ほしぞloveログ

天体観測始めました。

タグ:ASI294MCPro

北アメリカ星雲撮影後、6月13日付で新型ドライバー1.7.3が出ました。今回の記事はこのドライバーを適用して書いています。


新ドライバーでのセンサー解析

早速ですが、前ドライバーでも試したように、SharpCapを使いセンサー解析を実行します。

20220630_SV405CC_1.7.3

この結果を見る限り、100と150の間、おそらく120あたりでHCGもオンになり、前回測定した時のような変なゲイン設定と実測のゲインがずれるというようなおかしな振る舞いももう見られません。

ここで改めてASI294MC Proの測定結果を再掲して比較してみます。

ASI294MCPro

  • まず、コンバージョンファクターがSV405CCの方が2割ほど大きく出ています。
  • 読み出しノイズも2割ほど大きく出ているように見えますが、これは単位が [e] になっています。これを2割大きく測定されたコンバージョンファクターで割ってやり [ADU] で見てやると、ASI294MC Proの結果とほとんど同じになります。なので、ノイズに関しては同様の結果で、コンバージョンファクターに差があるということです。
  • フルウェルに関しても同様です。SV405CCの方が2割ほど増して電荷を貯めることができるように思われるかもしれませんが、これは14bit = 16384 [ADU] にコンバージョンファクターをかけているだけなので、コンバージョンファクターが大きいと勝手に大きなフルウェルとなってしまうだけです。
結局突き詰めると、コンバージョンファクターのみがASI294MC ProとSV405CCで2割ほど違うということになります。ではなぜSV405CCのコンバージョンファクターが大きく出たのでしょうか?少し考えてみます。

そもそもコンバージョンファクターは撮影された輝度(信号)と、その輝度のばらつき具合(ノイズ)の比から計算されます。さまざまな輝度を横軸に、ばらつき具合縦軸にプロットし、その傾きの逆数がコンバージョンファクターとなります(簡易証明はここを参照)。ということは、コンバージョンファクターが大きいということは、同じ量の輝度に対し(傾きの逆数なので)その輝度のばらつき具合が小さいということになります。簡単にいうと、ノイズが小さいということです。今回の測定結果だけ考えると、SV405CCの方がASI294MC Proよりもノイズが小さいということです。また、言い換えるとADCの1カウントを稼ぐためにより多くの電子(突き詰めれば光子)が必要になるため、効率が悪いとも言えます。効率が悪いために、ADCの飽和までにより多くの殿下が必要になり、フルウェルが大きく出るというわけです。

ただ、センサーが同じで測定結果が違うということなので、そのまま信じるのも少し疑問が残り、他に何か別の要因が効いている可能性は残されていると思います。今のところは測定結果がわかっているのみで、それ以上のことはわかっていないので、これはこれで事実として置いておくとして、先に進みます。


画像比較

今回はM8干潟星雲とM20三裂星雲で画像を比較してみました。機材は前回同様FS-60CBとCBPで、ASI294MC ProとSV405CCで自宅撮影した画像での比較です。撮影日の透明度はかなり良く、白鳥座の羽は端まで見えていていて、こと座も三角形と平行四辺形が良く見えました。天の川も薄っすらですが見えていて、3分露光一枚でもかなりはっきり写るくらいでした。

NINAの画面と、ASIFitsViewerでのヒストグラムを示します。


SV405CC

01_capture

3分露光のオートストレッチになりますが、すでにこの時点でかなり色濃く出ています。

撮影画面の右下隣のグラフを見るとわかりますが、黄土色の線が検出された星の数を表していて、相変わらず最初の1枚はなぜか暗く撮影されるため、星の数が少ない状態で写っています。

少し気になるのは、冷却時のパワーが大きいことです。1.7.2の時から冷却時も加熱時も時間がかかるようになりました。それはそれで結露しにくくなるはずなのでいいのですが、同じ温度にするときにSV405CCが65%で、ASI294MC Proが48%なので、1.4倍ほどパワーを食うようです。冷却効率はまだASI294MC Proに分があるようです。

02_histgram

ヒストグラムも全ドライバーのように右にシフトすることもないですし、赤だけ山の広がりが極端に大きいということもありません。


ASI294MC Pro

比較のASI294MC Proです。
03_capture_ASI294MCPro

上と比べると明らかに色は淡いです。ただ、右下グラフの緑線を見ると、恒星の径が294に移った時点で3.15を切るくらいから2.9付近に1割近く改善しています。これも毎回のことでそこそ再現性があり、不思議なところの一つです。

02_histgram_ASI294MCPro

このヒストグラムと比べると、まだSV405CCは最適化の余地があるように思えます。まず山の左側の裾の具合が違います。ASI294MC Proのほうが左側がスパッと切れていて、理想に近いです。

あと、やはりSV405CCの赤はまだ少し広がりが大きいようにも見えます。ただ、後の画像処理では前回起きたPCCの背景がニュートラルにならないというようなことはありませんでした。

それぞれ30分程度撮影して、PixInsightのWBPPでインテグレーションまでして、オートストレッチしたものを比較します。天頂を挟んで先にSV405CCで30分撮影、その後ASI294MC Proで30分撮影しました。ASI294MC Proの方が心持ち天頂に近く、10分ぶんくらいの差で少しだけ有利ですが、まあ誤差の範囲でしょう。

上がSV405CCで、下がASI294MC Proになります。
masterLight_BIN-1_4144x2820_EXPOSURE-180.00s_FILTER-NoFilter_RGB

masterLight_BIN-1_4144x2822_EXPOSURE-180.00s_FILTER-NoFilter_RGB

ここで見ても、明らかにSV405CCの方が色が濃いことがわかります。その代わりに、SV405CCの方は恒星の青ズレが依然出ていることも変わりません。

また、SV405CCのマスターダークファイルは以下のようになり、やはりアンプグロー抑制のような効果は確認することができませんでした。
masterDark_BIN-1_4144x2820_EXPOSURE-180.00s


ただ、これはASI294MC Proでも以下のように同様に出ているので、SV405CCが不利ということではありません。
masterDark_BIN-1_4144x2822_EXPOSURE-180.00s

その証拠に上のWBPP後の画像を見ても、SV405CCの場合も、ASI294MC Proの場合もアンプグローのような後は確認できません。


SV405で撮影したM8干潟星雲とM20三裂星雲

その後、さらにSV405CCで追加撮影して、M8干潟星雲とM20三裂星雲を仕上げてみました。テスト撮影の時と同様にFS-60CBにCBP入れて自宅庭撮りで、露光時間は3分x34枚でトータル1時間42分です。

WBPPでインテグレーションした直後の画像です。さすがに上の30分の画像よりは滑らかになっています。

masterLight_BIN-1_4144x2820_EXPOSURE-180.00s_FILTER-NoFilter_RGB

あとはいつも通りPIでストレッチして、Photoshopで仕上げたものが以下になります。
masterLight_180_00s_FILTER_NoFilter_ABE2_mod_cut
  • 撮影日: 2022年6月30日23時56分-7月1日1時39分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI FS-60CB+マルチフラットナー(f370mm)
  • フィルター: SIGHTRON CBP(Comet BandPass filter)
  • 赤道儀: Celestron CGEM II
  • カメラ: SVBONY SV405CC (0℃)
  • ガイド:  f50mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイド
  • 撮影: NINA、Gain 120、露光時間3分x34枚で総露光時間1時間42分
  • Dark: Gain 120、露光時間3分、128枚
  • Flat, Darkflat: Gain 120、露光時間 0.3秒、128枚
  • 画像処理: PixInsight、Photoshop CC

このカメラ、画像処理するとよく分かりますが、色がかなり出やすいです。三裂星雲の周りの青も簡単に出ました。そもそも1枚画像でも色が出てますし、インテグレーション直後でもかなりきちんと色が出ているので、色出しについては全然楽です。実際、明らかにASI294MC Proで画像処理を試したときよりもはるかに楽でした。

画像処理の中でも、色出しは最初のうちは苦労すると思うので、撮影用の入門カメラとしては大きな特徴であると言えるのかもしれません。ただし、青ズレが気になる場合は画像処理でどうにかする必要があり、上の画像くらいには目立たなくすることは可能かと思われます。

