合成よりLRGBやAOOの方がかなり楽しいので、少し優先順位を落としています。
  • カメラはASI6200MM Proでこちらはお借りしているものです。
  • 接続は以前ASI2400MC Proを試したときに、ZWO製のフルサイズクラスのCanon EFマウント用のアダプターを用意したので、ε130側には手持ちのタカハシのDX-WRカメラマウントを取り付けて、EOS EFマウントで接続しようと思っています。理由は、カメラを取り外して再度取り付けた際の回転位置の再現性が欲しいからです。

あとはEAFを用意したいくらいでしょうか。全部揃えると値段が値段なので、なかなか一度にパッとはいきませんが、着々と準備は進んでいます。


昨年秋くらいから動かなくなってしまった飛騨コスモス天文台のドーム。



交換部品も手に入って、雪も解けた春になってようやく修理することができました。


ドームのモーター交換

昨年9月にドームの回転ができなくなってしまい、色々分解してチェックするとどうもモーター自身が故障で動かないようで、交換用のモーターを探していました。

使われていたモーターはかなり古く、同型のものがもうな無くて、中古やオークションなどを探しても見つかりません。一旦同メーカーの互換性のある電力の少し大きなものをMONOTAROで選んで注文したのですが、結局それも入荷せずでキャンセル扱いに。互換性は必須で、モーターの下部にギヤボックスがあり、別メーカーのものや、同メーカーでも互換性がないものではネジ位置なども違ってしまい取り付けにかなり苦労しそうです。

半分諦めていたのですが冬近くでしょうか、ある時全く同型のものがMONOTAROで復活しているのに気づきました。半信半疑で注文してみると、ちょっと時間はかかりましたが無事に到着。でも季節は冬で、雪もあるためもう天文台に車で行くことは大変になっていました。

3月に名古屋に行く途中で寄った時にはまだ途中の道が雪に埋もれていました。
IMG_7620

春になり雪も解け、やっと天文台のところまで車で登って行けるようになりました。
IMG_7714

モーターの交換は、前回取り外す時に散々苦労してメカニズムを理解していたので、今回は楽なものです。黄色に見えるのがバネで、これで左のボックスを向こう側に押さえつけています。
IMG_7719

ボックスの中にはローラーが入っていて、これがボックスごとスプリングでドーム上部に押さえつけられていて、ローラーが回転するとドーム全体が回転することになります。
IMG_7718

モーターをボックスごと外します。右が外したモーターとギヤボックスおよびローラー、左が新しいモーターです。
IMG_7720

モーターとその下のギヤボックスを外すのにちょっと苦労しました。長いネジがギヤボックスの下まで通っていてナットで止めてあっただけなのですが、それに気づかずプラスドライバーだけで無理やり緩めようとしてうまくいかず、少しねじ山を舐めてしまいました。トラブルはそれくらいでしょうか。

まずは古いモーターにつながっていた配線を新しいモーターに繋ぎ直して、実際にドーム回転のスイッチを入れてモーターが回ることを確認しました。これでやはりモーターがダメになっていたことがわかりました。

新しいモータをギヤボックスにはめてネジで再び固定し、全体のボックスを元の位置に戻し、ローラーがドーム側にきちんと接触するようにスプリングにテンションをかけます。その状態でスイッチを入れるとドームがきちんと回転し始めました。スプリングが強すぎたせいか、数カ所で回りにくいところがあったので少しスプリングのテンションを緩め、再度全周360度スムーズに回転することを確認して、今回の作業は完了です。

あ、配線ボックスの中が暖かいのでしょうか?てんとう虫の死骸が大量にあったので、少し掃除しておきました。


撮影は...

せっかく飛騨コスモス天文台まで来たので、夜はそのまま撮影になだれ込もうと目論んでいました。昼間は天気が良かったのですが、修理作業が終わってのんびりしていると雲がどんどん出てきました。

IMG_7722

事前の予報では夜には雲もなくなるはずでしたが、その予報もどんどん悪くなっていき、夜中1時頃まで晴れないというものになっていました。しかも風がかなり強いです。迷ったのですが、さすがに撮影まではできないだろうと判断し、真っ暗になる前に帰路につきました。


神岡町のお祭り

富山への帰り道の途中、神岡町を通る時に今日はお祭りだと気づきました。昔何度か行ったことがありますが、調べたら5年ぶりの開催とのこと。小ぢんまりとした雰囲気のいいお祭りで、山間の小さな町のメインストリートを、獅子舞や神輿、巫女さんや天狗に模した男衆が、笛や太鼓を鳴らしながらゆっくり練り歩きます。絵本の中の世界をそのまま切り取ってきたような幻想的な風景です。

