ほしぞloveログ

天体観測始めました。

タグ:SharpCap

今回の記事は大阪あすとろぐらふぃ〜迷人会工房様の微動雲台のテストです。さてさてどんな結果が出るのか、私自身楽しみです。


あんとんシュガーさんがわざわざ持ってきてくれました

先週の連休にあんとんシュガーさんから大阪あすとろぐらふぃ〜迷人会工房製作の微動雲台を受け取りました。あんとんシュガーさんがしばらく使っていたのですが、自宅に遊びに来がてらわざわざ届けてくれました。受け取った時のパッと見の印象は、頑丈そうというもの。大きさも径もポタ赤にはちょうどいいくらいかと思います。アルミを削って組み上げてますが、銀色がかっこいいです。

e47d47b3
微動雲台本体です。三脚はアントンシュガーさんのもの。


ポタ赤のための極軸合わせ微動雲台

まず最初に断っておきますと、私はポタ赤には微動雲台は必要ないと思っています。いや、より正確にいうと、弱い微動雲台を加えて揺れるくらいならない方がいいという意見です。もし揺れを増加させないような微動雲台があるなら、当然便利になるので使った方がいいと思います。

これまでもポタ赤の極軸を合わせる目的で微動雲台と呼ばれるものは、各種販売されてきています。 ですが、ほとんどのものが強度的に問題がありそうです。私が試したのは以前の記事に書いてありますが、片持ち構造なのが根本的な原因で、撮影では不利になると判断して外してしまいました。同ページの写真を見ても、一見相当頑丈に見えるのですが、やはり鏡筒部がある程度の重さになってくるとどうしても一番弱い微動雲台部分で揺れてしまいます。風などない日は問題ないでしょうが、少し風が出てくるとやはり星像が揺れしまいました。

そのページのコメントにHUQさんがユニテックのものが一番マシと書いてありますが、それでもコストと重量を考えるとあまり大型化もできないことと、本質的に可動部分を持つためにどうしてもこの部分が一番ネックになりやすいのは、ある意味仕方ないのかと思います。


迷人会製微動雲台

この観点からいくと、迷人会工房の物はポタ赤用微動雲台にしては大型の部類に入り、押し押しネジ構造は安定な微動方法、さらに縦、横共にクランプで締め付けることでガタつきをなくすことができそうです。「これまでポタ赤用の微動雲台はあまり使いたくなかったが、これだったら試してみたい」というようなことをTwitterで呟いたら、こたろうさんから「じゃあテストだ!私の決定は絶対じゃあ!(意訳あり)」との命が下り私のところにお鉢が回ってきたというわけです(笑)。

実物の構造を見てみますと、写真でもみたようにpitch(縦)、yaw(横)共に押し押しネジで、クランプで両軸とも固定できるようになっています。クランプを緩めると少しガタついたので、ここがどう効くかがテストのポイントになりそうです。あと、あんとんシュガーさんが「微動ネジを回しているとカクンと動くことがあった」と言っていました。でも雲台単体で動かしてみてもスムーズに動き、そんな変なことはありません。ここもきちんとテストするポイントになりそうです。

この時点で最近ユーザーの多いAZ-GTiの赤道儀モードで試すか、SWATで試すか迷っていたのですが、Twitterで製作者の井戸端秀樹さんから是非ともSWATで試して欲しいとの要請がありました。AZ-GTiは次回専用ものを作るそうです。

ところが、実際にSWATを取り付けようとしたら雲台のトップが水平でなく、35度くらいの角度がついていることに気づきました。ご存知の方も多いと思いますが、SWATは日本での使用が前提で、水平の台に取り付けても回転軸が極軸方向を向くようにあらかじめ35度くらい傾けた足が付いているのです。

このままだと明後日の方向を向いてしまうので、最初にやったことは雲台の分解でした。といってもトップを外しただけです。外したところを見ると、下部に耳が後付けで斜めのところに付いていて、これを外して最下部付近に取り付けることにより、トップ部をまっすぐ、上部が水平になるように取り付けることができるようです。これは対応するポタ赤を増やす優れたアイデアです。日本で使う限り、基本的にこの2箇所の取り付けでこれで十分です。

IMG_0821

IMG_0822

この状態で、微動ネジを回してみるとあんとんシュガーさんが言っていた「カックンとなることがある」というのがわかりました。どうやらSWATを上につけて、それが斜めになっていることで、重力でネジに荷重がかかり、荷重がかかった状態であたりが悪いとネジの周りが悪くなるのです。これはテストのしがいがありそうです。


極軸調整テスト

雲台を受け取ったのは先々週でしたが、9月は全然晴れなかったのでなかなかテストできませんでしたが、最終週になってようやく晴れたので、平日でしたが、まずは本来の目的である極軸合わせののテストをしました。

実際のSWATを、普段AZ-GTiを取り付けている三脚とハーフピラーの上に付けてみました。もともとハーフピラーをつけた理由は、鏡筒が三脚に当たることを防ぐためです。今回その役割をサイズ的に微動雲台が担ってくれたので、ハーフピラーを外すことにしました。

また問題を切り分けやすくするために、撮影用鏡筒はつけずに、ガイド鏡のみを直接SWATに取り付けました。ガイド鏡は以前胎内星祭で購入した120mm F4のもの。カメラはASI290MMです。取り付け方法はこれまで一番揺れが少なかった、モノタローで買ったクランプを利用しました。そこにアルカスイスクランプを取り付け、上下に2つ溝が切ってあるアルカスイスプレートを挟み、ガイド鏡下部のアルカスイスクランプで取り付けます。

IMG_0851

三脚はいつも使っているシステマティック化したGitzoのバサルト製のものです。写真では足の一本にタカハシの三脚アジャスターをかませてますが、最初の微動雲台でのテストでは外しています。


SharpCapでの極軸追い込み

では実際にSharpCapのPole Align機能を使い、迷人会の微動雲台を使って極軸を調整してみましょう。まずは、とりあえず一番最初に使ってみた時のファーストインプレッションです。最終的に1分角以下になれば十分な精度が出ていると考えていいでしょう。
  1. 最初は当然大きくずれているので、微動ネジのレンジだけでは足りずに三脚の足を伸び縮みさせたり、横にずらしたりして大まかに合わせこみます。
  2. ある程度位置が合ってからは微動の出番です。と言ってもまだそこそこずれているので大きくネジを回す必要があります。その際、ピッチでやはりひっかるようなところがありました。
  3. また、これもピッチですが、一方向に回しても星像が一旦逆方向に動いてまた正しい方向に戻るということがありました。どうもネジの当たり具合で線形に動かない部分があるようです。
  4. でもある程度位置が合ってきて、微動になってくるとそういったことは問題にならず、うまく滑らかに動かすことができます。動かす精度は十分なものがあり、1分角以下で余裕で合わせることができます。
  5. 一旦かなり合わせてからクランプを締めてロックすると、やはり位置がずれてしまいます。なので、ロックした後に微調整で合わせる必要があります。ロックしても微調の範囲では星の位置を動かすことはできます。
  6. ロックさえさせてしまえばガタつきはほぼ皆無。少なくとも私は全く気になることはありませんでした。
  7. この状態で下の写真のように、ロックしてかつ極軸も余裕で1分角以下の精度で合いました。
IMG_0829

この後、何度か同じようなことを繰り返しましたが、最初の印象と違いはそれほどありませんでした。というわけで、上に書いたものが偶然とか、たまたまとかではなく、ほぼ実際の動作状況だと思います。


クランプの影響

あと、みささんも気になると思われるクランプロックの影響を書いておきます。動画で実際の動きを確認してみてください。
  1. まず、クランプロックされた状態で1分角以下、平均30秒角以下程度に合わせます。
  2. 次にyaw方向のクランプを緩める(動画7秒辺り)と、1.5分角程度にズレます。その後、再びクランプを締める(動画17秒辺り)と30秒角程度に戻ります。
  3. さらにpitchのクランプを緩める(動画38秒辺り)と、今度も1.5分程度ズレます。問題はこの後で、閉めて(動画47秒辺り)も戻らずに、時として3分以上にズレが大きくなることがあります。ずれる量は押し押しネジが互いにどれくらい耳に強く当たっているかに依存するようです。


というわけで、やはりクランプ開け閉めの影響は存在するようです。この結果だけ見ると、クランプの影響が大きく思えてしまうかもしれませんので、実際にどれくらいの精度が必要かはきちんと定量的な評価が必要かと思います。

必要な極軸の精度

では、極軸のズレで1分角というのは実際にどれくらい大きなズレなのでしょうか?細かい計算はこのページを見てもらうとして、ざっくり1分角の極軸のズレで、4分間露光して、星像にして最大で1秒角のズレ。

結論だけ言うと、普通の目で合わせる極軸望遠鏡ではほとんど分からないレベルのズレかと思います。ポタ赤で撮影する場合、せいぜい600mm程度が最長の焦点距離になるかと思われます。この焦点距離程度なら、1分角で合わせたら例えば5分間露光しても極軸のズレからくる星像のズレは1秒角程度となります。これをたとえばEOS 6Dで撮影すると、1ピクセル2.3秒程度なので、ズレは1ピクセルの半分以下。ほとんど影響はありません。むしろピリオディックモーションが一般的にポタ赤レベルだと数十秒角、今回使うSWAT200でも10秒程度と遥かに大きくなり、こちらは4ピクセル程度のズレとなるため、支配的になります。

極軸精度で1分角程度、星像のズレに換算してして4分で最大1秒程度というのは、SharpCapなど極軸を正確に合わせることができるツールがあって初めて検証できる精度の話になっています。ちなみに、北緯35度の日本では極軸は大気差で1分30秒角程度ずれるので、大気差補正をしないと意味がないレベルでもあります。SharpCapにはこの大気差を観測場所の緯度に応じて補正する機能があります。1分各程度で合わせ混むことができると、この機能が意味を成してきます。

なので、今回この微動雲台で合わせている精度自体、ポタ赤ではすでに十分すぎるものと考えることができます。


とりあえず触ってみての結論

さて、この状態である程度の結論を言うと、
  • まだ少し引っ掛かりや進行方向の反転はあるけれどもこれは十分改善可能と思われる。
  • 微調整に関しての精度は十分満足。
  • ロック時のズレは気になるが、精度的には十分で、さらに運用で影響を少なくすることはできる。
  • 特筆すべきは、クランプをロックした後の揺れの少なさで、まるで大型の赤道儀の揺れの少なさを彷彿とさせます。振動試験は後で別途やろうと思っていますが、このレベルならば撮影でも全く問題ないと思います。
というわけで、私としてはこの時点でも実践投入可能という意味で十分な合格点を出したいと思います。

動画で見てみる: 微動

上で説明したことを実際に動画で見てみましょう。

1. まずは極軸近辺でpitch方向に微動した時、どれくらいきれいに動くかです。

pitch、微動

動きのスムーズさを見るために、1. 一旦通り越して、2. 反転して戻ってまた一度通り越して、3. さらに反転して微調整して合わせこんでいます。これくらいの操作は余裕ということです。


2. 次にYawの微動です。

yaw、微動

同様に、一旦通り越して、反転して戻ってまた一度通り越して、さらに反転して微調整して合わせこんでます。


動画で見るとわかると思いますが、pitch、yawともかなり精度よく合わせこむことができるのが分かるかと思います。


動画で見てみる: ズレた位置から合わせ混むまで

1. まず最初に試したのが、迷人会製微動雲台を使って実際に位置から合わせ込んだときの動画です。一応何度か試したので、操作には慣れてある程度スムーズに行くときの場合です。約2分半かかってます。


1分5秒くらいのところでしょうか、pitchの移動方向が反転しているところがあります。でもこれネジは一方向に回しています。このようにおそらくネジの頭が斜めになっているためにいったん反対方向に進んでしまうようなところがあります。1分35秒辺りでYawに、1分59秒辺りでpitchに大きく飛んでいるのはクランプを締めたからです。クランプを閉める前に微調整してしまっても結局ずれてしまうので、ある程度あってきたらまずはクランプを締めています。その後の微調整はスムーズにいきます。


2. 次に試したのが、微動を使わずに三脚の足の伸び縮みでpitchを調整し、足を横にずらしてyawを調整するというものです。3分以上格闘しましたが、pitchの調整が難しすぎて最後まで1分角以下では合わせられなくて諦めました。Gitzo三脚の伸び縮みも、固定してしまえばかなり頑丈ですが、ロックするときのズレは微動雲台より遥かに大きいです。嫌になったので動画は無しです。