正直言うと、庭撮りでここまで色が出やすいなら利点の方が大きく、青ズレのことは画像処理である程度気にならないくらいになるので、結構満足です。

ちなみに、以前FC-76で自宅で撮影したものが以下になります。

integration_DBE_PCC_stretched3

当時はそこそこ満足していましたが、今回の方がM20周りの青の出方、指先の青、階調、分子雲、どれをとっても圧倒的に進歩していると思います。


まとめ

SV405CCですが、最新のドライバー1.7.3でセンサーの振る舞いとしてはかなりまともになりました。

撮影では依然青ズレは存在しますが、画像処理まで考えると色が出やすく一気に評価が高くなります。とくに、画像処理初心者にとっては色が出るというのはかなりの魅力なのではないでしょうか?青ズレ問題は画像処理である程度目立たなくすることもできるのかと思います。

そうは言ってもこの青ズレ問題、できることならやはり解決したいと思っているので、もう少し検証してみます。その一方心配しているのが、青ズレがなくなると同時に、この色が出やすいと言う特徴ももしかしたら無くなってしまうのではという可能性です。まだ解決法も見つかっていない状態なので、結果がどうなるかは分かりませんが、もう少しお付き合いください。


  1. SV405CCの評価(その1): センサー編 
  2. SV405CCの評価(その2): 撮影編 
  3. SV405CCの評価(その3): 画像比較
  4. SV405CCの評価(その4): 新ドライバーでの画像比較
  5. SV405CCの評価(その5): 青ズレの調査と作例
  6. 番外編1: 階調が出ない時のPedestalの効果
  7. 番外編2: ASI294MC Proでの結露


前回の撮影時の記事から少し間が空いてしまいましたが、前回FS-60CBでSV405CCとASI294MC Proで撮影した画像を処理してみました。

 

この撮影後、6月13日付の新しいドライバーが発表されましたが、今回の記事はその前の6月11日にメールで送られてきたものを使っています。そのため(おそらくゲイン120以上で)HGCモードに入りますが、さらにゲインが200プラスされた状態で撮影されています。今回はゲイン120としましたが、実質は320と同等と推測され、ダイナミックレンジが犠牲になっていますので、その点ご注意ください。


共通条件

撮影日の透明度がかなり悪かったため、ここでは比較することを主目的とし、仕上げはさらっと軽めに処理するだけにしました。撮影については、後日透明度のいい日にリベンジしたので、最終画像は後で示します。

ASI294MC ProとSV405CCで共通の事情は、
  • 鏡筒はタカハシのFS-60CB。赤道儀はCelestronのCGEM II。
  • マルチフラットナーをつけていますが、1.1.25インチのノーズアダプターをつけているので、バックフォーカスが合ってなくて、四隅が流れてしまっています。
  • 冷却温度は0℃。
  • 光害防止フィルターとしてCBPの1.25インチをノーズアダプターの先に付けています。
  • 120mmのサイトロンのガイド鏡にASI120MMをつけて、PHD2でガイド。
  • 1枚あたりの露光時間は3分で、10枚に制限し、トータル30分の露光時間。
  • ゲインは120ですが、SV405CCはドライバーがまだ改良途中で実質ゲインが320になっていると思われます。
  • 公平を記すために同日の撮影にして、SV405CCで15分、ASO294MC Proで30分、さらにSV405CCで15分撮影した画像を使用しています。
  • 画像処理はPixInsightでWBPPを使いインテグレートまでしたのを、オートストレッチしています。
となります。


ASI294MC Proの画像(参照)

まずはASI294MC Proです。最初の画像処理でフラット画像に問題があることがわかり、フラットを後日再撮影しました。そのためライトフレーム撮影時についていたゴミが、フラット撮影時に取れてしまったようで、ペリカンの目の下あたりと、下辺中央あたりに丸い大きなスポットが残ってしまいました。カメラの評価にはあまり関係ないのでそのままにしておきます。

下の画像がPixInsightでスタックしてSTFとHTでオートストレッチストレッチだけした画像です。あまり主観的な操作が入っていない段階のこれで比較します。

ASI294MCPro_autostretch_180.00s_FILTER-NoFilter_RGB

この時のヒストグラムは、再掲載になりますが

histgram_ASI294MCPro

となります。至極真っ当そうに見えます。


SV405CCの画像

一方今回の評価対象のSV405CCの画像です。同じく、PixInsightでスタックしてSTFとHTでオートストレッチストレッチだけした画像です。

SV405CC _-180.00s_FILTER-NoFilter_RGB

ヒストグラムは

histgram_SV405CC

となります。まだドライバーでおかしなところがあるため、ゲインを120と設定しても実質のゲインが320
となっていると思われ、同じゲイン設定のASI294MC Proのヒストグラムに比べて全体に右にシフトしていています。120と320で10倍違うはずなのですが、平均は4186から7385と2倍にもなっていないので一見おかしいと思うかもしれません。でもオフセットの値込みの平均値なので10倍になっていないのは問題ないです。

おかしなところは2点、
  • 赤のノイズの広がり方が大きすぎること
  • 60000(最大値の65536でないところが不思議)くらいの値のところに大きなピークがあること
です。その後、ドライバーをアップデートすることで、前者の赤のノイズのおかしいところは解決されることがわかっています。ですが、60000のところのピークは最新ドライバー1.7.3でも解決しないことまでは確かめました。

後もう一つ気になるところは、120秒以上の露光でアンプグローがなくなるというSVBONYの説明です。ですが、マスターダークフレームを見る限り、アンプグローは残っているようです。

masterDark_EXPOSURE-180.00s

それでも撮影時に気になることがあって、ほぼ毎回ですが、長時間露光の場合、一連の露光を開始する最初の1枚だけ、画面全体が暗いです。SharpCapでの撮影もNINAでの撮影も同じです。もしかしたら何かしようとはしているのかもしれませんが、ダークフレームでみて上の様になっているので、少なくともまだうまくいっていないようです。次の最新のドライバーでも注目したいと思います。


比較

両画像を比較してみましょう。オートストレッチ後なので一見どちらもよく似ていて、両者それほど変わらないように見えます。両方とも左が明るく、右が暗いような、1次のカブリがあります。これは左が北側に近く、富山の街の明かりが効いているものと思われます。

あえて言うなら、SV405CCの方が少し赤や緑が濃いでしょうか。でも誤差の範囲の気もします。

大きく違う点は、恒星です。中央下の二つの並んだ星を見るとわかりやすいでしょうか。

starspsd
左がASI294MC Pro、右がSV405CC

一見SV405CCの方が彩度が出てると思うかもしれませんが、よくみると明らかな右上方向への青ズレのようなものが出ています。

実はこれ最初は見逃していて、ここまで拡大することなく、遠目で単に色が出てる恒星だなと思っていたくらいでした。SV405CCで北アメリカ星雲をさらに1時間30分撮影したのですが、その画像処理の時に青ズレが出ているのが気になって、最後までどうしても残るので元を辿っていくと、一枚一枚のライトフレームに載っていることがわかりました。

最初、CBPでのゴーストかとも思ったのですが、ASI294MC Proでこれまでも今回もそんなことに困ったことはないのでおそらく関係ないです。FS-60CBの収差かとも思いましたが、それならやはりASI294MC Proでも出てもいいはずです。この青ずれの方向が常に一定なのも気になります。

とりあえず比較はここまでにして、これ以降は透明度の悪い日の高々30分露光の画像で処理を進めても、あまり意味はなさそうなので、次はこれ以降にSV405CCで撮影した1時間半の画像での処理を進めます。


画像処理

次に気になったのが、SV405CCの画像にPCCをかけた時、同パラメータをいじっても背景が青や緑に寄ってしまうことです。。BackgroundNeutralizationでパラメータをかなりいじって試しても同様だったので、画像の方に何か問題がありそうです。いろいろ探っていって、どうやらRのノイズ幅がおかしいことが原因という結論にたどり着きました。上で見せたSV405のRGBのヒストグラムで赤の幅が大きく、山の高さが低いことです。このグラフの縦軸はlogスケールなので、あまり差がないように見えるかもしれませんが、実際にはGBと比べて1/3から1/4ほどです。

histgram_SV405CC

PCCやBackgroundNeutralizationは幅の方は補正してくれますが、高さの補正はしてくれないようです。そのため、今回はLineaFitで高さを合わせました。しかも1回ではまだ合わせきれなかったので2回LineaFitをかけ、その後PCCをかけると、やっと背景もまともな色になりました。この変な赤の振る舞いは、6月13日付のドライバーをインストールした後は出ていません。もし古いドライバーを使って撮影している方は、最新ドライバーにアップデートしたほうがいいでしょう。