755BD498-8A9B-4170-98D1-B17AD5F7B043

43DE119D-B7BE-4223-8821-0C57BDDEC82A

73A6BD6B-F39A-49F9-8D92-5A6C0A9B927E

DE6675EE-AD25-49D7-81B8-2DD8E9FFE6FA

一本入った道には、屋台も出ています。子供たちが射的を楽しんでいました。
590CBD4D-86B7-4142-B078-3613401BFC4D


まとめ

ドームの修理は仕組みを良く理解できるいいチャンスです。いつかドームを作るときに役立つかもしれません。撮影ができなかったのは残念でしたが、そのおかげで神岡のお祭りに寄ることができました。

富山の自宅について空を見上げたら、一面雲に覆われていました。やはり撮影は無理そうで、早めに切り上げて正解だったのかと思います。


M106の再画像処理の記事を公開後、Twitter上でかなり熱い議論が交わされました。LRGB合成についてです。LRGBってもっと単純かと思っていたのですが、実際にはかなり複雑で、議論の過程でいろんなことがわかってきました。




M106での画像処理

詳しくは上の記事を見てもらえるといいのですが、今回の撮影ではRGBの露光時間がLに比べてかなり短くノイジーでした。そこで検証したのが、LRGBの際のLとRGBの比率をどうすればいいかという点です。 

M106の再画像処理のLRGB合成の過程で、Lの比率を上げると分解能は良くなっていく傾向でした。その一方、合成直後の彩度は落ちてしまいます。それでも色情報がなくなったわけではなく、たんにかくれているだけで、その後に彩度を上げていくと色が出てできます。ただし、色が出ると同時に短時間露光のせいかと思いますが、ノイジーになっていきました。

この時点でLとRGBの比率をどうすべきかわからなくなったので、LRGB合成の代わりにRGB画像をLab分解し、Lを入れ替えるという手段を取りました。この方法の利点は、RGBがノイジーな場合にabの分解能を落としてカラーノイズを減らすことが独立してできるということです。これは人間の目が色に対する分解能があまりないということを利用しています。

今回は上記のように試してみましたが、結局のところLRGBもLab変換も、まだ全然理解できていないことがよくわかりました。


Twitterでの議論

その後、TwitterでNIWAさんが反応してくれて、その後botchさん、だいこもんさんも交えてかなりの議論がなされました。

と言っても私は「わからない、わからない」と吠えていただけで、基本的にはNIWAがいろんな有用な情報を提供してくれたというのが実情なので、まずはNIWAさんに感謝です。botchさんはさすが長年この界隈にいる方なので、何が問題か本質的理解されているようでした。だいこもんさんはとてもわかりやすい説明をしてくれました。


PixInsight forumの解説、でもよくわからない

NIWAさんからの最初の有用な情報はPixInsight forumのJuanさんの発言(スレッドの#2,3,7)でした。



NIWAさんがこのページをもとに日本語でまとめてくれているので、英語が辛い場合はここを読むといいかと思います。



Juanさんの言う大事な主張は、
  • RGBはリニアでやっていいが、LRGBはノンリニアで処理しなければならない。
ということです。理由は
  • CIE L*a*b*とCIE L*c*h*はノンリニアカラースペースであり、それらがLRGB合成するために使われているから。
ということなのですが、最初この意味が全くわかりませんでした。そもそも私はLRGB合成はリニアのうちに処理してしまっていて、今のところ何か不具合のようなものは何ら感じていなかったからです。ここでいう「ノンリニア」というのはどうも「ストレッチ」というのと同義らしいので、このまま受け取ると
  • LRGB前に全てRもGもBも、当然Lもフルストレッチしきっていなければならない。
とも受け取れます。これはかなりきつい制限で、できるなら私は早いうちに合成してしまって、まとまった画像で色と解像度のバランスを見ながら処理したいのです。しかも、上記のように理由が挙げられていますが、この意味が全くよくわかりません。


ノンリニアとはLの輝度合わせ?

そもそも、PixInsightのLRGBCombinationが実際どんなアルゴリズムで実行されているのか、どこにも情報がありません。NIWAさんから
  • パラメータ調整無しの場合、LRGBCombinationとChannel CombinationのLabのL入れ替えは同じ。
  • RGBからのL画像とL画像を50%ずつブレンドしたLによるLRGBCombinationと、Weights 0.5のLRGBCombinationは同じ。
という説明があり、LRGB合成のなかみを推測する材料などが提供されたりしましたが、やはりリニアとかノンリニアに関することを含めてブラックボックスに近い状態です。

その後、Juanさんの発言の#11を読み込んでいくと、luminance transfer functionとchannel weightsが何を意味するのか、少しわかってきました。本来は適用するLと、適用されるRGB画像のLが同じ輝度とバックグラウンドというのを前提としているようです。