3. 最後は、三脚足の調整では難しかったpitchを、タカハシの三脚アジャスターに変えた場合です。Yawは三脚の足ずらしで合わせ混んでいます。


多少慣れたせいもあるかもしれませんが、なんとこれが1分半ほどで合わすことができてしまい最短でした。なんか迷人会様に合わせる顔がありません <(_ _)> 。原因はタカハシの三脚アジャスターの動きがスムーズなところです。

なのでpitchに関してはまだ三脚アジャスターに分があり、こちらの方が合わせる時間が短いです。ここはやはり迷人会さんの微動雲台も改良してスムーズさを出して欲しいとことです。

Yawに関しては以前計算したことがありますが、適当な仮定を置いて考えると微動雲台で調整するのに比べて、三脚の足をずらす方法では5倍くらい精度が悪くなります。でもコンコンコンとか、叩いて少しづつずらすようにしていくと、なんとか合わせ込めるみたいです。

ちなみに、三脚アジャスターとはこんなやつです。

IMG_0861

三脚の下に置いて、ネジをくるくる回すことで高さを調整できます。3つの足全てに置く人もいるようですが、私は(結構高いので)一つしか持ってません。でも改めてネジの先を見ているのですが、あまりキレイとも言い難いです。やはりボルト端部が面に垂直に接するのが肝なのかもしれません。

IMG_0862



改良案

現段階での改良案を提示しておきます。この提案は振動試験をやったら変わる可能性もあります。
  • まず、押しネジは一点でプレートに接するのが理想。
  • 特にpitchは接地面がボルトに対して斜めになるので不利なのではないでしょうか。耳のつける位置を変えて二通りの曲軸設定に対応するというアイデアは秀逸です。真っ直ぐにトップを立てる場合でも少し斜めの位置に取り付けることになっているので、一つは耳を真下につけたほうがいいと思います。日本仕様で35度付近に付けるようにして、ボルトと耳の設置面が垂直に当たるようにしてはどうでしょうか?
  • ボルトの端部の加工を少しすればずいぶんマシになると思います。今は斜めになってしまっているので、へんな戻りが出てしまうのかと思います。今の端部だと耳の設置面に傷ついてしまっています。

まとめ

今回、大阪あすとろぐらふぃ〜迷人会工房様から微動雲台をお借りしました。

これまで微動雲台の決定版がなかなかなかったことから、強度的にはこれが決定打になる気がします。ネジのあたりの部分を改良してよりスムーズな動きになれば、精度の面でも決定打になると思います。

次回、振動の方もテストしてみたいと思いますが、見ている限り既に頑丈そうで、違いが示せるかどうか心配しているくらいです。もうしばらくだけお借りします。


今回サイトロンさんから、まもなく発売される予定の入門用のCMOSカメラをお借りすることができました。まだ型番もついていない段階のものです。いい機会なので、このカメラを使ってできるだけ手軽な電視観望を試してみることにしました。

(2020/10/12追記) 2020年10月10日に正式発表されました。型番はSV305-SJとなります。SJはサイト論ジャパンの頭文字だそうです。販売ページはこちらになります。




星や宇宙のことに興味があり、できるなら星雲や星団、銀河などを見てみたいけれども、難しいのではないかと思っているような方にお役に立てたらと思います。もしよければ、この記事を読んでぜひ電視観望を試してみてください。


電視観望で宇宙を見る

もしかしたら、星雲や銀河を見るためには大きな望遠鏡が必要だと思っていませんでしょうか?

昔は確かにそうだったかもしれません。でも最近はCMOSカメラと呼ばれる高感度なカメラを使うことで、以前からは考えられないくらい小さな望遠鏡で、はるかに手軽にきれいに星雲などを見ることができるようになってきました。今回もガイド橋と呼ばれる、むしろ普通の望遠鏡よりも小さな鏡筒を使っています。

今回紹介する電視観望と呼ばれている方法は、大きくわけて4つのものが必要になります。

  1. CMOSカメラ
  2. 鏡筒(望遠鏡)
  3. 自動導入の経緯台もしくは赤道儀と三脚
  4. Widowsコンピュータ
順番に見ていきましょう。


1. CMOSカメラ

カメラはCMOSカメラと呼ばれる、天体用に販売されているものが適しています。今回使用するサイトロン から販売されるCMOSカメラは、電視観望をすることができるカメラの中では最も安価な部類になると思います。

IMG_0805

実はこのカメラ、SVBONY社のSV305と同等品で、違いはフィルター部のみ。SV305はセンサーの前に赤外線カットのフィルターが入っているため、星雲のHαの赤色を出すのに苦労しているという情報があります。今回のサイトロン社のカメラはフィルター部を通常の保護ガラスに変えているとのことで期待できそうです。

上の写真にはカメラの先端にUV/IRカットフィルターというものが付けてあります。これは赤ハロと呼ばれる星が肥大することを防いだりする役割があります。(2020/10/12追記: 正式発表を見るとこのUV/IRカットフィルターが付属した形での販売となっています。)


2. 鏡筒

カメラが入門用で比較的安価に購入できる反面、センサーの面積が小さく、天体の導入がなかなか大変になります。そのため、鏡筒(望遠鏡)はできるだけ短い焦点距離のものにして、広角で広い範囲を見るようにして、導入をしやすくしようと思います。例えば焦点距離が200mm台くらいになるとアンドロメダ銀河が画面にちょうど収まるくらいになります。ところが、焦点距離200mm台の短めの鏡筒を探すのは意外に難しく、今回はガイド鏡として販売されているSky-WatcherのEVOGUIDE 50EDを使ってみることにしました。



焦点距離は242mmなのでちょうどいいくらい、またEDレンズを使いながら税込で実売2万5千円くらいと、性能の割に比較的安価です。


EVOGUIDEを箱から出すと、ガイド用のマウントがついています。

IMG_0635

このままだと扱いにくく、経緯台や赤道儀に直接取り付けたいので、下のマウント部を取り外し、代わりにVixen規格のアリガタを取り付けました。

IMG_0641

IMG_0804

今回は上の写真のように手持ちのアリガタを使いましたが、例えば下のリンク先のアリガタのように真ん中に溝が切ってあるものならネジとナットで止めることができるはずです。このように、自分でいろいろカスタマイズすることで応用が広がります。




鏡筒にCMOSカメラを取り付け準備完了です。ちなみに、緑のリングはこれくらいの位置でピントが出るはずです。実際に使う場合は参考にしてみてください。

IMG_0817



3. 自動導入経緯台AZ-GTi

電視観望の場合、目的の天体を次々見ていくことになるので、自動導入ができる経緯台や赤道儀があると便利です。今回はSky-Watcherの自動導入経緯台AZ-GTiを使います。




AZ-GTiを三脚に乗せ、鏡筒とカメラを取り付けます。この時、AZ-GTiについている水準器を見て、きちんと水平に設置されているか確認します。また、AZ-GTiの背の部分についている大きなネジを緩めて、鏡筒もできるだけ水平になるようにして再びネジを締めます。さらに、AZ-GTiの下の方についている小さいネジを緩めて、水平方向に回転させて鏡筒の先が北になるように向け、最後にネジを締めます。

IMG_0653



4. Windowsコンピュータのセットアップ

電視観望にはWindowsコンピュータが必須です。ノートPCだと便利です。手持ちのPCがあればまずはそれで試すので構いませんし、もしあまりのPCとか無ければPCを別途用意して下さい。少し前の安い中古PCでも十分楽しむことができます。Windows10が入っている時代のものならば十分なはずです。

PCにはSharpCapというソフトを入れてください。この際、必ず32bit版を使うようにしてください。今回のカメラはまだ64bit版では動かないようです。



PCの準備ができたら、次に、カメラをコンピュータにUSBで接続します。USB2.0という少し前の規格になりますので、ケーブルの種類に気をつけてください。コネクタの中の色い白いプラスチック部分が見えるケーブルなら使うことができます。

SharpCapを立ち上げて、メニューのCameraのところから接続します。SharpCapからはSVBonyのSV305と認識されるので、やはり同等品ということがわかります。

さて、画面に何か写っていますでしょうか?鏡筒が水平を向いているので、鏡筒が向いている先の地上の何かが写っているはずです。でもおそらくピントが合っていないはずなので、ぼんやりと写るだけだと思います。最初慣れないうちはいきなり夜ではなく、昼間に試して遠くの方を見てピントをある程度合わせておいた方がいいかもしれません。


初期アラインメント

ここでAZ-GTiの電源を入れて、スマホやタブレットで接続します。スマホやタブレットにはあらかじめSynScanまたはSynScan Proを入れておいてください。「アラインメント」でどこか明るい星を導入し、どの方向を向いているのかAZ-GTiに教えてやります。最初はワンスターアラインメントでいいでしょう。火星などの明るく見える惑星でもいいですし、秋ならこの季節唯一の一等星のフォーマルハウトでもいいでしょう。

この状態でSharpCapの画面に移ります。まず、Exposure(露光時間)を1秒程度にします。Gain(ゲイン)はとりあえず7.5とかでいいでしょう。SharpCapの画面に何か反応があるはずです。

ここで重要なのは、右下の赤、青、緑の線が出ている「Display Histgram Stretch」画面で、真ん中の黄色の点線を左の山の手前まで動かし、一番左の黄色い点線を山の左側まで持ってくることです。こうすることで、暗く映りにくい星や、星雲などを明るく映し出すことができます。

この状態で星が既に写っていればいいですが、写っていなければピントが合っていない可能性が高いです。EVOGUIDEの場合は、太い緑リングの横の少し大きめのネジを緩めて、その緑リングをクルクル回してピント位置を探します。ピントが合ったら、先ほど緩めた大きめのネジを締めて置きましょう。これでこれ以上ピントはずれないはずです。

どうしても星が見えない場合は、鏡筒がきちんと星の方向を向いているか、(よくあることですが)レンズキャップがついたままになっていないかなどチェックしてみてください。

何かの星が見えたら、最初にターゲットにした明るい恒星がSharpCapの画面に入っているか確認してみてください。入っていなければSynScanでAZ-GTiをコントロールして鏡筒の向きを変えて、ターゲットの恒星を探します。三脚の水平がきちんと取れていれば、SynScanの左右ボタンだけを押して左右に振るだけで見えるはずです。それでももし見えなかったら、上下方向も少し動かしてみてください。

うまくターゲットの星が入ったら初期アラインメントは完了です。ではいよいよ星雲や銀河で電視観望を始めましょう。


電視観望の開始!

例えば秋ならM31「アンドロメダ銀河」を見てみましょう。SynScanで「ディープスカイ」からメシエのところに「31」と入れるか、「名前がつけられた天体」を押して「アンドロメダ星雲」(銀河なのに何故か星雲となっています)を探して押します。

アンドロメダ銀河は、SharpCapの画面上でボーッとした淡い楕円に見えるはずです。明らかに他の星とは違って見えます。もし画面内にそのような楕円が入っていなかったら、SynScanの方向ボタンを押して少し周りを探ると(初期アラインメントさえうまくいっていたら)それほど遠くない位置に見つかるはずです。うまく画面内に入ってきたら、できるだけ真ん中に持っていってください。

ここでSharpCapで露光時間(Exposure)を15秒くらいにしてみて下さい。よりはっきり見えてきたと思います。もっとはっきりさせたい場合、SharpCapの上の真ん中らへんの「Live Stack」というボタンを押してください。しばらく待つと、見えている画面が何枚も重なってノイズが減り、より天体がはっきり見えてくるはずです。その際、画面下のヒストグラムの左と中央の黄色い点線を先ほどと同じように、山の両側に持ってきてください。さらに、画面右の小さなヒストグラムに拡大された山が見えると思います、そこで微調整してみてください。

うまくいくとアンドロメダ銀河が下の画面くらい見えるようになると思います。暗黒帯も少し見えていて構造もわかると思います。近くのM32も見えていますね。

IMG_0675

ヒストグラムの黄色い点線の位置は写真くらいの位置で見やすくなると思います。参考にして下さい。


星雲、銀河が次々と!