PCC後はストレッチなどした後に、Photoshopに受け渡しました。上で述べた青ズレは仕方ないものとして画像処理を進めました。なので、恒星がいまいちなのは気にしないでください。また、透明度が悪かったためにノイズ処理などもしているので、カメラの性能をそのまま見ると言うよりは、SV405CCで少なくともこのくらいまでは出せるという目安くらいに考えてください。

Image94_clone2

透明度がかなり悪い日の撮影にしては、そこそこ色も出ているのではないでしょうか。この後、透明度のいいに日再度同じ画角で撮影しているので、随時画像処理していきます。


まとめ

今回の記事を書くのにものすごく時間がかかりました。理由は青ズレの解明でかなりの時間を使ったからです。

SVBONYさんとも連絡を取りながら、欠点もブログで正直に書いていくということ、そして開発側にフィードバックしてさらに改善していくことを互いに確認しました。ここらへんはメーカーとしての基本方針のようで、かなり好感の持てるところです。SVBONY初の冷却カメラです。ユーザーとしても新たなカメラメーカーが選択肢として出てくるのは大歓迎です。今後の成長も含め、できるだけ協力し、期待したいと思います。

まだ青ズレの原因は完全にはわかっていませんが、今回の一連の記事の中でできるだけ理由に迫ってみたいと思います。

次回の記事から新型ドライバーを適用します。さて、どこまで改善されているのでしょうか?


  1. SV405CCの評価(その1): センサー編 
  2. SV405CCの評価(その2): 撮影編 
  3. SV405CCの評価(その3): 画像比較
  4. SV405CCの評価(その4): 新ドライバーでの画像比較
  5. SV405CCの評価(その5): 青ズレの調査と作例
  6. 番外編1: 階調が出ない時のPedestalの効果
  7. 番外編2: ASI294MC Proでの結露


前回のSV405CCのセンサー解析レポートに続き、撮影編でのレポートになります。




撮影準備

6月17日の金曜、天文薄明終了が21時過ぎ、その後月が22時過ぎから昇ってきて明るくなりますが、貴重な梅雨の晴れ間です。SV405CCでの撮影を敢行しました。

ターゲットは北アメリカ星雲としました。理由は
  • 月から離れていること。
  • 以前自分で撮影していて、比較しやすいこと。
  • メジャーな天体で、他の人も認識比較できること。
  • 自宅撮影なのと、途中から月が出てくるので、ある程度明るい天体。
  • ワンショットなローバンドフィルターを使いコントラストを上げたいため、輝線星雲であること。
  • 最後の決定打は、そこそこ広角で手軽なFS-60CBで撮影できるくらい大きめのもの。
などから決めました。

といっても、この日の空はうっすら霞んでいる様な状況で、撮影に適した日とは到底言えません。

夏至が近く、日が長いので、明るいうちに準備ができます。機材はFS-60CB+マルチフラットナー+CGEM II。フィルターはCBPのアメリカンサイズとしました。ガイド鏡はいつも使っている120mmのサイトロンのもの、ガイドカメラはASI290MMです。

CBPをノーズアダプターに取り付ける時、ASI294MC Proについていくるものは途中までしかねじ込めませんが、SV405CCに付属のものには最後まできっちりねじ込めます。使いたいフィルターのネジ規格によるのですが、私はサイト論のものをよく使うので、SV405CCのノーズアダプターの方がいいのかもしれません。

IMG_5758

今回の撮影は、もともとASI294MC ProやASI294MM Proでのセットアップに近く、ケーブルも普段組んでいる物を使いました。そうすると、SV405CCの背面にUSBの分岐がないのが地味に辛くて、結局長いケーブルをもう一本這わせることにしました。これまで意識していなかったですが、意外にカメラでのUSB分岐が役に立っていたのだと実感しました。

SV405CCは冷却初期モデルなのでまだそこまで手が回っていないと思いますが、将来的にはUSB分岐もあると、ZWOカメラと互換性が高まりユーザー側でのケーブルなどの取り回しが楽になると思うので、考えてもらえると嬉しいかもしれません。ガイド鏡などは速度を求めないので、USB2.0で十分かと思います。

初期アラインメントや、最初のピント合わせでSharpCapで実際の星を見てみました。時間はほとんどかけられませんでしたが、RGBカラー調整バーのジャンプが少し気になりました。一段変えようとすると50飛びで変化が大きすぎです。マウスやカーソルでもう少し細かい変更ができると嬉しいです。

今回はコントラストなどのパラメータはほぼ何も触っていません。というのもSV305で触ると設定が大きく外れて一気に画面上で見えなくなった経験があるのと、実際には撮影までの時間が惜しいので、余分なことはやりたくなかったというのです。SV405CCで電視観望を試したいので、その時にいろいろ触ってみようと思います。

SharpCapで試したことで一番大きかったことが、プレートソルブが問題なくできたことでしょうか。少し前の記事で書きましたが、最近は極軸調整が終わった後の赤道儀での初期アラインメント(ワンスターアランメンと)で、目的天体が入ったかどうかの確認を省略しています。その代わりにプレートソルブでずれを認識し、赤道儀にフィードバックして目標天体を入れるようにしています。今回SV405CCでも待ってく問題なくプレートソルブできたので、少なくとも全然おかしな像が来ているとかはないことがわかります。


NINAでSV405CCを動かすには

そのまま撮影のためにNINAに移ります。撮影にSharpCapではなくNINAを使う理由が、ガイド時のディザーの扱いです。最近のSharpCapもスクリプトなどでかなりのことができる様になってきましたが、ディザーを含めた撮影はまだNINAの方がかなり楽なのかと思います。

NINAでSV405CCを使うためには、ドライバーが必要です。ただしNINAの最新版NINASetupBundle_2.0.0.9001.zipに入っているSCBONYのカメラのdllの日付は2022/4/4なので、6月13日付のドライバーは入っていません。そのため最新ドライバーを使用して撮影するためには、ドライバーを手動でインストールする必要があります。

私を含め、SV405CCユーザーには直接6月11日に新ドライバーが送られてきたようですが、日本の公式ページを見ても全てのカメラを含むドライバーの2022-02-21版がアップされているだけで、SV405CC用のドライバーはまだアップロードされていません。と思ってよく探したら、本国のSVBONYの方には6月13日にアップロードされていました。というわけで、SharpCap、NINAともにSV405CCを使う場合には、

https://www.svbony.com


に行き、上のタブの「SUPPORT」 -> 「Software & Driver」 -> 横の「Windos」と進み、「SVBONY Cameras」の最新版(Release date:2022-06-13以降)をダウンロードする必要があります。その後、解凍してRead Me.docをよく読みNINAのインストールディレクトリの「External」「X64(64bit OSの場合)」「SVbony」のSVBCameraSDK.dllを新しいものに自分でコピペして入れ替えるひつようがあります。

こうすると無事にNINAでも新ドライバーで動くようになります。


さらに新しいドライバー

実は撮影を開始する2時間ほど前に、TwitterのダイレクトメールでSVBONYさんから直接、6月14日更新のドライバーができたと連絡がありました。Google Driveにアップしたのでダウンロードしてくださいとのことです。ところが非常に残念なことに、Googleの何らかのポリシーに反しているらしくて、アクセスさえできません。Googleをログオフしたり、別アカウントでログインしたり、Mac、Windows、iPadなどいくつか試しましたが、いずれも状況はかわらず、撮影準備時間にも限りがあるのでなくなく6月11日に送られてきたドライバーのままで撮影を始めました。

このドライバー、前回のレポートで書いていますが、HCGモードのゲイン設定がおかしいことがわかっています。私の解釈が正しければ、HCGモードのダイナミックレンジが得をする一番美味しいゲイン設定ができないという結果なので、是非とも改善されたドライバーで試したかったのですが、まあ仕方ないです。

それでも、数日のオーダーでドライバーを貪欲に書き換えてくるレスポンスの速さは素晴らしいと思います。


実際の撮影

実際にNINAでSV405CCで撮影を開始しました。ゲインは迷いましたが、後で比較できるようにASI294MC Proでいつも撮影しているのと同じ120にしました。露光時間は3分間です。冷却温度はいつも撮影している-10℃に設定します。ただし梅雨時期に入り、気温も高くなってきているので、そこは考慮すべきかと思います。この日は夜になっても暑く、撮影開始時には外でも25℃程度はありました。