そこでbotchさんがTwitterで
  • 「ほとんどの場合で、使うRGB画像の質が相対的に悪いので、強い後処理を行うとアラがでます。そもそもLとabが一致していないので。RGB画像とそれをモノクロ化した画像を扱っているのではない点を考えてみてください。」という発言と
  • 「んー、LRGBって非可逆ですよね。」という意見を言ってくれたのですが、この時点でも私はまだほとんど理解できていませんでした。

私が返した
  • 「Lab変換して、L画像を置き換えてLab合成し、それをまたLab変換して元のL画像に置き換えたら、元の画像に戻ると思っていたのですが、何か間違ってますでしょうか?」に対して、
  • botchさんが「Lを置き換えて、もう一度Lを置き換えるだけでなら同じです。samさんの「それをまたLab変換」と言う部分はその前にRGBになどに変換している事になるので、そうなると元には戻りません」というところで、だんだん理解できて
  • 「違うLとLab合成した段階で、次にLab変換で分離したaとbには違うLの情報が混じり、最初のabとは違うものになるという理解でいいでしょうか?これが正しいなら確かに不可逆です。」と答えましたが、まだこのことがリニアな画像にLRGB合成を適用してはダメな理由には結びつきませんでした。
ここでだいこもさんがものすごくわかりやすい説明をしてくれました。
  • 「リニアのRGB画像から抽出したモノクロ画像をLc、Lフィルターで撮影したリニア画像をL、と呼ぶことにする。LcはRGBをストレッチして得られているのでノンリニア画像であるというのがまず前提です。それで、フィルターの性質上LcとLは輝度が違うので、そのままLRGB合成すると色が薄くなったりして良好な色が得られません。そこで例えばLinearFitをつかって輝度をそろえる必要がでますが、それをやってLcとLをそろえるとそれぞれノンリニアとリニアなので、うまく輝度がそろわない。そのような理由で、結局はLにノンリニアなストレッチを施して、Lcとヒストグラムを一致させてからLRGB合成すると上手く行くという話になるのだと思っています。」

素晴らしい説明で、これでやっとなぜJuanさんがノンリニアと言っているかが理解できてきました。要するに
  • LとLcの輝度を合わせることをノンリニアと言っているに過ぎないということです。
botchさんの最初の説明も本質的に同じことを言っているのだということがわかりました。だいこもさん、ありがとうございました。

でもこの考えも実際にはまだ不十分で、議論はさらに続き、下の「ノンリニアの本当の意味は?」でさらに明らかになります。


リニアでLRGB合成する時の問題点

だいこもんさんはさらに
  • 「ただし、画像依存はあってリニアなままLRGB合成しても破綻なく上手く行くこともありました。
と述べているのですが、こちらは私の経験とよく合います。最初から輝度がそこそこあっていればリニアなままでもいいかもですが、それは特殊なケースなのかと。

では、LRGB合成をリニアでやったら現実的には何が問題になるかというと、NIWAさんが
  • 「リニアでやると輝星に原色のノイズが出ることがよくあります。一番明るい部分が例えば階調なく原色で青く塗り潰されるような現象です。発生メカニズムは不明ですが『明るいLに対して対応できるRGBの組み合わせがなくて、破綻して原色になってしまった』と言うように見えます。」
と具体例を述べてくれています。さらにだいこもんさんがPIのメニューのSCRIPTS>Utilities>LinLRGBに今回の問題に対応するようなスクリプトを見つけてくれました。
  • 「単純にLRGB合成すると星が破綻する画像でも、これを使ったら破綻しませんでした」とのことなので、リニアで処理してもうまくいくのかもしれません。
  • 「スクリプトの中身見てみたら、カラー画像をHSI分解して、IをLと入れ替えているだけのようです。そうすると星の破綻も起きませんでした。」
とのことなので、リニアでもうまくLを入れ替えることができるのかもしれません。

リニアで色がおかしくなる事は私も前回のM106の処理中にありました。これはLがRGBより暗い部分で起こるようです。私の場合はLを少しストレッチしてRGBより明るくすると回避できました。

NIWAさんからもう一つJuanさんが発言されているスレッドの紹介がありました。ここでもあからさまにRGBはリニア、LRGBはノンリニアと言っています。



Juanさんが#5の最後で言っているのは、ここまで議論していた「入れ替えのLの輝度を合わせるストレッチをすることをノンリニアという」ということに近いかもしれません。でもまだ別の意味の気もします。

このことは次で明らかになったのかと思います。


ノンリニアの本当の意味は?