一つ目ん天体が見え、十分満喫できたら、次のターゲットに挑戦してみましょう。

例えばアンドロメダ銀河のすぐ近くにある、さんかく座のM33回転銀河です。近い天体なので、アンドロメダ銀河がきちんと入っていればM33も問題なく入るはずです。アンドロメダ銀河に比べると流石に淡いですが、なんとか形は分かります。

IMG_0678


だんだん時間が経つと、冬の代表的な星雲のM42オリオン座大星雲も登ってきます。濃淡の広がりがよくわかる大迫力の星雲です。目ではなかなか見えないのに、こんなに色鮮やかな天体が夜空には隠れてるんですね。

IMG_0702


オリオン大星雲の近くにある馬頭星雲と燃える木です。燃える木はまだ見えていますが、馬頭星雲の方はさすがに淡いです。もう少し露光時間を伸ばした方がいいのかもしれません。上に見える明るい星は、オリオン座の三つ星の一つ「アルニタク」です。

IMG_0698


最後はM45「プレアデス星団」、和名で「すばる」です。青い分子雲も多少見えています。これは少し驚きました。今回自宅から電視観望をしているのですが、分子雲がこの場所でこんなに見えるのは初めてです。馬頭星雲は相当淡かったですが、すばるの分子雲は期待した以上に見えました。どうもこのカメラは赤よりも青い方の方が見やすいようです。

IMG_0696


まとめ

いかがでしたでしょうか?比較的安価なSV305相当で、かつフィルター部分が星雲用に改善された、サイトロンからまもなく販売されるCMOSカメラを使って、どんな機材を使えば電視観望ができるかを紹介してみました。

この記事を見て電視観望に挑戦してみようと思っている方、実際に挑戦してみた方、もし分からないことがあったらメントに書き込んでください。できる限り答えようと思っています。また、うまくいった!という報告も大歓迎です。



今回の記事を読んで電視観望をやってみようと思った人に、もっと突っ込んだ記事を続編で書いてみました。実際に当たる壁と思われるようなことなども書いてあります。よかったら読んでみて下さい。



昨日は夕方まで快晴。赤道儀を出して夕食をとってさあ撮影だと張り切って外に出たら一面のドン曇り。ポツリときそうなので急遽セットした赤道儀他を全て撤去。それでブログ書いていたのですが、書き終えて外に出ると、またもや全面快晴。しかもかなり透明度がいい!悔しかったのですが、SCWを見ると夜中遅くから曇ってきそうなと、やる気も萎えてきてたので、撮影は諦め簡単な電視観望としました。

やったことは前回のX5での続きです。レンズをEF 55-200/4.5-5.6 II USMという、おそらくキットクラスのズームレンズだと思いますが、こちらに変更しました。目的は、前回はオリオン座大青雲を見たので、今回はもう少し淡い星雲を見てみようと思ったこと。さらに今回は最初からQPDをつけて、Hα領域がどう改善されるかも見たかったのです。でもこれが結構意外な印象を生むことに。

まずは55mmで北アメリカ付近。QPDありです。20秒x7のスタックで2分20秒です。

IMG_0765

次がCBPです、少しだけ拡大率を上げているので大きく見えます。20秒x6のスタックで2分ちょうどです。

IMG_0769

QBP、CBP共にHαも出てますが、なんて言うのでしょうか、なんかインパクトが小さいのです。赤が出たと言うよりは、全体が暗くなったという印象の方が強いのです。ではフィルターなしの画像はと言うと、

IMG_0757

どうでしょうか?実際にはこちらのほうがノイズは多いです。でも賑やかで、カラフルな気がしませんか?特に暗黒帯周りとかも、はっきりさではフィルター有りの方がいい気もしますが、リアルっぽさではフィルター無しの方がいい気がします。

これ、どう評価すればいいかかなり迷いました。どれも北アメリカ星雲としては一応は十分認識できるので、まあ悪くはありません。でも実際にPCの画面を見ていると、どれも淡いのです。多分ここで見せているiPhoneで撮影したのよりは実際の方が淡い印象を持つでしょう。

ここからは感覚的な評価になってしまって申し訳ないのですが、原因は根本的に暗いところで戦っているからなのかと思います。

暗いレンズを使って、そこまで感度の良くない昔のセンサーを使っているので、そもそも明るくないです。そこそこの露光時間分スタックしてやっと模様が出くる感じです。なので、フィルターを入れるとさらに暗くなってしまい、背景も暗ければ、赤も暗い。

光害カットフィルターを入れても例えばHα自身が増えるわけでもなんでもありません。周りが減るので目立って見えるようになるだけです。本質的にHαを増やすためには露光時間を増やす必要があります。単純にいうと、このセットアップではまだ露光時間が足りないのではないかと。

次のレンズを200mmの焦点距離にズームした同領域を見てみます。F4.5からF5.6になっているのでさらに暗い状況です。フィルターはなしです。露光時間は20秒で同じ、5枚スタックで合計100秒です。

IMG_0774

見えているのですが、やっぱり淡いんです。

以前ASI294MCとNIKKOR50mmで広角の電視観望を試した時はF1.4。(5.6/1.4)^2=16なので、同じ時間なら16倍の明るさで見ていたことになります。105mmのPENTAX 6x7レンズの時はF2.4なので、それでも(5.6/2.4)^2=4なので5.4倍の明るさでした。

やはり根本的に暗いのでは。その分露光時間を伸ばしてますが、20秒の露光時間はF1.4だとわずか1.25秒の露光時間に相当します。

NIKKORの50mm F1.4レンズはかなり昔のものだと1万円以下で手に入ります。私も5-6千円くらいで手に入れました。収差など目立ちますが、今なら安価なので初心者でも手が出ると思います。今一度明るいレンズを使って、もう少しだけ試してみたいと思います。



SharpCapの一眼レフの対応にあたって、これまでEOS 6Dで試してきましたが、今回残りの手持ちの機種でもテストしてみました。

 



手持ちの一眼レフカメラの接続テスト

前回電視観望まで試したEOS 6D以外にはEOS kiss X5とEOS kiss X7とEOS 60Dがあります。



X7はノーマルですが、娘のものなのでとりあえず手を出さないようにしておいて、X5と60Dを試すことにします。この2機種は天体改造済みのもの。なので接続テスト後は赤外の星雲とか見てみるのも面白いはずです。

先週末の金曜の夜、時間が少しあったのでその2機種のテストをしました。60Dはそのまま問題なく繋がり、X5の方も最初つながらないと思ったのですが、単なるミスで、手順さえ間違えなければそのまま順調に動きました。ちなみにミスというのは、
  • 最初動画モードでやっていてエラーが出た(でもそのあとさらに動画モードで試したら動いたので、この時点でバッテリーがギリギリだったのかも)。
  • バッテリーが空だった。
  • バッテリーを変えて、1枚だけ撮れたが、また動かなくなった。と思ったら変えたバッテリーも空だった。
  • 接続ケーブルのコネクタがゆるゆるで、いつのまにか抜けていた。
と、簡単なことばかりです。でも古い機種とかいう先入観があるとダメですね。「あー、やっぱり動かないんだな」と思ってしまいます。皆さんはくれぐれも私のような間抜けなミスは避けてください。


安価な電視観望入門セットアップの可能性

60DとX5の両方ともが動いたのと、夜になって天気も良くなってきたので、外でどう映るかのテストをしてみます。どちらにしようか迷いましたが、より安価で使える方をと思い、X5で試すことにしました。

レンズはキタムラかどこかで中古で数千円で手に入れた、キットレンズクラスのEF 28-80mm  F3.5-5.6で、昔一度三脚ごと倒れて壊れたやつです。CANON CAMERA MUSEUMに1991年発売で、定価42000円とあるので、付属レンズではなかったのかもしれません。これを80mm側で使います。なのでF5.6でそこそこ暗いです。

ちなみに、当時のX5のレンズキットにはEF-S18-55 IS IIがついてきたそうです。ダブルズームキットだとEF-S55-250mm F4-5.6 IS IIなので、電視観望には後者の方が焦点距離的にはいいかもしれません。中古だと、本体だけだと1万円台前半から後半、レンズキットで2万円代前半でした。もしこのテストがうまくいくなら、これくらいの値段からなら始めたいという人がいるかもしれません。

全くの初心者、
もしくは一眼レフカメラだけを持っている人が
電視観望に挑戦した場合、どんなことができるのか?

という可能性を示せればと思っています。いかに電視観望に対する敷居を下げるのかというのも目標としたいところなので、できるだけ安価にすむというのは大きなファクターの一つです。

以前も格安電視観望について記事を書いたことがありますが、電視観望をする際、一番高価になるなのがCMOSカメラなのです。安価なCMOSカメラはセンサー面積が小さく導入が難しくなり、その一方、十分な面積のセンサーを持つCMOSカメラはかなり高価で、そのことが初心者に対する敷居を上げてしまっています。

中古市場ではもうかなり安価なX5でもAPS-Cサイズで、電視観望で主流のマイクロフォーサーズサイズのASI294MCより既に大きいのです。でも値段だけで考えたら5分の1から10分の1とかでしょうか。これはうまくいったら相当インパクトがありそうです。


EOS X5による電視観望テスト

とりえずテストの結果を見てみましょう。まずはファーストライト。雲がある時のオリオン座付近です。全景が見えるようにZoomが25%です。20秒露光で4枚スタックなので、80秒ぶんです。

IMG_0710

ノイズも多少ありますが、意外に悪くなさそう。

雲がなくなった時に少しだけ拡大(33%)。同じく20秒露光で4枚スタック、80秒ぶんです。

IMG_0713

馬頭星雲とかも一応出てますね。

さらにM42部分を拡大。20秒が5枚です。

IMG_0715

うーん、ノイズはまだ多いですが、写りはそんなに悪くないですね。高々80mmのレンズで、M42部分をかなり拡大していることになるのですが、恒星がそこまで肥大していないです。レンズ枚数が少ないのか?F5.6で暗いから収差も小さいのか?これなら観望会で見せることも許容範囲かと思います。

X5のセンサーはAPS-Cの22.3×14.9mmで5184×3456ドット。ここから計算すると1ピクセル4.3μmで、ASI294MCのピクセルサイズとほぼ同じサイズです。感度はほぼほぼ1ピクセルのサイズに比例するので、ASI294MCクラスが格安で買えると考えると、かなりお得かもしれません。

一方、馬頭星雲と燃える木をみると、もう少し赤の感度が欲しいかなというところです。

IMG_0717
これで20秒x6枚です。一応天体改造済みでこれなので、センサーの感度そのものはASI294MCに比べるとやはりもう少しといったところなのでしょうか。今回使ったのがF5.6と結構暗いレンズなので、レンズを明るいものに変えることでまだまだ改善はするはずです。さらにQPBとかの光害フィルターもつけていないので、その分も改善するかもしれません。

もう一つ、M31アンドロメダ銀河です。これで20秒x5枚、計100秒です。

IMG_0724

ちょっとノイジーですが、何とか構造も見えかています。ここらへんまで見えるなら、十分楽しめるのではないかと思います。

視野が回転し始めてるがわかるくらいまで、5分くらいまでスタックしたのが下の画像です。ノイズがまだノイズが大きいですね。スタックでのノイズ軽減があまり効果的に見えません。でも今回はダーク補正もしていないので、次の課題はここらへんのノイズの緩和とかでしょう。

IMG_0729


最後はM42すばるの20x13=4分20秒スタック。これも回転が見え始めています。青い分子雲がわずかに見えかています。CBPとか試すと面白いかもしれません。

IMG_0736


この日の環境

ちなみにですが、この日は月齢23日で、下弦からもう少し欠けた位の、まだまだ明るい月夜です。場所も自宅の庭からで、光害フィルターも無しです。普通に考えたら星雲や銀河を見るような状況ではないにもかかわらず、ここまで見えているのは随分と頑張っているのではないでしょうか。環境がいい状態で試すとまだまだ改善しそうです。

今回使ったものは一眼レフカメラの中でも入門クラスで、レンズもキットレンズクラス。それも結構昔のもので中古市場では値段もかなりこなれています。少なくとも、CMOSカメラしか選択肢がなかった状況から、中古の一眼レフカメラまで範疇に入ってくるとなると、はるかに可能性が開けると思います。


電視観望と撮影の境界

実はこのテストをしている時に、結構いろいろ考えさせられました。果たして電視観望と撮影の境界はどこだろうというものです。一眼レフカメラを使って、15秒とか20秒とかの露光で連続してシャッターを切るのは、もう撮影ではないのか?という疑問を持つ方も多いと思います。リアルタイム性として考えると、少なくとも動画のようになるわけではありません。

私自身は、それでもまだはっきりとした境界が存在すると考えています。特に今回のテストを通してよりはっきり自覚できるようになりました。

大枠での定義は、目的の天体がモニターなどを通して「観望しているその場で」十分に見えているなら、それは電視観望と言っていいのでは。もし、その場で十分に見えなくて、「後の画像処理」をして初めて十分に見えるようになるのなら、それは電視観望というよりは撮影という範疇に入るのではということです。