この日は薄曇りというか、空全体が霞みがかっていて、北極星はほぼ何も見えなくて、夏の大三角がかろうじて見えるくらいでした。それもあってか、1枚目の画像はなぜかとても暗くて、北アメリカ星雲ですが、淡いところがほとんど何も出てきません。ASIFitsViewでのオートストレッチですが、実際電視観望で見えるよりはるか以下です。

2022-06-17_21-27-39_0000


ところが2枚目には普通に星雲が見えます。これは一旦撮影を止めた次の撮影でも再現しました。

IMG_5757
ここの1枚目と4枚目です。全く同じ設定で星の数が4分の1ほどです。突然雲が来たかとも思ったのですが、ガイド鏡の画面を見ている限りそんなことはありません。

ところが次にASI294MC Proで撮影を終え、再びSV405CCに切り替えた3度目の連続撮影では最初から普通に撮影できます。何かあるのか?、たまたまなのか?、もう少し検証すべきですが、少なくともこんなことがあったので一応書いておきます。

さて、その最初の撮影ロットの2枚目、大きな問題が発生です。画像を見てもらうとすぐにわかります。

2022-06-17_21-30-39_0001

真ん中に大きな影があります。右下の小さな円状の影は埃であることが判明しているので、ここでは無視します。さてこの真ん中の影、結局はセンサー面の結露でした。

IMG_5753

数枚撮影した後、温度を0度に変更することでこの結露は消えました。よほど湿気っぽかったのかもしれません。ただ、後で撮影した画像をいくつか見ると、-10℃のままでも曇ったエリアが小さくなっていたので、待っていればよかったかもしれません。


撮って出し撮影画像

なんだかんだトラブルもあり、まともな画像が撮影できたのは22時頃から。とりあえず10枚で30分撮影します。高度が上がってくると淡かった星雲も少しづつ濃くなってきます。10枚目を22時30分に撮影し終わりました。その時の画像をASIFitsViewでオートストレッチしたものです。

2022-06-17_22-27-48_15_SV405CCb

22時半頃にASI294MC Proに交換。この頃から少しづつ雲が出てきます。カメラの回転角、ピントを合わせ直し、雲が通り過ぎるのを少し待ちます。撮影時のゲインはSV405CCの時と同じ120、露光時間も同じ3分です。温度も比較しやすい様にSV405CCで撮影したのと同じ0℃にあわせます。

22時49分にやっとASI294MC Proでの1枚目が撮影できました。その1枚目をASIFitsViewでオートストレッチしたものです。

2022-06-17_22-46-43_0016_ASI294MCPro

2枚の画像を比べても、ストレッチをした後だと極端な差はないことがわかります。最初、SV405CCの北アメリカ星雲がかなり淡かったので心配していましたが、ASI294MC Proで見ても大きな差がなかったので、この日の空の状況がよくないということで理解でき、少し安心しました。

ただし、クリックして拡大などしてみていただければわかりますが、滑らかさに差があるわかるかと思います。これはヒストグラムを見比べるとなぜだかわかります。2枚の画像のヒストグラムASIViewerで見てみます。上がSV405CC、下がASI294MC Proです。

histgram_SV405CC


histgram_ASI294MCPro

まず、明らかに山の位置に違いがあり、上のSV405CCの方が右側に出ていて明るいことがわかります。ゲインと露光時間は同じなのに明るさが違います。これは前回のレポートで、今公開されているSV405CCのドライバーではゲインが120ズレていて実際には明るく撮影されてしまうという報告をしましたが、傾向としては合ってそうです。ただ、明るさはゲインで120ズレているなら12dB=4倍のズレになるはずなのですが、平均値で比べると2倍弱の明るさの違いしかありません。この原因は今のところ不明です。

また、SV405CVの方の赤の広がりが大きいのが気になります。ASIFitsViewのオートストレッチはノイズはいじっていないはずなので、この広がりはノイズそのものを表すはずです。しかもこのヒストグラムの山は主に背景を表しているはずなので、RとGBでそれほど差が出ることはないはずです。Debayerのアルゴリズムのせいかもしれませんが、ドライバーの方でチューニングできるなら今度のアップデートを待ちたいかと思います。


その後の撮影と片付け

結局撮影は、最初にSV405CCで10枚の30分、ASI294MC Proで10枚の30分、さらにSV405CCで20枚の1時間です。雲などが入り明らかに写りが悪いのは省いた上での枚数です。最後の方でガイドがものすごく揺れているので外に出てみたら、机やPCが吹っ飛びそうなくらいの強風が吹いていました。危険なのと、星像も揺れるはずなのでここで終了として撤収しました。
  • 今回の画像で最適化されていないことがいくつかあります。一つはバックフォーカスで、FS-CB60にマルチフラットナーをつけた時に、きちんとそこから定められた距離にセンサーを置かなければいけないのですが、今回は合わせている時間がもったいないので適当にしました。なので四隅が流れてしまっていますが、ご容赦ください。
  • また、SV405CCの画像にほこりがついていて影になってしまっていますが、これも取り除く時間がもったいなかったのでそのままにしてあります。こちらはフラット補正で消えることを期待しています。
  • また、カメラの回転角とピントも同じで合わせきれていません。少しづつズレてしまっていますが、此処もご容赦ください。


今後

現在ダークフレーム、フラットフレーム、フラットダークフレームなど撮影しています。画像処理を引き続き進めますが、空は悪かったので写りは大したことないかもしれませんが、ASI294MCも同時に画像処理して比較してみますので、差を見ることでカメラとしてどれくらいの能力を持っているかわかるかと思います。

とりあえず画像処理はまだ時間がかかりそうなので、今回は主に撮影の様子と、撮って出しの比較くらいまでの記事としたいと思います。次回記事で画像処理の結果を見せたいと思います。

また、SV405CCドライバーはまだ発展途上なので、画像も今後大きく変わる可能性もあります。そこら辺も見所になるかと思います。


  1. SV405CCの評価(その1): センサー編 
  2. SV405CCの評価(その2): 撮影編 
  3. SV405CCの評価(その3): 画像比較
  4. SV405CCの評価(その4): 新ドライバーでの画像比較
  5. SV405CCの評価(その5): 青ズレの調査と作例
  6. 番外編1: 階調が出ない時のPedestalの効果
  7. 番外編2: ASI294MC Proでの結露

庶民の味方SVBONYから新しいCMOSカメラ、SV405CCのレビューを頼まれました。天気がなかなか安定せず撮影はまだですが、少し触ってみましたので、一部ですがレポートします。


SVBONYのカメラ

そもそもSVBONYのカメラはSV105から始まります。私は購入していませんが、当時から7千円ほどと圧倒的に格安で、2018年の京都るり渓の「星をもとめて」で少しだけ触らせてもらったことがあります。露光時間が500msにハード的に制限されていたため、惑星などの用途に限られていましたが、その価格は将来のカメラのアプデーとを期待させるものでした。

次のSV205はUSB3.0を採用し、価格も1万円程度で安価という方針は変わらず。IMX179というセンサーで、ピクセルサイズが1.4μmとかなり小さく、電視観望用途では厳しそうだったため、私は触らずじまいでした。

次のSV305はフィルターの有無などでいくつかのバージョンが販売されました。その当時やはり同クラスのカメラでは最安値で2万円程度でした。私はサイトロンからでたSV305SJのプロトタイプを使わせていただきました。オリジナルのSV305が赤外線カットフィルターを内蔵していて、Hα天体を見るためにフィルターを割って使っていた方もいました。当然保証外になってしまうため、SJバージョンではそのフィルターを普通のクリアフィルターにし、UV/IRカットフィルターを添付してHα天体の撮影に対応したものです。そのカメラとEVOGUIDE 50EDを使い、電視観望で2021年のCP+で発表させていただき、かなりの反響を得ることができたのかと思います。

今回のSV405CCは満を辞しての冷却カメラ、しかもセンサーは定評のあるフォーサーズサイズのIMX294です。ここまでくると、DSOなどの本格撮影も視野に入ってくるので、カメラの性能が結果を大きく左右します。そんなカメラのレビューを頼まれましたので、気合を入れて解析です。