上の疑問に関して、
  • だいこもんさんの「LcはRGBをストレッチして得られているのでノンリニア画像であるというのがまず前提」という発言から、
  • NIWAさんが「つまりRGBからLを取り出した時点で、ストレッチされてしまうわけですね。」
と非常に重要な発言をされています。NIWAさんが調べたところによると、そのLを取り出すときにガンマ補正が入るようで、根拠は
だとのことです。要するに、
  • リニアなRGB画像だったとしても、そこからLを引き出しただけでノンリニアなL画像になってしまう
というのが本質のようであり、ある意味今回の結論になります。


まとめてみると

これまでの議論が正しいなら、
  1. RGB合成まではリニアなのでストレッチなどする必要はないが、LRGB合成はノンリニアになる。
  2. 具体的はRGBからLを引き出す際にノンリニア処理になるので、それ以降はリニアな処理はしない方がいいということが重要。
  3. 言い換えると、R、G、Bに関しては事前にストレッチしておく必要はない
  4. LRGB合成する際のL画像も事前に必ずしもストレッチしておく必要はないが、RGBから引き出したL画像と同じ輝度レベルにした方がいい。例えばL画像がリニアなままでは恒星の色が破綻することがある。
  5. LinLRGBなどでHSI分解してIとLを入れ替えると破綻しにくくなる(要検証)。
ということが、ある程度のまとめとして言えるのかと思います。

個人的に重要視したかった「ストレッチのタイミング」ですが、少なくとのR、G、Bに関してはストレッチは合成後でいいことがわかったので、最初に言っていた「LRGB合成前に全てRもGもBも、当然Lもフルストレッチしきっていなければならない」というかなりきつい制限は相当緩和されるという結論になったかと思います。

あと、この議論はあくまで原則論で、実際にどう運用するか、実際の画像処理に影響があるかどうかは程度問題の可能性も十分にあります。本当に正しいかどうかもさらなる検証が必要かと思います。天体写真に対する考え方は人それぞれで、科学の範囲と思ってストイックに考えている方もいれば、趣味として楽しんでいる方もいるのかと思います。たとえこの議論を読んだとしても何が正しいかは自分で判断すべきで、必要ならばこの議論も参考にしてみるというような考え方でいて頂ければありがたいです。

今回はLabのノンリニア性とか、まったく意識していなかったことがたくさんありました。まだまだ学ぶことが多いです。NIWAさんが参考ページを教えてくれました。

NIWAさんの情報初め、みなさんの議論におんぶに抱っこで、私は疑問を出しまくっているだけでした。本当に皆様に感謝です。こんなまとめをするのも越権かもしれませんが、私自身のメモという意味も兼ねていますので、どうかご容赦ください。でも、こうやってネット上で議論が進んで理解が深まるというのは、とても有意義で、とても楽しいことなのかと思います。皆様どうもありがとうございました。


先日、M106の記事をアップしましたが、記事を書き終えてから画像処理にアラがかなりあることに気づき、改めて再処理をしました。



でもこの再処理過程、苦労の連続で思ったより時間がかかりました。以下にまとめましたが、実際にはこんなにすんなりとはいっていなくて、いろんな回り道をしてある程度見通しがついたものだけを列挙しています。


問題点

問題点は以下の通りです。問題の大きさの順に、
  1. 周辺部のディスクの淡いところがノイジーで、解像度がイマイチです。改めて完成画像とマスターL画像と比べてみると、淡いところ、特に微恒星が相当欠落していることが判明しました。
  2. 明るい恒星がひしゃげていることに気づきました。
  3. 銀河中心が飛んでしまっていることに気づきました。
  4. 光条線が全然キリッとしていません。もしかしたら、微妙な画像の回転が影響しているのでしょうか?
などです。

色々調べていくと、ある程度原因と解決策が見えてきました。とりあえず簡単なところから順に行きます。


3. 銀河中心の飛び

問題3はBXTの弊害と結論づけました。

原因は、リニア画像の段階でBXTをかけていたため、銀河中心を強度に強調してしまい、その結果中心部のみ飛んでしまっていたようです。

解決策は、ストレッチ後の画像にBXTを適用することで解決しました。左がBXT->MaskedStrerchの順で、右がMaskedStrerch->BXTの順です。

comp

なんでこんなことに気づかなかったかというと、下がBXT適用後にPI上でSTFで見かけ上のオートストレッチをした画像なんですが、これだと周りも飽和気味で中心部だけ飛んでしまっているのは判別できないからです。
02_BXT_STF_Image05_ABE_DBE_SPCC_DBE_clone_Preview031

ちなみにオートストレッチしないとこんなふうです。左がBXTする前で、右がBXTをかけたあとです。これならすぐにわかるんですが、普段はSTFをかけた画像しか見ないので、気づくことができませんでした。
comp2


4. 光条線のシャープさ

問題4は撮影中にカメラが開店してしまった可能性があるので、L画像をプレートソルブにかけて調べてみました。プレートソルブは回転角まで出るので、ずれがあった場合に比較することでわかります。