例えば、
  • 今回使ったX5とレンズだけで、赤道儀に載せて10秒の露光をして、カメラ付属のモニターに出してみるだけだと、おそらく「後の画像処理」がなければ十分天体が見えることにならないと思うので、これは電視観望ではないと思います。
  • 一方、HUQさんが最初にやったように、α7Sで1/4秒露光で動画モードでHDMI出力してその場で十分見えるようにしている場合は、十分電視観望と言えるでしょう。
  • 例えば、暗い空でX5で1分くらいと十分露光して、目的とする天体が十分出ていて、それをその場で楽しむというのなら、これはリアルタイム性は薄いけれども電視観望と言ってしまってもいいのかと思います。
どれくらいの露光時間かではなかなか定義はできないので、その場で楽しめるかどうかというところがポイントになるのかと考えるようになってきました。 


電視観望を可能にする重要な技術

電視観望の技術の中で、いくつか非常に重要なものがあります。例えばSharpCapのヒストグラムでのオートストレッチボタンや、ストレッチ関数と呼ばれる中間値と黒レベルを利用した、リアルタイムでの簡易画像処理です。これは「その場で天体を楽しむ」ということに大きく貢献しています。

また、LiveStackも電視観望の重要な技術だと思います。もっと具体的に言うと、単に画像をその場で重ね合わせるだけでなく、また画面の平行移動や回転だけで星を合わせるだけでもなく、LiveStack時に星の位置をきちんと認識して画面を歪ませて星を合わせていく技術です。PixInsightやSequatorなどでは後の処理で同様の画面を歪ませての位置合わせはできます。でもその場で毎回やるわけにはいかないので、電視観望のツールにはなり得ません。こういった高度な処理をリアルタイムで行うことで、星像を肥大させずにスタックし、ノイズを減らしていくことができます。さらに言うと、この技術を用いると赤道儀も必要とせず、たとえ経緯台で視野が回転してもきちんと星の位置が合うということです。もっと言うと、ある程度広角にして、見ている間に天体が画面から逃げていかなければ、経緯台さえも必要とせず、固定の三脚だけで星像の肥大を避けスタックしていくことができます。

このような高度な技術はいまのところ私が知る限り、PC上ではSharpCapとASIStudioのみ。私はまだ使っていないですがASIAIRも同様の機能を持っているはずです。最近ではeVscopeも同等の機能を持っているのかもしれません?他には、電視観望用のハードウェアのRevolution Imagerがありますが、こちらはスタック機能は持っていますが、スタック回数を何回かに制限しているだけで、星像を合わせてスタックするような機能は持っていません。

リアルタイムで画像処理に近いような事をして、その場で天体をあぶり出す事でより楽しめるようになり、そう言った意味ではSharpCapは電視観望という分野を切り開いた秀逸なソフトと言うことができるでしょう。

こういった高度な機能はあればもちろんいいのでしょうが、たとえそんな機能がなくても、その場でモニターとかに写して天体がみんなと共有で楽しめたりするならば、もう電視観望の一種と言ってしまっていいのかと思います。これから先、さらに技術が発達して、その場で楽しむことはより簡単になり、手法もどんどん広がっていくことでしょう。電視観望の概念も柔軟に変化していけばいいのかと思います。


まとめ

今回のEOS X5は、元々中古で安価で手に入れたたものです。SharpCapが一眼レフカメラを扱えるようになったことで、使う機会が少なくなってきた中古のカメラに、また一つ大きな可能性が開かれようとしています。

本来SharpCapと一眼レフカメラを繋ぐというのは、撮影時の取り扱いを便利にするというが元々の目的だと思います。それだけではなく、LiveViewモードを明示的に分けて実装してくれるなど、EAA(電視観望)用途として考えると、今回のアップデートは相当なエポックメーキングなのかと思います。

現在はテスト段階なので、本当に初心者が触るとなるとまだ敷居が高くて不安定なところもあります。でもこれは今度どんどん改良されていくことでしょう。このブログも、興味を持った人たちができるだけスムーズに楽しめるように、説明やサポートなどで貢献できていければと思っています。

手持ちのカメラや、安価な中古の一眼レフカメラを利用するなどで、電視観望の敷居が下がり、天文人口の裾野が広がってくれればと思っています。

昨晩とても晴れていたので、SharpCapを使った一眼レフカメラでの電視観望テストの第2段です。


SharpCap3.3β接続確認状況

まずはこれまで私が聞いた可動情報を書いておきます。情報は全てTwitterや本ブログのコメント、個別のやりとりなどです。

(11月21日午後23時55分現在)

Canon

  • EOS 6D (Sam): 動作確認済、LiveStack可能、ミラーアップモードでは動作せず
  • EOS 6D (RAINYさん): 動作確認済、ASCOMドライバーでのLive ViewオプションでCapture Areaがデフォルトでは960X640なることを確認
  • EOS X7i (ぺんぱるさん): 動作確認済、LiveStack可能
  • EOS 6D Mark II (steorraさん): 動作確認済、LiveStack可能
  • EOS R (steorraさん): 動作確認済、LiveStack可能、ミラーレスで初確認
  • EOS Ra (steorraさん): さすがに試すのを躊躇
  • EOS X2 (ソルトさん): 接続してミラーアップはするが、シャッター切れずエラー
  • EOS RP (リュウさん): 動作確認済
  • EOS 7D (kumbenさん): 動作確認済
  • EOS 60D (Sam): 動作確認済、LiveStack可能、ミラーアップモードでは動作せず
  • EOS X5 (Sam): 動作確認済、LiveStack可能、ミラーアップモードでは動作せず
  • EOS M  (薜さん): 動作せず
  • 5D mark II (donchanさん): 動作確認済、LiveStack可能
  • EOS X7 (donchanさん): 動作確認済、LiveStack可能

Nikon
  • D750 (智さん): 動作確認、ミラーアップモードでは動作せず
  • D5000 (あぷらなーとさん): ニコンレガシー使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能
  • D810 (あぷらなーとさん): 「ニコン」使用、一度本体動作しなくなった、復帰後に動作確認済、FITS書き出し・ライブビュー・ライブスタック・ROIが可能、重い
  • D810a (あぷらなーとさん): さすがに試すのを躊躇
  • D5300 (ソルトさん): 動作せず
  • D50 (智さん): 動作せず
  • D7000 (あぷらなーとさん):  ニコンレガシー使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能
  • CooLPix B700 (ソルトさん): 動作せず
  • D3300 (あぷらなーとさん):  ニコンレガシー使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能(SDカード必須)
  • D3100 (あぷらなーとさん):  ニコンレガシー使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能(SDカード未確認)
  • Z6 (OSAさん): 動作確認済、LiveStack可能、サイレント撮影モード(シャッター動作による振動とシャッター音を出さずに撮影できる)は動かなかった
  • D3 (あぷらなーとさん): ニコンレガシー使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能
  • D300 (あぷらなーとさん): ニコンレガシー使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能
  • D90 (あぷらなーとさん): ニコンレガシー使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能
  • D610 (あぷらなーとさん): 「ニコン」使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能
  • D810a (あぷらなーとさん): 「ニコン」使用、FITS書き出し・ライブビュー・ライブスタック・ROIが可能、重い

PENTAX
  • K-30 (ソルトさん): 動作確認済
  • K-S2 (ソルトさん): 動作せず
  • K-50 (ソルトさん): 動作確認済
  • KP (薜さん): 動作せず
  • ist D (ソルトさん): 動作確認済
  • K100D (ソルトさん): 動作確認済
  • K-70 (Shinjiさん): 動作確認済、LiveStack可能
  • K-01 (ソルトさん): 動作確認済
  • Pentax K-5IIs (donchanさん) 動作せず
  • Pentax Q-S1 (donchanさん): 動作せず 

SONY
  • α7S or α7SII?(HUQさん): 動作せず
  • yα6000(amayama_54): 動作確認済、LiveStack可能

もし上記リストの訂正や、漏れている方で載せておきたい方がいましたら、Twitterかコメントに書いておいてください。上のリストをアップデートしておきます。また公開したくないという方がいましたら、TwitterのDMかコメントに書いてください。後でコメント自身も消しておきます。


さあ、6D電視観望の2回目のテストだ!

一昨晩は台風のせいか風も強かったのですが、昨晩は晴れて、風が吹いた後のこともあり透明度がそこそこ良かったです。でも21時半頃から月が出るので、長時間撮影も気が引けます。なので、まずは21時半まで少し暗いところに行って天の川撮影。これはまた記事にします。結局22時過ぎに自宅に戻って、眼視、惑星、電視観望と選択肢がありましたが、この日はやっぱりまだホットな一眼レフ電視観望です。

今回の目的はとにかく実践で使ってみること。できる限りいろんなところに向けて、これくらいまで見え、これくらいの使用にまで耐えうるとかいうことを示したいと思います。

前回のテストと少し変更したところがあります。まずはレンズですが、前回はNikonの135mm F2.8でしたが、今回はPENTAX 6x7の中判レンズの165mm F2.8です。理由は、周辺減光が顕著で、しかも色によって反応が多少違うようで、結果四隅に行くに従ってひどくなるカブリのようになってしまい、炙り出しが制限されるからです。フラット補正をリアルタイムでやってもいいのですが、いまだにうまく行ったことがなくて、今回も躊躇してしまいました。

もう一つの変更点は、今回Stick PCを使ったことです。前回はSurface PCなので、そこそこ速いですが少し大きいです。普段撮影用に使うStick PCが使えれば、さらにコンパクトにできます。


準備とトラブル

さて、まずは前回の状態の復帰です。機材はシンプルでポン置きでいいので、楽なもんです。レンズを水平にそこそこ北向きになるようにセットして、AZ-GTiでアラインメントを始めます。広角なので1スターアラインメントでもう十分です。計算によると3.65°x2.45°だそうです。これくらいの精度で最初置くだけでターゲットが視野に入ってくるので、まず取りこぼすことがありません。さすがフルサイズセンサーです。

すぐに網状星雲まで入って、画像が取り込めるようになったので、一つ新しいことを試しました。前回の一番大きな問題が、LiveViewモードの間シャッターをずっと「カシャン、カシャン」と切り続けること。6D本体のモニターをオンにすることでシャッターを開けっぱなしにしてかどうできないかです。

IMG_0574
一枚撮りではリモートでカラーバランスを調整できないです。
必要なら本体の方で色を合わせる必要があります。

まずSharpCapのStillモードで撮影開始してないときに、カメラ本体のモニター開始ボタンを押したらシャッターが開いて、SharpCapも落ちたりしないので、このまま行けるか!と期待しました。さらにSharpCapでLiveViewモードにして撮影開始しても音も鳴らずOKかと一瞬思いました。ところが、一枚撮影が終わったらわざわざシャッターを一度閉じて!?またすぐ開いて次の撮影にいくのです。結局各枚各枚の撮影終了時に必ずシャッターを閉じるという機能が働くらしくて、モニターオフにしている時と同じことでした。

さて、次にLiveViewへの移行です。途中SharpCapが落ちることが何度かありました。しかも一度落ちると、SharpCapを立ち上げ直してもASCMOの設定画面に行ってしまい、その後それを繰り返しカメラとの接続ができなくなってしまいました。SharpCapの立ち上げでも、カメラ本体の再起動でも解決しなくて、しばらくはPCの再起動で解決していたのですが、途中からタスクマネージャーで見てみるとSharpCapのゴミプロセスが残っていて、それを消すと再度SharpCapが問題なく立ち上がることに気づきました。

IMG_0573
こんなエラーが出て、これ以降接続できなくなりました。
でも実は反応がものすごく遅くなってるだけで、
分単位で待つと反応したりする時もあります。
SharpCapのゴミプロセスが残っているために起こる現象です。 

何度かやっているうちに、LiveStackに行こうとすると必ずSharpCapが落ちることに気づきました。前回とSharpCapのバージョンが違うのではとかも疑ったのですが、それも同じ。違うのはPCだけだということに気付いて、Stick PCから前回のSurface PCに戻しました。すると全く問題なくLiveStackに移行します。というより改めてSurfaceに戻ると、いかにStick PCでのSharpCapの反応が遅かったかに気づきました。少なくとも3.2の普通のCMOSカメラを繋いでいる時まではそんなことは気にならなかったので、今の3.3βと6Dは相当重いことになります。CPUが非力なためなのか、もしくはUSBの接続が遅い可能性もあります。でもUSB2.0って流石に転送速度に差が出るとは思えないので、やはりCPUの違いかなと思ってます。


充実の電視観望フルツアー

さて、これ以降は極めて順調。シャッター回数を節約したいので、15秒露光にしました。ISOは6400です。回った順番に示していきます。

状況はというと、月齢21日の半月以上の大きい月が出ていて、富山の中心の街から少し離れた住宅地です。普通なら決して星雲を見るようないい状況ではないです。そのため、QBPを入れてます。

  • 網状星雲です。赤と緑の色の違いもはっきり見えてます。
IMG_0576
LiveStackになると色バランスをリモートで調整することができるようになります。

  • 小さなM27亜鈴状星雲
IMG_0578
左端にかわいいM27が見えてます(笑)。
面倒だったので真ん中に持ってくのをサボりました。
この前にM57を見ましたが、流石に小さすぎました。
これくらいの大きさの天体だとレンズの焦点距離を伸ばす必要があります。


IMG_0584

拡大するともう少し形もわかりますが、恒星のハロが目立ちます。
レンズのせいです。
赤外起因だとしたらもしかしたらCBPにすると消えるかも。

  • M31アンドロメダ銀河、QBPは銀が苦手かもと思ってましたが、意外にいいかも
IMG_0587
構造も少しわかります。


  • らせん星雲
IMG_0590

  • 北アメリカ星雲一帯、ここまではっきり見えると迫力あります
IMG_0594

  • 白鳥座のサドル付近
IMG_0596
左下に小さく三日月星雲も見えます。

  • M33さんかく座銀河
IMG_0598
かろうじて腕らしきものが見えるくらいでしょうか。


  • カリフォルニア星雲
IMG_0599
月が近くにあるので、かなりカブってます。それでもこれくらい見えました。

  • ハート星雲と胎児星雲
IMG_0604
ここまで見えるとは。
でもかなり炙り出してるので周辺減光が目立ちます。

IMG_0611
でもセンサーの解像度はあるので、
多少拡大してしまえば周辺減光も気にならなくなってきます。

  • エンゼルフィシュ星雲?
IMG_0614
ここらへんはもうネタです。
まだ光度が低いのでほとんど見えません。
かろうじて右上を向く頭がわかるか?