SV405CCの到着

もともとゴールデンウィーク頃には届くと聞いてたいのですが、実際の出荷が5月末、自宅には6月初めに到着しました。到着早々からでしょうか、早速各ユーザーからいくつかのレポートが上がってきていています。XRAYさんからは作例としてM8を撮影されていて、SVBONYの公式ページにすでにアップロードされています。

さて、私も少しづつですがテストをしています。他のユーザーと重なる部分もありますが、やっていることを書いていきたいと思います。

まず、梱包ですが、カメラ以外のパーツに至るまで3重、カメラはケースを入れると4重になっているので、かなり安心です。実際一番外の箱は輸送の過程のせいか、かなりへこんでいました。

CCA32F64-5F26-470C-89C7-B7BAA4FC0AAF

カメラケースはしっかりしたものです。
EED93A04-F1C4-421C-A4A0-217FA02A29A6

このケースですが、カメラにピッタリサイズで、個人的にはもう少し深く作っても良かったのかと思います。例えば初期の頃のASI294MC Proでは実際のカメラよりもケースが深く作られていて、1.25インチのノーズアダプターをつけたまましまうことができます。ところが、ASI294MM Proではケースサイズが小さくなってしまっていて、ノーズアダプターを付けるとチャックを占めることができません。SV405CCのケースは残念ながらMMの小さいケースと同じくらいの大きさでした。コストもあるかもしれませんが、こういった付属品などもユーザーよりの目線で考えてもらえるといいのではないかと思います。

関連してですが、1.25インチのノーズアダプターの先につけるキャップは付属されていません。大したものではないかもしれませんが、使い勝手を考えると付属してもらったほうが戸惑わないと思います。

ノーズアダプターはあくまで脇役なので、2インチキャップが付属されていればいいと考えてあるのかもしれません。問題はその2インチのキャップサイズが微妙に大きく、はめてもスカスカですぐに外れてしまいます。私は操作時、保管時含めて、にホコリの付着を防ぐためにセンサー面を下向きにして扱います。ケースに入れるときも当然下向きに入れます。その際にキャップがスカスカだと安心してケース内に入れることができません。このキャップは是非とも再検討して欲しいと思います。

さて、カメラを机の上に置いてみたら、妙に安定するなと思ってよく見たら、カメラ筐体の下面に切り欠きが入れてあるのに気付きました。写真でわかりますでしょうか?

CD976838-7E4F-4557-A1B8-13B5C385A1E9

水平で安定するのでこれはいいです。惜しいのは、前面と後面についている円盤には切り欠きがされていないため、円筒部の切り欠きの効果がほとんどなくなってしまうことです。あとこの切り欠き、3方向なのですが、できれば4方向がよかったです。4方向にあれば撮影時に切り欠き面に合わせるなどの応用ができそうです。


まずはSharpCap付属のドライバーで触ってみる

最初のテストはSharpCapで行いました。ドライバーはSharpCap標準です。そのためSharpCapは最新バージョンにアップデートしておく必要があります。私が試したのは6月6日更新の4.0.9011.0です。いくつか気づいたことを書いておきます。

露光時間ですが、きりのいいのが設定できない時があります。例えば5msと指定しても4.99msになるとか、6msとしても6.01msとかになってしまいます。これとよく似た状況はSV305SVの時もありました。ゲインを50の倍数の霧の良い数字にしないと何故か1減った数になってしまうとです。入力した値が渡されるときのどこかの計算式が間違っているのかと思います。

ゲインはかなり制限があります。270までしか上げることができません。このゲインというのは0.1dB単位なので、270ということは27dBに当たります。では27dBが何倍かというと、

27db = 30dB - 3dB = (20dB + 10dB) - 3dB = (10 x 3) / sqrt(2) = 約21倍

までしかありません。ちなみに、ZWO社の同じIMX294センサーを使ったASI294MC Proは570まで上げることができます。570は57dBのことで、57 = (60 - 3) [dB] = 1000/sqrt(2) = 707倍になります。おそらく途中400程度からはデジタルゲインなのですが、それでも400ということで100倍までゲインを上げることができます。DSO撮影時にはダイナミックレンジを保つために低ゲインで使うことが多いので問題ないと思いますが、私がよくやる電視観望ではASI294MCで450程度までゲインをあげるので、やはりせめてもう10倍程度ゲインが欲しくなります。ゲインが足りない分は露光時間を上げる必要が出てくるので、反応が遅くリアルタイム性が低くなる代わりに、リードノイズ的には有利になるかと思います。

日曜に少し晴れそうだったので撮影のセットアップしたのですが、天文あるあるなのか、セッティングがほぼ終わった時点で曇ってしまいました。撮影がまで実行できていないので、操作性などはここまでとして、センサーの解析をしてみました。


参照データ: ASI294MC Pro

まずは参照として、ASI294MC Proを常温状態でSharpCapの「センサー解析」機能を使い、測定してみます。

IMG_5693

測定はiPad ProのColor Screenというアプリで画面の明るさと色を調整し、ヒストグラムのRGBがそこそこ重なるようにしています。

結果は以下のようになりました。
ASI294MCPro
結果を見るとわかりますが、ZWOが出しているデータとほぼ一致しているため、測定はそこそこ正しくされていると思われます。

各項目の簡単な説明

データ項目の詳しい内容はここを見て頂くとして、

 

この記事では各項目ついて簡単に解説しておきます。

1. e/ADU
「コンバージョンファクター」とか「システムゲイン」とか、単に「ゲイン」と呼ばれることもあります。基本的には電子の数とADCのカウント数を変換する係数です。横軸の「Gain」が左側の低い時はe/ADUの値が大きく、多くの電子が入ってやっとADCのカウント数が上がる、「Gain」が右側の高い時はe/ADUの値が小さくなり、少ない電子数でADCのカウント数が上がるという意味です。なんでこんな変換係数があるかというと、様々な結果をADCのカウント数だけで比較すると同一条件で比較するのが難しいためです。その代わりに、全てを電子数の「e」と変換してやることで、結果を公平に比較しやすくするためです。

2. Full Well[e]
これは一つのピクセルがどれだけ電荷を貯め込むことができるかという値です。これ以上の電荷をカウントしたらサチって(飽和状態)しまいます。実際のカウントはADCのカウント数の [ADU] でされるのですが、これを上のe/ADUを使って電子数に換算して評価します。横軸Gainが低い時はより多くの電子を貯めることでき、その一方ADUへの変換効率は悪く、横軸Gainが高い時は貯め込む電子の数は減り、その一方ADUへの変換効率はいいということです。面白いのは、SharpCapの測定結果で試しにこのFull Well [e]をe/ADUで割ると、Full Well [ADU]は16384(=2^14)ぴったりになります。これはSharpCapのセンサー解析があくまで簡易的で、横軸Gain0のときのe/ADUを測定して、後は実測のゲインでe/ADUを割って求めているだけということがわかります。

3. Read Noise [e]
日本語では読み出しノイズと呼ばれています。カメラから画像を読み出すたびに必ず発生するノイズです。読み出しで出るノイズなので、露光時間を伸ばして読み出し回数を減らすと、発生回数を減らすことができ有利になります。電子で換算した[e]で見ると、横軸Gainが高くなるにつれて小さくなり、途中からほぼ一定になることがわかります。これはむしろADUで見たほうがわかりやすくて、上記グラフ最下部にADUに換算したものを載せておきました。このグラフを含めて、ほとんどがlog-logで見るとほぼ一直線になります。

4. Dynamic Range
Full Well[e]をRead Noise[e]で割ったものをビット(正確には2の何乗か)で表示したものです。ADCの分解能の14bitの意味ではなく、実質的に表現できるダイナミックレンジとなります。Full WellとRead Noiseの単位がともに同じeであることに注意してください。このように対等に換算するためにe/ADUというシステムゲインが重要になってきて、互いに割ったりできるわけです。

グラフがとちゅうで折れているのは、ここでアナログアンプのゲイン切り替わって上がり、Read Noiseが[e]単位で見ても、[ADU]単位で見ても減っていることがわかります。Full  Wellやe/ADUはゲイン切り替わりの影響を受けていません。その結果、Dynamic Rangeでも切り替えポイント以降で得をしています。切り替え前、切り替え後でも、いずれも実質的なDynamic Rangeが14bitに到達していないので、ADCの持っている14bitという分解性能で事足りるということがわかります。