L画像は1日目と4日目にのみ撮影しています。結果は、1日目のL画像がが90.50度で、4日目のL画像が86.13度と、なんと4度以上回転していました。1日目は29枚、4日目は51枚撮影していて、4日目の方が撮影枚数は多いので、少し惜しいですが1日目の分を丸々捨てるとことにしました。さらに4日目の人工衛星の軌跡がひどいものを5枚省いて、46枚でスタックしました。

まずは光条線の評価です。左が1日目と4日目を合わせた80枚、右が4日目だけの46枚です。そこまで大きくは変わりませんが、よく見ると確かに46枚だけの方が光条線は多少鋭くなっているように見えます。でも、正直もう少し鋭くなることを期待していました。-> (追記): 最後まで仕上げたら、明らかな違いになりました。1日目を捨てて正解でした。

comp_original

SCA260の分解能を少し疑ったのですが、例えばこの記事の画像を見る限り
  • 明るい星の光条線は十分に鋭く出ていていること、
  • 中途半端な明るさの星の光条線はそこまで鋭くないこと
などがわかるため、とりあえずは今回撮影した程度の鋭さが標準だと思うことにします。


もう少しL画像を評価

このL画像の枚数の違いですが、問題2に関しても議論することができそうなので、もう少し検証します。上の左右の画像をよく見比べると、微恒星に関してはやはり枚数の多い左側の方が明らかに暗い星まで写っていることがわかります。

ではこの画像にそれぞれBXTをかけてみます。同じく、左が1日目と4日目を合わせた80枚、右が4日目だけの46枚です。

comp_BXT


2つのことがわかります。
  1. 1日目に撮影した画像が加わると、明るい恒星の場合、中心部分が右に寄ってしまい、左にハロのようなものが残る結果になってしまいます。
  2. BXTによる恒星の縮小ですが、(微恒星がより出ていないはずの)右の方の画像の方が、左の画像と比べて、より多くの恒星に適用されていることがわかります。
まず1の原因ですが、元の1枚1枚の撮影画像を見てみると、明らかに星像が縦長になっていることに気づきました。1日目から4日目を全部比べてみると、日が変わっても出ていること、画像の中の位置によらず、常に縦が長くなるような方向に出ています。上の右の画像は問題ないように見えても所詮程度問題で、彩度を出すとかしていくと結局目立つようになります。撮影時の問題であることは明らかで、鏡筒の光軸ずれ、カメラ側のスケアリングのずれ、赤道儀での縦揺れなどが考えられます。前回撮影のM81の時の画像を見直してみても、こんな現象は出ていないようなので、おそらく1月から3月の間に光軸のずれが起こった可能性が高いのかと思います。ただし、波長によって出る出ないが違い、縦長がひどい順にG>L>R>B>>Aとなっているのは、まだ少し解せないところです。とりあえず今回はこの縦長星像、画像処理でなんとかごまかしますが、まずは次回鏡筒の光軸を見直すことにします。

次の2ですが、これは結構面白いです。BXTで恒星をdeconvolutionするためには、恒星をきちんと恒星として認識してもらわなくてはダメなのですが、左の画像は恒星であるのに恒星と認識されていないものが多いのです。何故かは元画像を見比べてみるとよくわかりました。 おそらくシンチレーションの違いで、1日目の画像は星像が大きく、4日目の画像は星像が明らかに小さいのです。動きの多い1日目の画像が混ざったことで点像とは見なされなくなってしまい、恒星と認識されなくなったのではと思われます。日が変わった場合の撮影では、このような違いにも気をつける必要があることがよくわかります。

いずれにせよ、BXTはかなり暗い最微恒星については恒星と認識するのは困難で、deconvolutionも適用できないようです。そうすると逆転現象が起きてしまうことも考えられ、より暗い星の方がそれより明るい星よりも(暗いけれど)大きくなってしまうなどの弊害も考えられます。

考えるべきは、この問題を許容するかどうかです。

この逆転現象とかはかなり拡大してみないとわからないこと、収差の補正や星雲部の分解出しや明るい恒星のシャープ化など現段階ではBXTを使う方のメリットがかなり大きいことから、今のところは私はこの問題を許容して、BXTを使う方向で進めたいと思います。シンチレーションの良い日を選ぶなどでもっとシャープに撮影できるならこの問題は緩和されるはずであること、将来はこういった問題もソフト的に解決される可能性があることなども含んでの判断です。


1. 淡い部分、特に微恒星が全然出ていない

問題1が1番の難問です。そもそも何故LRGB合成なのに、L画像相当の解像度が出ないのかという問題です。

これが撮影してスタックしたL画像: 
L

一方、これがRGB画像から引き出したL画像:
RGB_Lab_L

2枚を比較すると、当然撮影したL画像の方が圧倒的に情報量が多いわけです。

で、これが前回記事でアップした画像のPhotoshopに引き渡す前くらいの画像です。これが上の2枚のどちらに近かったというと、あからさまに後者のRGBから引き出したL画像の方に近いのです。
Image05_ABE_DBE_SPCC_DBE_BXT_MS