  • のぼり掛けのM42オリオン大星雲と馬頭星雲、バーナードループ?
IMG_0618
これもネタです。黒い影は木の葉っぱです。
左端のカブリの中にバーナードループが淡く見えてます。
昇り立てで高度が低いのでこれくらい。
冬に向かって持って見やすくなるはずです。


M45プレアデス星団も導入したのですが、月が真横にあり、流石にダメでした。


まとめ

午前0時20分くらいから2時くらいまでの1時間40分。夏から冬までの星雲と銀河、もうフルコースです。ここまで見えれば大満足です。

一言で言うと、さすが撮影でも十分な実績がある6Dです。電視観望でも遺憾無く実力を発揮しています。センサーのピクセルサイズがASI294MC Proが4.6μm、6Dが6.3μmなので、一辺で1.4倍くらい大きいのです。1ピクセルの面積が大きければより多くの光子を取り込めるので、根本的に有利です。

かつ同じ焦点距離ならより広い面積を見ることができます。逆に同じ面積を見るならより焦点距離の長いレンズを使うことができるので、より暗い恒星を見ることができるはずです。実際に使ってみての感想は、確実にASI294MC Proよりも迫力があるということです。

その一方、シャッター回数の制限から一枚一枚の露光時間を長くせざるを得ないので、動きは少なくリアルタイム性には欠けます。ただ、移動する時は星の軌跡は写るので、それはみている人にとっては動きを感じるところで、全く動きがないというわけではないです。

さて、最後の画像の記録を見たら2時間近くで365回のシャッターを切っていました。15秒で一回なので、連続なら1分で4枚、1時間で240枚計算です。途中LiveViewモードからStillモードにしたりもしてたので、数的にはまあこんなもんでしょう。メカニカルシャッターの寿命が10万回だとすると、300回位観望回避r区と壊れる計算です。実際タイムラプスでは平気でこれくらいのシャッター回数になるので、15秒露光でのシャッター回数ならまあ許容範囲でしょうか。


今後やりたいこと

まだまだ試すべきことがたくさんあります。ソフト自身はアップデートを待つとして、手持ちでEOS X5があるので、これで電視観望できるかどうか。天体改造なしなので、赤は出にくいはずです。

X5の中古の値段が1万円台中くらいでしょうか。キットレンズ付きで2万ちょいです。これで本格的な電視観望が簡単にできるなら、裾野が広がりそうです。

あと、SharpCapからのプレートソルブを試してみたいです。これで導入が簡単になるかも。うまくいったらAZ-GTiなしで、StarSense ExplorerみたいなことがPCを使って実現しないかと思っています。そうするとハードは三脚と雲台とカメラとレンズ(とPC)だけで、ほぼ一般的な一眼レフカメラセットになるので、さらに敷居が下がるかもしれません。


昨日のSharpCapの一眼レフ対応の騒動から一夜明けてブログを書いています。まだちょっと興奮気味です。


SharpCapバージョンアップ間近

何日か前からSharpCapのβテストフォーラムで3.3βが間も無くリリースされるというニュースはあがっていました。金曜の夜にも確認し、そろそろかなと思って土曜の昼くらいに見たらすでにリリースされてるではないですか!

バージョン3.2から3.3βへの大きな変更点は、シーケンサー操作と、デジタル一眼レフカメラのサポートです。電視観望にとっては後者が重要です。


これまでの一眼レフへの対応状況

以前にもSharpCapで一眼レフを使う方法は少なからずありました。2018年の夏頃でしょうか、ASCOMの一眼レフカメラのドライバーを使ってSharpCapからアクセするするというものです。

でも実際私も6Dで試したりしたのですが、全く動きませんでした。その当時、幾らかの実際に動いた人がSharpCapでライブスタックを試したりもしていたそうですが、その方法はかなりトリッキーでした。カメラから直接、PC上のあるフォルダに画像ファイル書き込んで、そのフォルダ内のファイルをSharpCapが読み取ってスタックするというのが唯一の方法だったはずです。私の場合は、そもそもそれを試すところまでたどり着けない状態で、非常に不安定でした。

その後ちょくちょく気にしてはいましたが、年単位でなかなか進展がなく、そのため前回の記事のようにSIGMA fpに走って電視観望を試したりしていました。


なぜSharpCapと一眼レフカメラ?

ではそもそも、なぜSharpCapで一眼レフカメラが使えるといいのか?

一般的には撮影です。PCからカメラが制御できれば、ファイルのPCへの取り込みや、設定を変えながらの撮影、リモート操作などにつながります。でもこれらのことはこれまでも、少なくともCanonの場合はEOS UtilityやBackYardEOSを使うことでかなり以前から実現されてます。まだ私は試してませんが最近ではNINAを使ってもできるはずです。

でもSharpCapでしかできないことがあります。一般的にいう天体写真の画像処理を、簡易的にですがリアルタイムでしてしまうことです。オートストレッチやヒストグラムを見ながらのマニュアルストレッチ、LiveStackを使ってのノイズ緩和、ダーク補正やフラット補正もリアルタイムでできてしまいます。

さらにスタック時には、撮影した画面を元に星が重なるように画面を移動して追いかけます。しかもただ追いかけるだけでなく、個々の星の位置を認識し、画面を歪ませて星位置を合わせながらスタックしていきます。

これらの機能は、なかなか他のソフトでは実現できていなくて、今のところ知る限りSharpCapとASIStudioの中のASILiveのみです。これらの機能が電視観望へと繋がっていきます。快適な電視観望はこのような高度な機能の上に初めて成り立つのです。

SharpCapで一般の一眼レフカメラを使うことができると、より大きなセンサーをより安価に利用して電視観望を実現する道が開かれるのです。

そこにきて、昨日におけるSharpCap 3.3βのリリースです。まだβテスト段階に過ぎませんが、今回のバージョンでこれまで滞っていた一眼レフカメラのサポートが一気に進んだ感があります。


現段階での対応状況

さて、これらを動かすためにはASCOM環境がインストールされている必要があります。ASCOM Platformはここからダウンロードしてインストールします。DSLR(一眼レフカメラ)用のASMOMドライバーはいまだ開発段階のような状況で、私はここからダウンロードしました。インストールするとわかるのですが、接続方法は
  • CanonSdk
  • BackyardEOS
  • Nikon
  • Pentax
  • NikonLegacy
とあります。いくつかの説明を見る限り、LiveViewはCanonとNikonのみと書いてありますが、この説明も古い可能性がありますので、ここの機器の対応は現段階では自分で試す必要がありそうです。現状としては、
  • Canonは少なくとも私のところで動きました。
  • Nikonは智さん、あぷらなーとさんが動かしたという報告があります。ASCOMドライバーのカメラ選択のメニューで「ニコン」だと不安定でしたが、「ニコン・レガシー」だと比較的安定だったとのこと。
  • Sony用カメラのドライバーもあるようですが、Sonyカメラを持っていないので試せてはいません。 HUQさんが試したようですが、動かないと言っていました。
ところがです、あぷらなーとさんのところでNikonのD810をSharpCapで動かそうとしたらエラーで本体が壊れたという情報が流れました。幸い「バッテリーを抜いて強制電源OFFした後、電源を再投入してシャッターボタン長押し」で復帰したそうですが、まだ一番最初の一般向けのβテスト段階ですので、何か試す場合も自己責任で、くれぐれもご注意下さい。


SharpCapから実際に一眼レフを動かしてみる

さて、実際のテストの様子です。SharpCap3.3βのインストールはここを見てください。注意書きにもあり、また繰り返しにもなりますが、あくまでβテストです。自己責任で、人柱になるくらいの覚悟を持って、最悪機器が壊れてもいいような環境で試すことを強くお勧めします。撮影に使っている主力機などはまだこの段階では試すべきではないかもしれません。

IMG_0549


ASCOM関連もきちんとインストールしてあれば、あとはカメラとPCを繋ぐだけです。SharpCap3.3βを立ち上げてCameraのところを選ぶと、該当するカメラが出てきているはずです。それを選ぶと「カシャーン」シャッタを開ける音がして接続完了です。

この時点で「Snapshot」を押せば、撮影した画像が出てくるはずです。もし何も出て来なかったらカメラのキャップが外れてるかとか、露光時間が短か過ぎないかとか、ISOが低過ぎないかとかきちんと確かめてみてください。夜にいきなり本番で試す前に、一度昼間明るいところで試してみて、まずはきちんと動くかどうか確かめた方がいいと思います。


LiveViewモード

ここからが新機能です。メニュー下の左端にある新しい「LiveView」を押します。するとシャッターが「カシャーン、カシャーン、カシャーン」と鳴り始め、連続での撮影が始まります。これがこれまでのCMOSカメラでの通常の撮影にあたります。ずっとシャッターを切り続けるので、シャッター回数を気にする人はやはりまだ躊躇すべきかもしれません。もしくは露光時間を長くして対処した方が良いのかと思います。通常、これまでのCMOSカメラはメカニカルシャッターなどは、SharpCapでカメラを接続すると連続でずっと撮影をし続けています。

本当は電視シャッターを持っているか、もしくはミラーアップ撮影ができれば良いのですが、私のところのCanonでも、智さんのところのNikonでもミラーアップにした途端SharpCapが止まってしまいました。私のほうはまだマシで、ミラーアップを解除したらまたSharpCapが動き出したのですが、智さんのところはミラーアップにした途端エラーでSharpCapが落ちてしまったそうです。ここら辺は今後改良されることを期待するしかないと思います。


あと、少し理解しておいた方が良いことは、メニュー下の「Capture」とかは画像データをディスクに「保存する」ということを意味します。カメラを繋いだ段階で、保存はしなくても撮影(PCに画像を送ること)はし続けていて、保存はせずに画像を捨て続けているということです。一眼レフになってもこれは同じ概念のようで、シャッターを切り続けても、PC上のディスクにも、カメラ内の記録カードにも画像は一切保存されません。これがデフォルトの設定のようです。

表示された画像は、ヒストグラムの3本の線で見え方を変えることもできます。簡単なのは真ん中の線で、左右に動かすと明るくなったり暗くなったりするのがわかると思います。画像処理でのあぶり出しの効果を撮影している最中にできるというわけです。SharpCapの有料版のライセンスを持っている方は、オートストレッチもできます。ヒストグラム右の雷のようなボタンを押してください。簡単にある程度の最適化ができます。


とうとう、LiveStackができた! 