SV405CC: 初期ドライバー

さて、参照データとグラフの説明はこれくらいにして、今回のSV405CCをまずは常温状態でSharpCapでセンサー解析してみましょう。まずは最初にリリースされたドライバーでの測定です。

IMG_5700

まず測定中に気づいたことは、感度はASI294MC Proより少し高いのではということです。SharpCapでのセンサー解析に使ったiPadの明るさ設定を、SV405CCの方が暗くしなければスタートできませんでした。この時の設定は、iPad ProのColor ScreenというアプリでR13, G5, B12でした。ASI294MCの測定時の設定がR39, G29, B27だったので、数分の1くらいでしょうか、結構暗くしたことになります。この時、露光時間が512ms, Gain0で測定スタートできました。最近のSharpCapのセンサー測定は非常によくできていて、適切な明るさにうまく導いてくれます。

e/ADUを測定するときに、輝度とその分散の関係が直線にならないという報告が一部からなされていましたが、少なくとも私のところでSharpCapで測定している限りはそんなことはなく、ほぼ一直線になっていました。

IMG_5712

測定結果です。
SV405CC_old_driver
  • まずわかることは、データが全て一直線なので、HCGと呼ばれる、アナログアンプのゲイン切り替えがされている様子が見えません。
  • 先にも述べたように横軸のGainも270までしかないのも大きな差(707 \ 21 ≒ 34倍)です。
  • 次に、e/ADUとFull WellがASI294MC Proと比べて小さすぎます。e/ADUが小さいということは、より少ない電子数でADCのカウントが上がるということなので、感度が良いと思ったことと一致します。
  • [e]で見るRead NoiseはASI294MC Proと比べると一見小さく見えますが、[ADU]で見るRead NoiseはHCGが作動するまでの低ゲインではASI294MC Proと同程度で、結局Dynamic RangeもHCGが作動するまでは同等です。
  • ASI294MC ProはHCGが作動した後の高いゲインではRead Noise、Dynamic Rangeも得をしているため、SV405CCとは大きく差がついてしまっていることがわかります。撮影となると、HCGモードがオンになるところが実際かなりおいしいので、まずはここの改善が必要ということがわかります。

SV405CC: 新ドライバー

2022年6月11日の夕方、ここでちょうどSVBONYから新ドライバーがメールで送られてきたので、入れ替えです。HCGモードがオンになるとのことで楽しみです。

ドライバーが送られたのは一部のユーザーだけのようで、もしまだ新ドライバーを手に入れられていない方は、本国SVBONYのサイトからダウンロードする必要があります。

SharpCapの6月13日の最新バージョン4.0.9033.0で

Fix missing temperature, binning info to FITS files saved from cooled SVBony cameras

と書かれているので、最新のドライバーに変わったものかと思われたのですが、その後調べたらSharpCapには(ドライバーの更新日時から判断したところ)最新ドライバーは含まれていない様で、別途自分でインストールする必要があるようです。なので最新のドライバーを試したい方は、本国のSVBONYのページ、

https://www.svbony.com
 

に行き、上のタブの「SUPPORT」 -> 「Software & Driver」 -> 横の「Windos」と進み、「SVBONY Cameras」の最新版(Release date:2022-06-13以降)をダウンロードする必要があります。


ところがexeファイルを実行してインストールしてからも、SharpCapでの測定結果が何も変わっていないので一旦ここで中止して、ドライバーをよく見てみました。まず、ドライバー内のexeファイルは、ファイル名からASCOMドライバーなのかもとも思えますが、説明がないので不明です。わかりにくかったのは、X64もしくはX86の中のファイルを自分でマニュアルでSharpCapやNINAのフォルダにコピーしなければならないことです。これはRead Me.docを読んで初めてわかりました。もし新ドライバーを個別に手に入れた方は、インストール方法に注意です。

改めてSharpCapのインストールディレクトリ直下のSVBCameraSDK.dllを新しいものに自分でコピペして入れ替え、再度センサー解析をしてみます。結果は?
SV405CC_new_driver

ヤッター!見事段ができていて、HCGモードがオンになったのが分かります。FUll Wellの値も増えました。

ところがこの結果、よく見るとまだ色々おかしいです。本来HCGモードがオンになっても、e/ADUやFull Wellは一直線のままに保たれるべきです。Dynamic Rangeを見ても、結局HCGモードがオンになっている領域でも何も得していないのでこれでは意味がありません。

何が問題なのでしょうか?これはSharpCapの出力結果の、実際に測定されたゲインを見るとよくわかります。横軸のゲインと実測のゲインをグラフ化してみまます。

gain

本来設定したゲインに比例した明るさが実測されるはずで、グラフは一直線にならなければなりません。この横軸「ゲインの設定値」を、縦軸「実際のゲイン」に受け渡すところで、ドライバーないで何か間違えて計算してしまっているのかと思われます。

ここが直ればゲインが高く出てしまっている部分はもっと右にずれます。ジャンプした部分を右に120ほどずらしてやると、グラフが一直線になることから、おそらく(ASI294MC ProでHCGモードが発動する)120から240までがすっぽり抜けてしまっている状態かと思われます。

これをきちんと修正すれば、設定できるGainの範囲が少なくとも270+120=390まで広がり、e/ADUは正しく(実測ではなく)計算されるはずです。その結果、[e]で見たRead Noiseだけでなく、[ADU]で見たRead NoiseもHCGモードで得をするはずで、結果Dynamic Rangeも得をすることになるはずです。

ところでこの390という値に見覚えがある方はいらっしゃいますしょうか?ピンときたか方はすごいです。そうです、あぷらなーとさんによると、階調が14bitから13bitに切り替わる所です。デジタルゲインに切り替わるところかもしれません。ASI294MC Proはここから独自のことをやっている可能性があるので、逆にいうとここまではセンサー固有の同じような性能のはずなので、SV405CCも390までは出ていいはずなのかと思うわけです。



あと、ちょっと微妙なのが、Full WellとRead Noiseが明らかにASI294MC Proより2-3割大きいことです。よく見るとe/ADCも微妙に大きいです。ここは次の課題としたいと思います。心当たりはあって、ある程度の測定結果も得ていますが、まだ確証が持てません。次のドライバーでもしかしたら解決するかもしれませんが、残った場合は再度精査して報告したいと思います。


この時点で撮影する場合

梅雨に入ってしまい、なかなか天気が良くなる見込みもなく、まだSV405CCで撮影できていません。でももし今のドライバーを使って撮影するなら、どこのゲインを使えば良いのか?

上に書いたように、ちょうど旨味のある本来のGain120から240あたりがすっぽり抜けていて、今のところユーザーではそこに設定することができません。明るい天体、もしくは長時間露光でGain0を狙うのはありなのかと思います。今の「設定Gain」を上げると120以降では実際は+130されていると考えるべきで、あまり高ゲインにすることはDynamic Rangeを損なうので注意した方がいいと思います。高いゲインを狙う場合は、無理をせずに新ドライバーを待つべきかと思います。


次の課題

できたら撮影を敢行したいと思います。センサー解析の結果と、撮影画像は必ずしも一致するわけではなく、ノイズの種類によってはDynamic Rangeの不利を回避できるかもしれません。

また、冷却関連も試したいと思います。一部既に試していますので、近いうちにレポートできるかと思います。

実は今私のところにあるこのSV405CC、どうも聞くところによると、次にあぷらなーとさんのところに行くことになっているようです。SVBONYさんからは期限は問わないと聞いていたので結構のんびりしていたのですが、あぷらなーとさんの見解も早く聞きたいのでこれは急がなければと、急ピッチで進めています。あぷらなーとさんからは「じっくり試してください」と言ってもらっていますが、早く晴れてくれないか、撮影だけはやろうと思っています。


まとめ
 
まだドライバーは完全とは言えず、本当はもう少し改善されてから撮影を含めて本格的に試したいと思いますが、あまりのんびりもしていられないようです。実際もう少し試したいアイデアもありますが、どこまで時間をかけられるかが勝負になってきました。

今回の結果は全てSVBONYさんにお伝えし、既にエンジニアの方にフィードバックされたと聞いています。ある意味SVBONY初の、本格DSO撮影用のカメラです。まだまだカメラメーカーとしては経験不足のところもあるかとは思いますが、レスポンスの速さなどからSVBONYの本気度が伺えます。ぜひともきちんとドライバーを作り込み、ユーザーの選択肢の一つとして成長することを願っています。やっぱり冷却でIMX294でこの値段は魅力なのだと思います。