なんでこんなことが起きてしまったか、よく考えます。まず今回の撮影はRGBの撮影枚数がそれぞれ10枚程度と、L画像の(1日目、4日目合わせた)76枚と比べてかなり少ないです。こんな場合は、PixInsightでLRGB合成をする際に、LとRGBををどのような比率で合成するかをよく考えなくてはダメだったのです。

前回のLRGB合成でやったことは、L:R:G:Bを1:1:1:1の割合で混ぜたことでした。いや、これさえも本当に実現できているのかよく判りません。実施際にはLRGB合成の際に、L、R、G、Bそれぞれの画像を一度にチャンネルウェイトを0.25:0.25:0.25:0.25で合計1になるように合成しています。合計1にするのはサチるのを避けるためですが、どうもこのチャンネルウェイトは比だけを見るみたいで、絶対的な明るさは変わらないようです。例えば、R、G、Bを0.025:0.025:0.025として一桁落として合成しても、暗くなったりしません。絶対的な明るさは下のLightnessで決まるようです。1より小さくすると合成後が明るくなります。

さて、今回撮影したL画像のS/NはRGBに比べて遥かに高いので、Lの比率を大きくした方が得なはずです。試しにL:R:G:B=0.5:0.25:0.25:0.25で合成すると細部が表現され始め、L:R:G:B=1:0.25:0.25:0.25とするとさらに分解能が上がることがわかりました。その一方、Lの比率が大きくなるので、当然合成直後の画像は色がほとんど出ていなくて、かなりモノクロに近い画像になっていきます。それでも、その後に画像処理を進めていくと彩度を出すことはできるので、色情報がなくなっているわけではないようです。ただしRGBのS/Nが悪いので、色を出していくとどうしもノイジーになってしまうようです。

問題は数値の調整はできるものの、どのような比率でLとRGBを混ぜればいいのか結局のところよくわからないということです。そもそも、RGB画像をLab空間で考えると、単にLを取り替えることをすればいいはずです。それで彩度は保たれ、シャープさは良くなるはずなんです。

それならばいっそのこと、本当にRGBをLabに変換して、Lのみを入れ替えるという操作をしてやった方がいいのではと考えました。その結果が以下になります。
Image141_2

この方向は結構正しいようで、少なくとも細部は十分に出ています。また、Lab合成を使うという考えに基づくと、SPCCは合成前のRGBの時点でやった方がいいという考えに行き着きます。Lの明るさは調整可能なので、元のRGBとは彩度がずれる可能性があるからです。

さてこのLab分解とLab合成でLだけ変える方法、一見うまくいっているようですがまだ問題があって、試しに明るい恒星を見てやると以下のように緑や青が目立つようになってしまいます。

Image141_clone_Preview01_autostretch

これを回避するために色々試してみたのですが、どうやらL画像の明るさがab画像より暗い場合に起こるようです。そのためLab合成の時にL画像を少し明るくして合成します。すると以下のように、変な色が飛び出るようなこともなくなります。

Image230

一見モノクロに見えますが、色はきちんと隠れていて、試しにCurvesTransformationなどで彩度を上げると以下のように色が出てきます。
Image230_CTx5

ところが、ここでまた問題です。このように彩度を出していくと、再び緑飛びが出てきてしまうのです。
Image230_CTx5_cut

結局のところ、Lab合成でどうあがこうとしても、元の画像が悪い状態で彩度を出したら同じことの繰り返しで、変な色飛びはどうしても出てしまうということがやっと理解できました。

それで結局何をやったかというと、Lab合成する際に色情報であるaとbをぼかしてから合成することです。ここら辺はそーなのかーさんのこのページを参考にさせていただきました。


今回はConvolutionでStdDevを5として3回かけ、明るい恒星の色バランスの崩れがなくなるくらいまで、かなりぼかしました。少なくともこれで緑の形がおかしくなるようなことは避けることができました。ただし、ぼかしのバランスがaとbでどうしてもずれてしまい、恒星周りに均等にリング状の緑の輪がかかってしまったので、SCNRでProtction MethodをMinimumNeutralに、Amountを0.5にしてかけて緑を除きました。この時点でやっとBXTをかけます。結果は以下のようになりました。

Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT

色情報を相当ぼかしたわけですが、人間の目の色情報の分解能はかなり弱いと指摘されていて、実際に色が出ていないように見えることはほとんどありません。

これでやっと満足です。この後はPhotoshopに引き渡しますが、Hαジェットを除き、もうすでにかなり仕上がり状態に近いです。


やっと仕上げまできたー!