ここまでのテストが終わったら、次はLiveStackを立ち上げます。すると、シャッタを毎回切るとともに画像がスタックされていきます。これを見た時、おおっ!!!と感動しました。

とうとう念願だった一眼レフカメラによる電視観望で、リアルタイムに炙り出しまで実現できる道が開かれたことになります。

さらに、Live Stack中にSave Allというオプションを選ぶことができて、こうするとPCに全てのシャッターの画像ファイルが保存されるようです。でも、それでもカメラカード内には何も保存されないみたいです。

この時点で16時過ぎくらいだったでしょうか。Twitterに投げたところ、すごい反響でした。特にあぷらなーとさんは狂喜乱舞。これまでの複雑な解析手法を相当簡略化できるとのことで、早速追試して、上記の通りカメラを壊しそうになったというわけです。

テストは上記の写真の通り、昼間の明るいうちに行いました。できれば夜に実際の空で試したいのですが、天気予報は曇り。果たしでどうなるか?


実際に夜の星を見てみる

夕方過ぎ、暗くなってきたのですが全面に雲が出ています。落ち着かなくてちょくちょく外に出て見てみると、20時半頃でしょうか、ごく一部ですが薄雲越しに星が見えています。雨は大丈夫そうなので、とりあえず機材を出そうと思い、AZ-GTiに6Dを取り付けて外に持っていきます。レンズはNikonの135mm f2.8です。下の写真はちょうど天頂付近をみている様子を上の方から撮影したものです。6Dの文字が誇らしげに見えると思います。
IMG_0556
あとで写真だけ見たら、一瞬背景が星に見えました。実際はアスファルトです。

カメラと接続して外に置いたPCではもちろんSharpCapの3.3βを走らせます。さらにAZ-GTiをコントロールするSynScan Proを走らせて、このPC自体を部屋からリモートデスクトップで接続します。まだ暑いので、クーラの効いた部屋で快適リモート電視観望です。

さて、実際の6Dでの電視観望ファーストショットです。

IMG_0563

ISO6400、10秒露光の一発撮りです。10秒ごとにこんな画像が出てきます。QBPがついているので、ヒストグラムであぶりだしてやると、淡いですがすでに星雲が見えています。上の方が網状星雲、下の方が北アメリカ星雲です。

レンズの焦点距離は 135mm。これまでツースターで使っていたフォーサーズのASI294MCと比べて、フルサイズの6Dの場合1.85倍くらいセンサーの一辺が長くなるので、同じレンズで3.5倍くらいの面積が見えます。ASI294MCで135mm/1.85~75mmくらいのレンズを使うと同じような面積になりますが、恒星の見え具合は直焦点の場合レンズの焦点距離に比例してよくなります。6Dで135mmレンズを使う場合、ASI294MCで75mmのレンズを使う場合に比べて1.85倍くらい暗い星まで見えることになります。1等級以上くらい星まで見えるようになります。

星が画面いっぱいに散りばめられたような電視観望にしたい場合は、長焦点のレンズを使うことが必須になります。これまではセンサー面積が小さいと狭い範囲しか見れないことが、フルサイズのセンサーを使うことで解決されたわけです。 

でもこの画面を撮った直後に雲が出てきて、LiveStackはお預け。しばらく待ちます。


ついにLiveStackで星雲がはっきりと!

その後10分くらい待つとすぐにまた雲がひらけてきて、ついに6DのLive Stackで星雲をはっきり映し出すことに成功しました!!!

IMG_0566

LiveStackなので、待てば待つほど背景のノイズが少なくなってきて、星雲がどんどん見えてきます。上の画像で15秒x8=120秒、ISOは6400です。

しかもアラインメントも普通に成功です。SharpCapのアラインメント機能はものすごく優秀で、撮影した画面の中の個々の星の位置を認識し、画面を歪ませて星位置を合わせながらスタックしていきます。このためある程度広角のレンズなら赤道儀や経緯台の自動追尾なども必要なく、固定三脚でも十分実用な電視観望ができます。

操作性に関していうと、少なくとも6Dの場合は露光時間もゲインもSharpCap上から調整できます。もうCMOSカメラと変わらないくらいの操作性です。ただしカラーバランスを調整できるのはLiveStack中のみでした。CMOSカメラの時にできた取り込み時の赤と青の調整は、そもそもパネル自体が出てこないです。

とりえずうまくいったのですが、この後またモニター上で見ても雲に覆われてしまって、外に出たら空全体が厚い雲で覆われてました。雨が心配だったのでそのまま機材も片付けることにしました。一瞬のテストチャンスだったみたいです。


一眼レフカメラがSharpCapで使えることのメリットのまとめ


今一度一眼レフカメラがSharpCapで使えることのメリットをまとめておきます。
  • まず、センサー面積が大きくなる。
  • 同じ面積を見るのに、焦点距離を伸ばすことができる。
  • より暗い恒星まで見えるので、星いっぱいの電視観望になる。
  • 見える面積が広がるので、特に初心者にとっては導入が楽になる
  • 中古一眼レフカメラは安価なので、大きなセンサーが安く手に入る。フルサイズのCCDやCMOSカメラはものすごく高い。初心者では全く出が出ないほど高い。
  • カメラ用の安いレンズを電視観望に使うことができる。これはこちらのページをご参照ください。
  • 初心者が初めて電視観望を始める時、一番高いのがカメラです。この値段が下がる可能性があるので、電視観望の敷居が一気に下がることが期待できる。
など、メリットだらけです。一方デメリットは
  • まだ操作が少し複雑。最初のうちは丁寧なインストラクションや解説が必要。
  • 安定性に問題がある。これは時間が解決することになると思う。
  • シャッターを切り続けるので、シャッターの寿命が気になる
など、どれもソフト的になんとか解決しそうなものです。


まとめ

とにかく、これまで面積の大きいセンサーを使うことが(ものすごく高価で)大変で、小さい面積で初心者は四苦八苦してたはずなのです。面積が小さいと、最初に天体がセンサーないに入って来なくて、導入がすごく難しいのです。一眼レフカメラが利用できるとなると、今までベストと言われてきたフォーサーズのASI294MCよりも大きな、APS-Cとか、もしかしたらフルサイズまで安価に手に入れられるかもしれません。もしくは手持ちのカメラがあったら簡単に試すこともできるかもしれません。これらが解決するなら、さらに電視観望の敷居が下がり、天文人口の増加につながるかもしれません。 

今回のSharpCapのアップデートは大きなエポックメーキングです。このブログでは電視観望にターゲットを絞って説明しましたが、あぷらなーとさんのように他にもメリットを感じるケースは多々あるかと思います。今回触って感想として、私的には極上の電視観望用のカメラが増えたような、得した気分になれました。

私はSharpCapの開発には全然貢献できていなくて、ただのユーザーにすぎないのですが、開発陣の努力に心から感謝します。今回のようにソフトの改良、特に最近はAZ-GTiのようなハードと柔軟なソフトの組み合わせで状況が劇的に変わり、以前よりはるかに便利になったりしています。プレートソルブなんかも良い例かと思います。私が星を始めてわずか4年の間にも物事は大きく変わってきています。まだまだこれからの将来も楽しみでなりません。 


今回はAPT(Astro Photography Toos)とPHD2を使って、CMOSカメラでディザーをしながらガイド撮影をします。以前にもAPTを何度か試したのですが、いずれも長続きせず結局使わずじまいでした。


縞ノイズとディザー撮影

長時間露光撮影をしようとすると、ディザーが必要になります。たとえガイドをしていても、ガイド鏡や鏡筒のたわみなどでどうしても相対的にズレが生じてしまい、視野が1時間とかのオーダーだとかなりズレていってしまいます。その結果何が起きるかというと、画像処理の段階で盛大な縞ノイズ(縮緬ノイズ)に悩まされるわけです。前回の記事で紹介した4日間撮影したバラ星雲も、初日のガイドなしでは以下のような縞ノイズが画面全体に出てしまいました。



integration_DBE_PCC_AS_cut

この縞ノイズは多少の画像処理ではどうしようもありません。ある程度の軽減はできますが、少なくとも私は最終画像に持っていくまで影響のないくらいにすることができていません。

あぷらなーとさんが以前面白いアイデアで縞ノイズの除去に成功しています。その結果がFlatAidProに反映されているとのことなので、FlatAidProに通すことも一つの解です。無料版でも画像サイズ制限なしで使うことができます。今回実はFlaAidProで試して、細かい縞ノイズは結構きれいに消えたのですが、下の画像のように元画像で恒星中心などのサチりぎみの箇所が、流れたラインに沿って大きなスクラッチのようになってしまったので、今回は諦めました。

light_BINNING_1_integration_Preview01

なんだかんだ言って、縞ノイズを確実に解決するのは、ソフト側で苦労するよりは、今のところディザーが一番手軽なのかと思います。

さてディザー撮影ですが、一眼レフカメラの場合は、私は6DなのでBackyard EOSを使うことで、PHD2と連携してディザー撮影が簡単にできます。しかしながらCMOSカメラはこれまでほとんどSharpCapですませてきて、せいぜいlivestackで短時間撮影を重ねたくらいで、大した長時間撮影はまともにはしてきませんでした。今回COMSカメラでどうやってディザーを実現しようか色々と考えてみました。


SharpCapでのディザー撮影

最近のSharpCapはディザー撮影もサポートしていますが、なぜかこの機能livestackの中でのみ動きます。少し試したのですが、どうもまだこなれきっていないようで、ディザーをするタイミングを「何秒ごと」としか決められないようです。

ディザーのスタート自身は、そのフレームの撮影が終わるまで待っててくれるらしいのですが、ディザーをしている最中もカメラは動いていて撮影はし続けているようです。その間に撮影した画像はぶれてしまうために捨てざるを得ません。ディザーが止まって、そのフレームの撮影が終わってから改めて撮影を始めたフレームがやっと使える画像になります。マニュアルによると、ディザーの際中の画像はlivestackでスタックされることは無いと書いてあります。逆にいうとやはりディザー中も撮像は続けられていてその撮像時間を一枚だけ変えるとかはできないので、無駄になるとわかりつつもディザー後その画像の撮影終了時間が来るまで待つしかないということのようです。

具体的には、livestackの中の機能で、個々のフレームを全て保存するというオプションがあり、これをオンにするとlivestackモードでも通常の撮影のように使うことができます。問題は、短時間露光撮影ならまだそこまで無駄にはならないのですが、例えば5分とかの長時間露光をすると、数十秒のディーザーのために丸々5分の画像を取り終わるまで待って、次の画像を使うことになります。なのでディザーしている時間以上の露光時間で撮影する時には、撮影効率は必ず50%以下になってしまうというわけです。

基本的にはSharpCapのディザーはlivestackの中の一機能だけの役割で、せっかくスタックした画像をディザーで乱さないための機能ということになります。

うーん、さすがにこれはもったいないです。もっとうまいやり方があるのかもしれませんが、少なくとも私にはうまい回避方法が見つかりませんでした。何かいい方法があったら知りたいです。

とりあえず今回はCMOSカメラでの長時間露光をする必要があったので、この時点でSharpCapでのディザー撮影を諦め、兼ねてから使ってみたかったAPTに、少なくともCMOSカメラのディザー撮影に関しては、プラットフォームを移行することにしました。


APTのインストール

以前にもAPTのインストールについては書いていますし、日本語でも随所に解説されているので詳しくは書きませんが、ポイントや気づいたことをメモがてら書いておきます。

まず今回の目的で、ガイド撮影のためにPHD2は必須なので、これはインストールしておきます。

PHD2もそうですし、APTもそうなのですが、ソフト間と各機器を相互接続するためASCOM関連のソフトが必要になります。まずはASCOMプラットフォームをインストールしておきます。この際、.NET framework 3.5が必要になります。後でAPTをインストールするときに.NET framework 2.0が必要になるのですが、.NET framework 3.5は2.0も含んでいるのでAPTより先にASCOMをインストールしておいた方がいいです。.NET framework 3.5インストール後は一度Windowsの再起動が必須です。OS再起動後、再度ASCOMプラットフォームをインストールしてみてください。

ASCOMプラットフォームインストールさらに、もう一つ。のちにAPTのplate solvingで赤道儀をいじりたくなるはずなので、各メーカーに合った赤道儀用のASCOMドライバーも入れておきます。

あ、CMOSカメラを初めて使う場合は、カメラのドライバーも必要になります。これは各メーカーのページからダウンロードしてインストールすればいいと思います。例えばZWOならここです。同ページのASCOM用のドライバーですが、APTにおいてはもう必要無いようです。APTの履歴を見てみると2019年12月以前のバージョンのAPTでは、ZWO社のASIカメラはASCOMカメラとして認識されていたのですが、それ以降のバージョン3.82からはASIカメラをネイティブドライバーで動かすようになっているとのことです。