  1. SV405CCの評価(その1): センサー編 
  2. SV405CCの評価(その2): 撮影編 
  3. SV405CCの評価(その3): 画像比較
  4. SV405CCの評価(その4): 新ドライバーでの画像比較
  5. SV405CCの評価(その5): 青ズレの調査と作例
  6. 番外編1: 階調が出ない時のPedestalの効果
  7. 番外編2: ASI294MC Proでの結露

ずっとネタ不足でブログの更新が滞っていましたが、久しぶりの更新です。

シリウスB

北陸の冬は星好きには本当につらいです。もうほとんど晴れてくれません。

2022年1月22日(土)、天気予報では短時間の晴れだったのですが、この日は本当に久しぶりにしばらくの間快晴でした。21時頃でしょうか、外に出るとかなり雲が少なくなってきています。早速赤道儀を出します。鏡筒をどうするかは迷ってましたが、シンチレーションを見てあまり良くないのでSCAとしました。

と言うのも、シリウスBキャンペーンが始まっていて久しぶりに見たくなり、満月の少し前の日にTSA120でチャレンジしたのです。結果は惨敗。眼視ではリゲルBも見えなくて、カメラで撮ってスタックして炙り出してやっと見えたくらいです。当然シリウスBは影も形もなく、シリウスBキャンペーンはとりあえず2年近く前に撮影したもの投稿しました



当時の記事を読んでもわかりますが、少なくとも夜空を目で見てチカチカしているようでは小口径の場合は問題外ですね。

というわけで、この日は目で見てシリウスがチカチカしていたので普通にSCA260で撮影することにしたというわけです。 シンチレーションがよくないのでFS-60CBとかでもっと広角とかいう手もありますが、SCA260はまだまだ試したいことがたくさんあるのでこちらが優先です。


トール兜星雲

今回のターゲットはNGC2359: トール兜星雲です。おおいぬ座のシリウスの近く、カモメ星雲のすぐ下あたりにあります。2つの星がちょうど兜の目の様になっているのが特徴です。1月あたりだとちょうど日が落ちる頃に東から出てきて、ほぼ一晩中出ています。南天時で40度とそこまで高度が上がらないので、いい状態で撮れる時間はそれほど長くないかもしれません。

実は昨年12月2日にSCA260とEOS 6Dと DBPフィルターを使い、これまでで最長の3分露光でトール兜星雲を撮影していました。
masterLight_ABE_ABE_clone_cut.ajpg

たまたま地面振動の影響を見ようとして三脚の下に柔らかい防振シート(手で赤道儀を揺らすと全体が簡単に動くくらいの柔らかさ)を入れたのですが、風が強くてグワングワン揺れたみたいです。撮影時間はほぼ3時間なので、淡いところもそこそこ出ていますが、シンチレーションもかなり悪く、ピントを合わせきれなかったこともあるかと思いますが、見るも無惨な分解能で、SCA260の性能を全く引き出し切れていないのでお蔵入りです。今回の撮影はこれのリベンジの意味もあります。


今回の目的

今回のSCA260での撮影の目的は
  1. 3分露光で揺れの影響なく星がきちんと点像になるか確認すること
  2. SCAでナローバンド撮影(今回はAOO)を試すこと
  3. EAFの導入テスト
とします。

IMG_4285
雪を避けての撮影でした。

前回12月の6Dの撮影では防振シートの柔らかさと風で揺れ過ぎていたので、今回は防振シートを無くして、3分露光できちんと揺れずに撮影できるかを見ます。

さらに月夜なのでカメラをASI294MM ProにしてAOOのナローバンド撮影としました。


EAF

あとピント合わせの不定性をできるだけ無くしたいので、今回新たにZWOのEAF(Electronic Auto Focuser、電動フォーカサー)を導入しもう少し定量的にピント合わせができないか試しました。

IMG_4289


EAFは現行バージョンではなく、2020年の福島のスターライトフェスティバルで特価で購入した旧バージョンで12V電源が別途に必要なものです。長い間塩漬けになっていました。

とりあえずはオートフォーカスとかではなく、単なるマニュアルでいいところを探します。でもオフセットをきちんと入れておかないと、バックラッシュが大きいのであまり精度よく合わせられないことに気づきました。とりあえず今回ドライバーレベルで100程度の値のオフセットを入れておきましたが、あまり真面目に合わせていないので、もっと大きい値になるかもしれません。精度的には50ステップくらいの差でピントが変わるのがわかります。そこそこは合っているはずなので、これで星像が出なければ赤道儀の揺れか、シンチレーションが原因ということになりそうです。

このEAF、ピントの精度が出るのはもちろんいいことなのですが、それよりもリモートでピントが合わせられるという事が私にははるかに大きなメリットでした。一旦取り付けると手でピント合わせをするのができなくなってしまうので、撮影専用鏡筒とするまでは取り付けるのを躊躇していたのですが、いもねじを緩めればマニュアルフォーカスも可能なので、現行機種にして数を増やしてもいい気がしています。

EAFを導入することで、撮影前の準備は極軸調整、初期アラインメント、カメラ視野回転を終えてしまえば寒いのでとっとと家の中に入ってしまうことができます。ピントは結構な頻度でチェックするので毎回外に出るのが辛かったのですが、今回はそれがなくなるだけで相当楽になりました。


撮影

実際に撮影した画像を、撮影途中で見てみると、何枚かが右斜め方向にずれていることがわかりました。風があるとやはり一方向にずれが出るようです。それでも点像になっているものもあるので、3分露光がなんとか実用といったレベルでしょうか。SCA260自身の軽量化が効いてきたようです。

一方向のずれとは別に、四隅のうち右上のみ放射方向に流れてしまっています。鏡筒の接岸部に(星を始めた頃に買った御三家クラスの格安の)オフアキとフィルターホイールが入っています。さらにねじ込みでオフアキ、ホイール、カメラの回転角を合わせるために、クリアファイルをサークルカッターでカットしたリングと厚さ微調整のためのセロテープなどを使ってあるので、もしかしたらカメラのスケアリングがずれている可能性もあります。

OIIIを10枚、Hαを10枚撮ったところで、少しSCA260の主鏡の向きを調整しました。これで右隅の流れはかなりマシになったのですが、光軸がすでにずれている可能性があるので一度見直す必要がありそうです。

オフアキは買い替えたいです。一応星は確認できるのですが、AS120MM miniの感度では星の数がかなり少なく、PHD2のマルチスターガイドではせいぜい2-3個しか認識してくれません。もう少しプリズムが大きい(幅広い)ものがよくて、ZWOのか、Askarからも新製品出るらしいので、それを見て良さそうな方を買ってみようと思います。

撮影中は月齢19日の月が出ていたので影響も気になりますが、冬の北陸で贅沢なことは言ってられません。晴れた日というだけで貴重で、月のことまで気にしていると本当に撮影日が冬の間中0になってしまいます。以前ノーフィルターで月夜でM78を写しましたが、今回はナローなのでまだマシでしょう。

結局2時間強の撮影時間でした。OIIIとHαを30分ごとに交互に撮影したので、枚数のバランスはそこまで悪くはありません。ここからどれだけ救い上げることができるかです。


画像処理

フラットとフラットダークはいつもの様に別の日に明るい壁を写しました。フラットフレームを見るとすごい数のホコリが存在することがわかりました。

masterFlat_BIN_2_FILTER_HA_Mono_integration_ABE

4次のABEをかけて強いオートストレッチで強調しているとはいえ、ひどいです。HαフィルターでもOIIIフィルターでも同じような位置に見えているのと、リングの大きさが同じなので、おそらくカメラの保護ガラス面かと思います。でもこのモノクロカメラまだそんなに使っていないのでここまで汚れているのが信じられないです。SCA260はF値が5程度なのであまり目立たないはずなのですが、もしかしたら別の理由で目立つような光学系なのかもしれません。これだけ目立つのに、撮影時のライトフレームのオートストレッチでは全く気づかなかったのでそれほど深刻ではないかと思います。さらに、フラット補正をしたスタックしたライト画像でも、たとえ強度に炙り出してもこれらのリングは一つも確認することができなかったので、とりあえずは大丈夫だとは思うのですが、一度チェックして必要なら清掃する必要がありそうです。