Photoshopはもうノンリニア編集なので、好きなように仕上げます。主には彩度出しでしょうか。Hα合成も2度目なので、少し余裕が出てきました。結果が下の画像になります。まずはジェットがよく見えるように銀河をアップで。

Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT_bg4_cut_s

次に全体像です。


「M106」
Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT_bg4_cut

  • 撮影日: 2023年3月19日20時48分-20日4時9分、20日19時25分-23時19分、28日19時51分-29日4時38分、
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader RGBHα
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120、露光時間5分、L:80枚、R:10枚、G:10枚、B:14枚、Hα:44枚の計158枚で総露光時間13時間10分
  • Dark: Gain 120、露光時間5分、温度-10℃、32枚
  • Flat, Darkflat: Gain120、露光時間 L:0.001秒、128枚、RGB:0.01秒、128枚、Hα:20秒、17枚(dark flatは32枚)
  • 画像処理: PixInsight、Photoshop CC


最初に挙げた問題点順に評価していくと、
  1. 銀河の淡いディスク部分の分解能はかなり出ました。
  2. 恒星のおかしな形もほぼ無くなっています。
  3. 銀河中心部の不自然さももうありません。
  4. 光条線も明らかに鋭くなりました。
と、こちらもほぼ満足です。

加えて、ジェットをもう少し派手にしてみました。自宅でここまで出れば上出来かと思います。というか、すでにちょっと炙り出し気味で、今の手持ちのHαだとこれくらいが限界かと思います。

最後は恒例のAnnotationです。
Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT_bg2_cut_A

 

まとめ

時間はかかりましたが、再処理を突き詰めていってよかったです。あからさまに良くなったことと、じっくり付き合ったことで次回以降にどうすればいいか、かなり得るものがありました。自宅撮影の結果としては、ある程度情報を引き出しきれた気はしていて、かなり満足しています。

そもそも撮影に問題はありましたが、いつも完全ということは当然ないので、画像処理でのリカバリも含めていつもこれくらい時間をかけないとダメなんだということが、今回とても実感できました。実を言うと、特に恒星ですが、もう諦めようと何度思ったことか。

今回の方法は真っ当なものではないのは重々自覚していますが、撮影はいつもうまくいくとは限らなくて、せっかく時間をかけた画像をできるだけ使ってあげたいので、手持ちの手法としては持っておいてもいいかと思いました。というより、画像処理は一辺倒にはなかなかいかないもので、撮影画像に応じて臨機応変に対応することが大切なのではないかと、改めて感じました。


日曜の夜、以前自宅にご家族で来ていただいたEさんとZooでリモート接続して、電視観望のヘルプをしました。


電視観望がうまくいかない!

昨年秋の小海の「星と自然のフェスタ」が縁で自宅に遊びに来てくれた富山のEさん一家、

 

その時おっしゃっていたように、お父さんだけ三重県に単身赴任されたようです。三重といえばアイベル、当然Eさんも通うことになり、FMA180を注文されたと聞いていました。でも結局FMA180は入荷されなくて、その代わりにFMA180 Proが手元に届いたそうです。Proの方はかなり良くなったと噂で聞いているので、少し待つことになったかと思いますが、ラッキーだったのかもしれません。

そんな折にメールがあり「電視観望を試してみたがうまくいかない」とのことです。画像が添付されてきましたが、オリオン大星雲が思ったより暗くしか出ていません。ヒストグラムでストレッチしてしまうと、画面が真っ白になってしまうとか、星雲の色が出ないとか、色々トラブっているようです。フィルターはと言うとCBPも入っているそうです。よっぽど都会の明るいところだと厳しいかもしれませんが、三重なら普通の住宅街なら特に問題なく見えるはずです。試した時は満月に近い月があったので、そのせいかもしれません。

「Zoomで一度接続しながら一緒に見てみましょうか?」

と提案すると、日曜の夜なら都合がつくと言うことで、4月9日の20時頃から接続して試してみることにしました。


ステーションモード接続の利点

EさんはPCにも詳しそうで、既にSharpCapの画面はすぐに共有できました。スマホのSynScan ProでAZ-GTiにも既に接続完了しているとのこと。でも自動導入でターゲットがうまく入らないので、PCからAZ-GTiに接続してプレートソルブを試してみることに。ここでEさんが

「今からPCをAZ-GTiに接続するので、一旦Zoomが切れます。」

と言うのです。確かにPCから直でAZ-GTiにつなぐとインターネットと接続が切れるので、Zoomとも切れてしまいます。そこで

AZ-GTiを自宅のWi-Fiに繋げませんか?