ここでやっとAPTダウンロードして、インストールします。とりあえずは評価用のデモ版でいいでしょう。デモ版でもほとんど全ての機能が使えます。ダウンロードと同じページに日本語化するファイルや、日本語のマニュアルもあるので便利です。これは星見屋のM店長がご尽力されたおかでです。

インストール完了後、さっそくカメラを繋いで立ち上げてみましょう。最初はわかりにくいので、昼間にやってみることをお勧めします。できるならこの時点で赤道儀もPCとケーブルで繋げておくといいでしょう。


APT動作のポイント

最低限ディザー撮影を始めるまでに必要なことを書いておきます。たくさんの機能があるのですが、必要なことはそれほど多くはありません。

まず立ち上げると自分が今いる位置の座標を聞かれます。デフォルトはグリニッジ天文台になっているので、実際に撮影する場所の緯度経度入れます。最初にめんどくさくてキャンセルしてしまった場合は、「Tools」タブの「APT Settings」から「Location」タブに切り替えて設定できます。

この「APT Settings」ですが、最初はほとんどいじる必要はないです。唯一いじったところが「Main」タブの「Images Path」くらいです。これもデフォルトでよければ触らなくてもいいです。少なくとも撮影まで持っていけます。

他にも「Tools」タブにはたくさんのボタンがありますが、ほとんどは使わなくても撮影までは辿りつけます。実際にはピント合わせの時に「Magnifier」を使ったくらいでしょうか。「LIve View」と合わせて星を拡大してピント合わせをしました。「Focus Aid」とかもあるのですが、拡大できなかったり、下手にスタックしてしまったりでピントを触った時のブレの影響が出てしまい、あまり使い勝手は良くなかったです。

CMOSカメラを繋いで、「Camera」タブから「Connect」を押すとカメラが動き出します。ガイド用にもカメラを繋いでいる場合、撮影用のカメラと合わせてCMOSカメラが2台になります。たまにガイドカメラが選択されてしまうことがあります。でもこれ結構気付きにくて、例えばピントを合わせようとしても全然星が見えなかったり、見えていても変化しないとかで、やっと気づいたりします。その場合は「Camera」タブの一番下の「Setting」ボタンから選択できます。

冷却する場合は下のほうにある「Cooling Aid」を「Warming Aid」が有用です。ゆっくりと冷やしたり温めたりするので、カメラへのショックが少ないでしょう。

とりあえずは赤道儀の自動導入で撮影したい天体を導入します。導入後の位置が多少目的のものとずれていても構いません。次の「goto++」で自動で位置調整できます。

「Gear」タブで赤道儀との接続をします。上で書いた赤道儀用のASCOMドライバーをインストールしてある必要があります。「Connect Scope」ボタンで赤道儀が接続できたら、早速同じエリアにある「Point Craft」を押してAPT最大の特徴のgoto++を試してみましょう。

ここで必要なことは、一番下の「Settings」ボタンを押して「PlateSolve 2」と「All Sky Plate Solver(ASPS)」をインストールしてきちんとパスを設定しておくこと。ダウンロードをどのページからすればいいかも、リンクが張ってあるのですぐにわかるかと思います。PlateSolve 2は本体と「UCAC3」のみでいいです。「APM」はなくても動きます。UCAC3はPlateSolve 2をインストールしたフォルダの中に入れてください。そうでない場合は一度PlateSolve 2を立ち上げて、FileメニューからUCAC3をインストールしたフォルダを指定する必要があります。これら2つのインストールはあらかじめ昼間に済ませておいた方がいいでしょう。

ここまででgoto++を試す準備ができたら、「Point Craft」スクリーンに戻って、「Objects」か「Scope Pos」を押してざっくりとした座標を入力します。大画面右上の「Shoot」ボタンで一枚撮影して「Solve」か「Blind」ボタンを押します。うまく解析が終わると、画面真ん中に丸が出てきます。「Sync」ボタンを押しておくと、今の位置が赤道儀に送られ同期し、その方向を向いていると認識します。

次に「Aim」ボタンを押すと別の丸が出てきて、マウスを移動したいところに持っていってクリックすると、2つ目の丸が移動します。その後「goto++」を押すと、その位置が中心になるように赤道儀を移動してくれます。勝手にもう一度撮影するので、本当にその位置に移動できたかどうかわかります。


ディザーガイド撮影

希望通りの構図になったらPHD2でガイドをはじめてください。そういえばPHD2の解説ってあまり詳しいのはしたことがないですね。ずっと昔まだ撮影を始めたばかりの時の記事がありますが、古くてあまり役にたたなさそうです。PHD2はHIROPONさんのページで解説されていますし、同ページから同じくHIROPONさんが書かれた日本語のマニュアルもあるので、特に問題はないと思います。

必要なのはPHD2で「ツール」(Tools)メニュー下の「Enable Server」をクリックしておくこと。これでAPTから自動的にディザー時にガイドを止めてくれるはずです。

APTでのディザーの設定は、「Gear」の赤道儀設定のとことにある「Guide」ボタンから。一番上の「Guiding Program」は「PHD」になっているので、今回は「PHD2」に変更。上から二番目の「Auto Dithering」はオンに。振幅がデフォルト値だと小さすぎて縞ノイズが回避できない可能性があるので、「Guiding Setting」スクリーンで、上から三番目の「Dithering Distance」をデフォルトの1から4くらいに大きくしておきます。これで準備完了です。

実際の撮影はメイン画面の「Camera」タブから「LIGHT PLANS」の「Test」とか選んで、横の「Edit」を押して、「Plan to edit」のところを「Add New Light Frame Plan」で新規プランを作って、露光時間とか枚数とか入れていきます。

PHD2がきちんとガイドをしているなら、あとはAPTの「Camera」タブの「Connect」ボタンのすぐ横の「Start」ボタンを押します。もし「Start」ボタンが押せない場合は、カメラが接続されていないとか
Live Viewがスタートしているとかです。「Camera」タブの「Connect」ボタンがきちんと「Disconnect(これが繋がっている状態を表してます)」になっているか、「Live View」ボタンの色が濃くなっていないか(ボタン背景が黒の場合がLiveViewがオフです。)確かめてみてください。正しい場合は「Start」ボタンの背景が濃くなっているはずです。

実際にディザーされているかどうかは、「Gear」タブの「Guide」のところに「(D)」が出ていれば大丈夫です。念のため何枚か撮ったら、「Img」タブで撮影できた画像をダブルクリックして、星がきちんと動いているか確認してみてください。


APTを使ってみての感想、SharpCapとの違いなど

実際にAPTを使ってみると、随分とSharpCapとのコンセプトの違いを感じます。撮影に特化した感じです。
  • 例えば、撮影した画像をできるだけ無駄にしない努力が随所にされているのは好感が持てます。保存形式は、プレビュー に当たる「Shoot」を除いて、基本Fits形式のみです。撮影中は必要のないボタンは押すことができないようになっています。ディザーもPHD2が動いていれば基本的にはデフォルトでオンになるので、オンにし忘れたとかで撮影画像を無駄にしなくて助かります。
  • SharpCapに比べるとAPTはディザーのオプションもしっかりしていますが、ディザーパターンは選べないようです。ランダムだけのようです。一方、PHD2にはランダムかスパイラルかを選べる項目があります。どちらが優先されるのでしょうか?まだよくわかっていません。
  • SharpCapとの違いを感じたのは、露光時間とゲインの調整がしにくいことでした。実際に移す画面は「Live View」ボタンを押せば見えるのですが、実際の露光時間とゲインは数字で打ち込むか、Ringy Thingyと呼ばれる小さな丸いジョグダイアルのようなもので合わせる必要があります。SharpCapのスライダーが秀逸だったことがわかります。
  • Live ViewはさすがにSharpCapの方がはるかに高機能です。パッと触っただけでも、APT側はカラーバランスが取れない、livestackは当然ないなどです。APTにもオートストレッチは一応あります。「Tool」タブの「Histogram」でヒストグラムを出し、「Auto-Str L」を推します。ただ、調整幅が少なく操作性がいまいち、かつこのヒストグラムも輝度しか見えなくて、カラー情報はわかりません。逆に言えば、写っている画面はあまり気にさせずに、撮影にすぐに入って欲しいという意図が感じられます。ShapCapの経験から行くと、カラーバランスによってはADCの範囲に入ったり入らなかったりするので、少し気になりますが、まあ大丈夫なのでしょう。(2020/4/16 追記: APT Settingsの CCD/CMOS settingsタブのRed Channel Color BalanceとBlue Channel Color Balanceで色のバランスを取ることができるのがわかりました。保存されるRAWファイルには適用されず、見た目だけのバランスのようです。また、Auto Stretch Factorをいじると、デフォルトのオートストレッッチの強さを変えることができるので、これで合わせると程よい明るさで見ることができそうです。)
  • とにかくAPTは撮影に特化していると思っていいです。これと比べるとSharpCapの撮影へのこだわりはまだ中途半端に見えてしまいます。短時間撮影や、Live Stackを使ってのラッキーイメージ撮影など、ガイドを使わない撮影ならSharpCapの方がいいかもしれませんが、長時間撮影はAPTの方が遥かに向いています。逆に、APTで電視観望は無理だと思いました。カラーバランスが取れないとか炙り出しが全然甘いとかです。

APTとSharpCap2本のソフトを使いわけることで、撮影と電視観望の切り分けがきちんとできるようになるでしょう。


Demo版と有料版の違い

さてAPTですが、最初はデモ版を使っていました。無料のデモ版でもほとんどの機能は使えるようです。無料版でさえもこれだけの機能が使えるのは素晴らしいことです。

有料のフル版とのちがいはこのページの一番下の緑の字になっているところに載っています。少なくとも撮影を始めたばかりの人ならデモ版でも困るようなことはほとんどないでしょう。フル版で気になる機能はObject選択のところで星や星雲星団が見やすくなるかとか、PiontCraftの結果を残せれるかとかくらいでしょうか。無料版とあまりさをつけていないところはユーザーの間口を広げる意味でも好感が持てます。もっと使い込んでいく場合には撮影用のスクリプトとかも有料版のみサポートされているらしいので、違いが重要になってくるのかもしれません。

でもこれだけの機能にして18.7ユーロ。日本円にして2千円ちょっとなので、私は感謝の意味も込めてフル版にしました。ヒストリーを見てみると4ヶ月ほど前にZWOのカメラがネイティブでサポートされたとのことなので、いいタイミングだったかもしれません。そう言えば以前はASCOM経由でのカメラの接続確認画面がAPT画面の裏に隠れていて苦労したのですが、今回はカメラの接続は普通に行われていて特に困った覚えがないです。


まとめ

なかなか使うことができなかったAPTですが、今回CMOSカメラのディザー撮影という必要に迫られてやっと使うことができました。使ってみると素直なソフトで、操作性も悪くありません。何より、撮影画像をミスとかで無駄にしないという方針みたいなのが随所に見えたのは素晴らしいです。

これ以降、CMOSカメラでの長時間ディザーガイド撮影もどんどん進めていきたいと思っています。とりあえずはTSA-120とフラットナーにASI294MC Proをつけての撮影ですかね。



その1: 準備編
からの続きです。


メシエ天体が実際に電視で見えるかどうかはSharpCapの設定に大きく関わってきます。以前解説を書いたのですが、バージョンが上がって新しい機能が追加されていることなどもあるので、今一度簡単に書いておきます。本質的にはSharpCapのパラメータは以前書いたものとあまり変わらず、8秒露光、ゲインは350程度、Image Controlsのgamma 50、Brightness 240で固定、あとはDisplay Controlsでいじります。

ポイントはLiveStack機能のタブの一つのhistgramでのレベル補正が、特に淡い天体の場合の見やすさにかなり効いてきます。基本的にはdark側のスライドをピークの左側の裾野くらいまで持ってくることです。あとは左側の上下スライドでダークの効き具合をいじるだけです。

見たという事実が大事で、見え方は所詮低解像度のカメラでそれほどこだわらないので、これくらいの設定で十分だと思います。

次に画像の保存方法です。SnapshotファイルはStackした画像とは必ずしも一致しないようで、たいてい画面で見ているより保存された画像の方がイマイチな場合が多いです。さらにSnapshot機能はLive Stack機能がオンになっていると使えないので、
  1. 一旦StackをPauseしてから
  2. Live Stack機能をオフ
  3. SnapShotボタンを押してPNG画像ファイルを保存
  4. Live Stack機能をオン
  5. Auto saveにチェックを入れる
  6. Clearボタンを押してfits形式で保存
  7. Auto saveにチェックを外し、次のメシエ天体へ
というような手順でStackの機能があまり反映されないsnapshotファイルと、Stackの機能が反映されたfitsファイルを保存します。さらに注意点ですが、Live機能をオフにしてからDisplay Controlsなどのパラメータを変えると保存されるSnapshotファイルの色などが落ちてしまい、みすぼらしくなるので、LiveStack機能をオフにしたら何も触らずにすぐにSnapShotボタンを押してPNG画像ファイルを保存するようにします。

今回はそれに加え、何枚かPCの画面を直接iPhoneで撮影するという、これまでよくやっていた方法でも画像を撮りましたが、メシエマラソンの場合は時間との勝負で、画質にはこだわらないので、実はこの方法が一番いいのではと後から思いました。

実際に撮った写真を、数が多いのでちょっと迷ったのですが、参考になればと思い全部載せることにしました。
  • 20時21分: とりあえず見やすいM45 (プレアデス星団、すばる)。月明かりもあるため星間分子ガスなどは見えず。左下に大きなゴミがあるみたいで写り込んでしまっています。最初の頃はSharpCapのSnapshotで保存です。
Capture 20_21_36_0001_M45


  • 20時30分: やはり見やすいM42とM43 (オリオン大星雲)。さすがにこれは月明かりがあってもよく見えます。
Capture 20_21_36_0002_M42_M43

  • 20時35分: M103。SharpCapの使い方ミス(Stackをオフにしてからパラメータを触ってしまった)で白黒になってしまいました。
Capture 20_21_36_0003_M103


  • 20時44分: M52。ゴミの写り込みが目立ちます。
Capture 20_21_36_0007_M52

  • 21時03分: M41。かなり下の方に来ていて、気付いた時には木に隠れかけていました。枝が写り込んでしまっています。これも焦っていて白黒に。この直前にCMOSカメラをクリーニングしたため、ゴミの写り込みがなくなっています。
Capture 20_21_36_0008_M41

  • 21時17分: M78。写っているのか写っていないのか、真ん中に何か見えますが、かなり薄くしか見えていません。
Capture 20_21_36_0009_M78

  • 21時44分: M1。月がすぐ真横にあるせいなのか明るすぎるのと、これまで見たことないような変な模様が写ってしまっています。真ん中に薄くぼんやりと何か写っているのですが、これだけ写すだけでもかなり手こずって、すごく時間を費やしてしまっています。
Capture 20_21_36_0010_M1

  • 21時48分: M38。星雲に比べると星団は楽で、導入と電視、ファイルの保存までわずか4分しかかかっていません。
Capture 20_21_36_0011_M38


  • 21時52分: M36。こちらもわずか4分。
Capture 20_21_36_0016_M36

  • 21時55分: M37。これは星が集まっていて綺麗です。
Capture 20_21_36_0017_M37

電視中のものをiPhoneで撮影すると下のようになります。実際の電視中の印象にとても近いです。これくらいの印象になると思ってもらえるといいです。

IMG_1614_M37


  • 21時59分: M35。
Capture 20_21_36_0018_M35

  • 22時03分: M50。
Capture 20_21_36_0019_M50

  • 22時05分: M47。散開星団続きでつまらないで、ちょっと飽きてきたところです。
Capture 20_21_36_0020_M47

  • 22時11分: M46。
Capture 20_21_36_0021_M46

上のは撮って出しですが、下のは画像処理をしたものです。と言ってもホワイトバランスとレベル調整だけです。
Stack_32bits_4frames_32s_M46


  • 22時14分: M48。
Capture 20_21_36_0022_M48

  • 22時21分: M44。これも白黒になってしまいました。
Capture 20_21_36_0023_M44

  • 22時25分: M67。星がたくさん集まっていてちょっと変化があります。
Capture 20_21_36_0024_M67

  • 22時37分: M65とM66。系外銀河です。SharpCapのパラメーターが変わるので、ファイルにするまでに時間がかかりました。系外銀河は見にくいので画像処理をしています。
Stack_32bits_10frames_80s_M65_M66


  • 22時42分: M98。系外銀河もパラメータさえ決まるとすぐに写ります。ちなみに、今回ほとんどのものが8秒露光の複数スタックです。
Stack_32bits_12frames_96s_M98

  • 22時46分: M99。渦までよく見えます。画像処理済みです。
Stack_32bits_13frames_104s_M99

ちなみに撮って出しだと下のようになります。これでも渦はなんとか見えますね。電視上はこんなもんです。
Capture 20_21_36_0028_M99


  • 22時48分: M100。
Stack_32bits_16frames_128s_M100



この時点で、あまりに寒いのと明日の仕事があるので撤収することにしました。結局20時20分ころから22時50分頃と約2時間半で、23天体。一時間あたり10天体くらいはいけるので、練習としては上出来かと思います。実は自動導入付きのドーピング部門なのでもっと早く進めることができるのではと鷹をくくっていたのですが、スタック時間や撮影に多少かかってしまい、これくらいのスピードになってしまいました。完走するのに結構ギリギリのペースです。もし普通の星図片手にマニュアル導入でのメシエマラソンだと相当なペースで進めないと完走しないこともよくわかりました。

こうやって並べてみると、ホワイトバランスもめちゃくちゃだし、収差もあるし、解像度も低いしなので、iPhoneで写すのでやはり十分な気がします。そんなことより、次々見えるメシエ天体が楽しくて楽しくて。人がたくさんいたらみんなで一つの画面を共有して見ながらできるので、とても盛り上がると思います。

電視の利点の一つに、Stick PCでのリモート観望というのがあるので、実はメシエマラソンでもリモートでほぼ全ての操作が可能で、自宅内からでも可能なのですが、やはり空を見ながらやることに意義があると思い、今回は全て外で見ることにしました。でも結局一人で電視だと画面とにらめっこで、あまり外に出ている意味がなかったです。やはり何人かで手分けしてやるのが楽しい気がしました。たとえばソフトで次の天体をどれにするか決める人、天体をあぶり出す人、画像を記録する人、タイムキーバー、記録係などです。多分これが本来のメシエマラソンのやり方であり、楽しみ方なのでしょう。

ちなみに子供達は春休みの最中なので、一緒に外に出て星を見ていたのですが、早々と寝袋にくるまって眠ってしまい、マラソンどころでは全くありませんでした。

昨日のTG-SPの自動追尾テストに引き続き、追尾の精度を出すためにSharpCapで極軸の調整をしてみました。使った機材は手持ちのCMOSカメラASI224MC16mmのCSマウントのレンズです。

はっきりいってむちゃくちゃ便利です。しかもとても簡単です。あえて難しいところを言うなら、日本語に対応していないところだけでしょうか。

1. まず、CMOSカメラをどこかにマウントします。今回は高橋の鏡筒バンドの上に固定しました。

IMG_0274


2. CMOSカメラを赤経用の回転軸とだいたい同じ方向に向けます。SharpCapの途中の説明の中には1度から5度までの精度と書いてありました。

3. 次に、赤経回転軸がだいたい北に向くように三脚ごとでいいので、方向を合わせます。これも5度くらいの精度でいいでしょう。実際にはカメラ画像に北極星周りが入ればよく、その範囲はカメラの画角で決まるので、今回のASI224MCで16mmのレンズを使うの場合、横17度、縦12度くらいの範囲が見えます。なので画面の真ん中あたりを中心に使うとすると、5度までというのは的を得た値だと思います。

4. SharpCapを立ち上げ、ToolメニューからPolar Alignを選びます。最初に説明が書いてあるので読んだほうがいいですが、書いてあることは、
  • 赤道儀が必要。
  • 1度から5度までの画角が必要。200mmの焦点距離のガイダーが理想。(と書いてますが、今回の16mmでも十分使えています。)
  • 10個から15個の星が見える必要がある。
  • 初期のアラインメントは5度くらいの精度が必要。
  • 赤道儀は望遠鏡が上方を向くホームポジションから始めるといい。
逆に必要のないものは
  • 正確なファインダーのアラインメントやコーンエラーを正すこと
  • 自動導入
  • 他のソフトやインターネット接続
など、何が必要で何が必要ないかという一般的なことで、大したことではありません。

5. Nextを押して、いよいよ北極星周りの認識です。15個くらいの星を認識しないとダメみたいです。
この時点で北極星周りがきちんと見えていると、Plate solvingでデータとして持っている星図と比較して、各星の位置が認識され、極軸周りに同心円が多数見えます。

IMG_0271

6. 星の認識がうまくいくと、右下のCould not soleveがSolevedに変わります。CMOSカメラの露出時間とゲイン、およびPolar Align設定の中のNoise Reductionが結構効きます。私は0にしました。うまくいくと写真のようになります。

7. Solvedの状態がある程度続くようになったら、Nextを押します。

8. CMOSカメラを含めて、赤道儀を赤経方向に90度位回転させます。

9. 再び星の位置が認識され、写真のようにターゲットの星を矢印のところまで持って行けという指示が出ます。

IMG_0276

10. 三脚をずらすなどして赤道儀全体を動かして、微調整します。このとき注意なのですが、当然赤道儀のモーターを利用して合わせてはいけません。あくまで、架台の方の移動(大きな赤道儀には微調ネジがついていますが、ポタ赤などにはそんな豪華なものは付いていないので、本当に三脚をずらします。)で位置を調整します。合わせている途中で、移動量に応じてターゲットの位置もリアルタイムでずれていきます。ほぼ合わせ終わったのが下の写真です。

IMG_0277


11. ある程度合わせてからNextを押すと、誤差がどれくら残っているか表示されます。

IMG_0280


初めてやったにもかかわらず、実作業は15分くらいでした。この記事を書いている時間の方がはるかに長いです。慣れれば、ものの数分で終わると思います。恐ろしく簡単です。

途中画面上で星の位置を移動して合わせるのに、三脚の足の長さを変えて微調整したのですが、星の村のスターライトフェスティバルでHUQさんに見せていただいた、

IMG_0199


のようなものがあると便利そうです。これどこのメーカーのものなのでしょうか?(2016/10/20 追記: タカハシ製でした。Vixenでもよく似たものを出しているみたいです。「三脚アジャスター」で検索すると出てきます。)

赤道儀の水平出しはしなくていいのでしょうか?とか、考えていたのですが、赤道儀自身がポタ赤で自動導入はしないので赤径の回転軸さえあっていればよく、そもそも水平などもなす必要がないために、このような簡易調整で十分なのですね。

それと似た話で、実は最初極軸を合わせる前、CMOSカメラの中心は赤径の回転軸と合ってなくていいのだろうか?とか、センサー平面は赤経回転軸に垂直になってなくていいのだろうか?など、いろいろ考えました。でも無限遠のものに合わせて回転させて見ているので、場所も角度も極軸が画面内に入るくらい大雑把でいいという事が、やっと理解できました。いやあ、簡単です。(追記: 2016/11/3 牛岳でAdvanced VXにBKP200を乗せ、その上にFS-60を乗せて、さらにその上にASI224を乗せて試した時は全くうまくいきませんでした。合わせ終わって回転させると、回転軸が全く極軸からずれたところで回っています。その後2016/11/7に自宅で試した時はうって変わってうまくいきました。BKP200を無くしたからかもしれません。)



さらにHUQさんが以前コメントで教えてくれたのですが、CMOSカメラが完全にファインダーの代わりになります。しかもより広範囲を明るく見ることができるのと、無理な体勢で覗かなくていいので、はるかに便利です。これでFS-60Qについているファインダーを外して、さらに軽量化する目処がつきました。取り外したファインダーは青色でかっこいいので、同じ青色でまだファインダーのついていないMEADのLX200-25に取り付けようかと思います。

さて、極軸調整の結果ですが、今回は誤差にして10分の1度くらいのオーダー、写真で撮ると20秒くらいは追尾できるようになりました。

LIGHT_Tv20s_3200iso_+23c_60D_20161016-00h21m47s283ms

それよりも他の問題が発生して、どうも追尾できるときと全く追尾しない場合で別れる現象が見られました。どうもギヤの駆動に合わせてどこかでスリップしているみたいです。撤収してから明るいところで調べたら、2箇所ネジが緩んでいました。これは自分のミスです。また、赤道儀自身も中のネジが調整されていないと精度が出ないという記事もどこかにありました。これはメーカーの方で調整する部分だそうです。まだ犯人は確定していませんが、とりあえず自分で閉め忘れていた箇所は締め直し、今晩以降、再度検証です。(追記: 2016/10/17に解決しました。)

あと、追尾がうまくいっているときに問題になるのが、風です。結構揺らされて星像が流れます。さらに機材を軽くしたいのですが、風の揺れのほうで問題になるのかもしれません。三脚がまだたわんで揺れるので、もう少しいい三脚が欲しいです。



このページのトップヘ