と聞くと、

「え?そんなことできるのですか?」

とのことなので、AZ-GTiをアクセスポイントモード接続ではなく、ステーションモードにする方法を伝えます。スマホからは既に接続できているので、スマホのSynScan Proで操作です。
  • 「設定」->「SynScan Wi-Fi」で、「ステーションを変更する」をオンにして、
  • 「ステーションモード」を有効にして
  • 自宅Wi-FiのSSIDとパスワードを入力していきます。
この時、必ず2.4Hzのネットワークを選びます。AZ-GTiは5GHzのWi-Fiにはそもそも対応していません。

問題は、Eさんが引っ越したのはアパートかマンションかで、住民共有のWi-Fiでインターネットに接続しているらしいのです。集合住宅の共有LANを通してSynScan ProからAZ-GTiを認識できるかとかは試したことがなかったので、私も良い経験になりました。結果は、普通にSSIDを指定すれば集合住宅の共有LANでもAZ-GTiの認識OKというもので、先のスマホからのSynScan Proでのネットワーク設定画面で最後に
  • 「適用」を押して、
  • その後PCのSynScan Proから上部の「接続する」で「デバイスを探す」
で、見事にIPが表示されて、うまくPCから接続することができました。矢印ボタンを押すと、きちんとAZ-GTiが反応しています。これで、PCからAZ-GTiを操作しつつ、インターネットにも接続できます。

でもその後、星がカックンカックンと変な動きをしだしました。最初ちょっと戸惑いましたがすぐに原因はわかって、「あー、これはスマホの接続と喧嘩してますね。スマホのSynScanの接続を切ってください。」といって、スマホからの接続を切ってもらうと、変な星の動きは無くなりました。


ASTAPがお薦め

PCからのプレートソルブですが、EさんはASPS(All Sky Plate Solver)をインストールされてました。残念ながら今回はASPSだと余りうまくいきませんでした。今はASTAPの方がいいので、ASTAPをお薦めしておきました。あと、焦点距離正しく入力するのがコツであることも説明しておきました。

プレートソルブは諦めましたが、シリウスで自動導入するとなんとか画面に入ってきたので、まあ大丈夫でしょう。もたもたしているとオリオン座が西の空に沈んでしまうので、すぐにM42を導入します。


ライブスタックで星雲の色が出ない?!

M42がうまく導入され画面に見えてきます。
  • モードがRGB24になっていたので、RAW16に変えてもらいました。
  • 露光時間を8秒ほどにしてもらいます。
それ以外は設定画面を見る限り特に変なところはなく、リアルタイムでM42もそこそこ見えているのでOKそうです。

そのままライブスタックをしてもらいます。と、ここで問題発覚です。色が全くついていなくて、まるでモノクロ映像です。最初Debayerされてないかと思いましたが、ライブスタック前までは色付きで見えていたはずです。「ははぁー」とピンときました。なんと、ライブスタック画面のヒストグラムの右端のカラーバーの横の、彩度を調整する4本目のバーのスライダーが最下段まで落ちているのです。これを真ん中より上に上げることで、見事に色がつきました。あとはライブスタックで待っているだけでどんどんノイズが落ちてきます。


あとはどんどん電視観望

Eさん、自分でやった時モノクロだったのでかなり心配していて、今回色がきちんと出たことでかなり感動したようで「これはすごい、これはおもしろい!」と盛んに言っていました。その後、自分で試して全く見えなかった
  • 馬頭星雲と燃える木
に移り、これも色付きではっきり見えて、やはり盛んに「これはおもしろい!」と繰り返してました。

ベランダ観望のため、クラゲ星雲とモンキー星雲は隣の屋根か何かにぎりぎりで隠れてしまい見えませんでしたが、その後も
  • ばら星雲
  • かもめ星雲
  • クリスマスツリー星団
など、短時間のうちにいくつもの天体を巡りました。

21時半頃には終わったので、わずか1時間半くらいでしたが、一通りの操作はできたので、今後は自分で十分に楽しめるかと思います。今回のポイントは
  • ステーションモードにするとPCから操作でき、かつインターネットも接続したままにでき、自宅Wi-Fiの届く範囲でリモート電視観望が実現できる。
  • ステーションモードは共用Wi-Fiでも普通にできる。
  • プレートソルブのお薦めはASTAP。
  • 彩度調整バーの存在は分かりにくい。ライブスタック画面の3色のRGBバーの横の4本目で、これが下に下がっていると色が出ない。
といったところでしょうか。初心者がつまづくポイントは、私にとっても参考になります。

「またわからなかったらいつでも聞いてください。」

と結んで、この日は終了となりました。前回、自宅に来ていただいた時、奥様がとても楽しく過ごせたみたいで、また家族で伺いたいとのことです。ぜひまた何か企画したいと思います。

このページのトップヘ