ダークは今回初めての3分露光なので、改めて撮影します。カメラのゲインは120が感度的にもダイナミックレンジ的にも有利なので、基本120を使うことにしています。露光時間は今後3分を最長とするとして、淡い天体の場合は今後ゲイン200(ゲイン0の10倍)とか、220(ゲイン120の3倍)とか、300(ゲイン0の30倍)とかキリいい値にする可能性がありますが、その際はそれぞれまたダークライブラリーを増やすことになります。ゲイン120のダークフレームは今後使うことも考え、少し多めの100枚ほど撮影しました。

結局使ったライトフレームは星像が流れているものなどを除いたHα17枚、OIII19枚の計36枚でした。全撮影枚数がHα23枚、OIII31枚の計54枚なので、採用率は67%となります。最初のころのブレブレのひどい星像から考えると、まあなんとかギリギリ実用範囲になったのかと思います。



画像処理はいつものようにPixInsightのWBPPです。

画像処理の過程で、まだいくつか問題がありました。一つはOIIIとHαを合成する時に、背景があまり合わなくてムラができることです。フラットがうまく撮れていない可能性があります。確かに部屋の中の壁だと窓側から光が一方向で入ってくるので、ライトフレームの背景に比べて1次の傾きのようなものが出ます。でもその傾きをABEで省いても、それより高次のムラが残ってしまいます。結局今回はHα画像とOIII画像がスタックされてすぐにAOO合成をした後、ABEを使わずにDBEで点をたくさん打ちムラを取りました。本当にムラなのか、それとも本当は大きな構造が存在するのか判断ができませんでした。

あと、バーダーのHαとOIIIフィルターは何故か周辺減光が大きいです。同じバーダーでもRGBフィルターはそんなことはないので少し不思議です。この周辺減光はSNのかなりの低下を引き起こし、画像処理で取り切ることができる範囲を超えています。ナロー版とフィルターはフィルターフレームから取り外してホイールに取り付ける方がいいのかもしれません。また、上記のムラのことも考えると、ライトフレームの撮り方を根本的に考えた方がいいかもしれません。


格子模様ノイズ

画像処理をしている途中で、深刻な格子状のノイズが出てくることがわかりました。スッタクした直後は気づかなかったのですが、炙り出しの途中で目立つようになってきました。少し強調して画像を載せておきます。
Image07_DBE_DBE_ABE
わかりにくいかもしれないので、クリックして拡大してみてください。

以前もSCA260での撮影時に同様のノイズが出たことがあって、その際マスターフラットによく似た格子模様があったのでフラット撮影時の壁の模様が怪しいと睨んでいました。今回もフラットに格子状模様は見つかったので、フラットダークを無くした処理を試したり、フラットを撮り直すことを考えたりしましたが、結論としては原因は別にありました。

格子模様を見てみると、完全に水平垂直ではなく、少し斜めになっています。もしかしたら何か回転に関連することかと推測しました。結局原因はPixInsighのDynamicCropだったのです。前々回の記事でカメラの回転角を合わせる方法を書いたのですが、今回はそれをやるのをサボって光条線とSharpCapのクロスラインを合わせてしまい2°位の誤差が出ました。これを補正することと、フィルター径による周辺減光部分をカットしようとしてDynamicCropを初期のリニア処理の段階で使ったのですが、この影響が炙り出しで出てきてしまったようです。この過程を省くことで格子状ノイズを回避することができました。上と同様の処理をした画像を載せておきますが、格子模様は出てません。クロップしてないので、少し大きな範囲になっています。

Image28_DBE_DBE_ABE_norot

ただし、まだDynamicCropの何が悪いのか特定まではしていなくて、おそらくは拡大縮小よりは回転が原因かと推測しています。もう少し言うと、DynamicCropの回転とSCA260でのフラットの格子状ノイズ(こちらはどうやらflatdarkから、もっと言うとbiasフレームからきているように思われます)の複合要因の気がしています。これまでも回転は使ってきたことはあって、そこでは問題になった記憶がないからです。

今回はDynamicCropをストレッチが終わった後に適用することで回避しましたが、それでも強度の炙り出しでは少し出てきてしまいました。この件、もう少しつっこんで解析する必要がありそうです。


仕上げ

その後の画像処理は通常の様にASとHTでストレッチして、その後はPhotoshopに渡し炙り出します。

「NGC2539:トール兜星雲」

Image11_DBE_DBE_AS_HT_HT_crop7

  • 撮影日: 2022年1月22日22時2分-23日2時5分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader Hα:7nm、OIII:7nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド: オフアクシスガイダー + ASI120MM mini、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120、露光時間3分、Hα17枚、OIII19枚の計36枚で総露光時間1時間45分
  • Dark: Gain 120、露光時間3分、107枚
  • Flat, Darkflat: Gain 120、露光時間0.2秒、Hα、OIII各:128枚
  • 画像処理: PixInsight、Photoshop CC
一応淡い部分もなんとか出ましたが、今回は撮影時間が1時間45分と短く、また月夜だったこともあり、かなりノイジーで、炙り出すのも限界があります。そのこと自身は露光時間を伸ばすことで解決できるのでいいのですが、不満なのが微恒星が全然シャープでないことです。この日はシーイングがかなり悪かったので、シーイングの良い時を狙って撮影し直してみたいです。というよりは、やっとシーイングについて議論できるくらいに揺れが収まったと言っていいのかと思います。

背景のに青カブリの残りも微妙です。撮り増しとフラットの見直しが必要かと思います。


まとめ

揺れに関しては3分露光でなんとかなりそうなので、ある程度解決しつつあると思います。EAFもかなりいいので、買い増しすることになるでしょう。オフアキも買い替えたいし、なかなか予算が追いつきません。細かいものでも数万はすぐにいってしまうので、計画的に進める必要がありそうです。

いずれにせよ、撮り増しして撮影時間を伸ばす必要がありそうですが、冬の登山の天気の悪さは如何ともしがたく、果たしていつになることやらといったところです。あせらず、気長に進めます。

今回は初のナローバンドです。まずは簡単なAOOから、ターゲットはM27: 亜鈴状星雲です。


M27をAOO撮影

M27は、昔コスモス天文台で25cmのMEADEのシュミカセを使って撮影したことがあります。


低F値の明るいシュミカセなのでコマ収差が避けられていないことと、この時は全く気づけなかったのですが、どうやら淡ーい赤や青の領域が周りにあるようなのです。

AOO撮影はナローの中でもシンプルな方で、HαとOIIIの2波長でR、G、BにHα、OIII、OIIIと当てはめると自然な色で(カラーで撮影したような色)出てくるようです。大きさ的にTSA-120の900mmとVISACの1800mmと迷ったのですが、VISACの三角星像が出ると嫌なので、TSA-120にしました。もしかしたらBKP800にコマコレクターでも良かったかもしれません。

カメラはASI294MM Proです。このカメラではM57のRGBフィルターで撮影で10秒露光のラッキーイメージのようなものを試みたのですが、中心星を含めそこそこの解像度になりました。


今回の目的は
  • ナローバンド撮影の感触を掴むこと
  • M27の周りの淡いところを出してみたいこと
です。

フィルターはこれまで星まつりなどでちょくちょく特価品を買い揃えていたもの。大抵は国際光器さんで購入したバーダーの中古やB級品で、サイズは1.25インチです。フォーサーズのASI294MMなので1.25インチで事足りるのですが、これ以上大きなセンサーサイズだとフィルターからまた考えなくてはならなくなります。ここしばらくはフォーサーズとアメリカンサイズフィルターでまずは色々試そうと思っています。また、手持ちの5枚用のZWOのフィルターホイールはRGBで埋まっているので、今回はフィルターを個別にCMOSカメラの先端にとりつけ、1枚ごとに交換します。


撮影

撮影はいつもの通り自宅庭撮り。今の時期、M27は天頂近くの方向にあります。

BE3315D2-6B84-45C5-9FCB-D3ED4D7DA92D

撮影はCMOSカメラなのでNINAを使います。撮影中にディザーを使いたいことが理由です。SharpCapも最近はディザーに対応してきてますが、まだこなれきっていない感じです。最近はAPTよりもすっかりNINAという感じです。6Dの場合はBackYardEOSですが、それ以外はNINAといったところでしょうか。

撮影は合計3日に渡りました。いえ、長時間撮影したとかではなく、曇りで撮影時間がほとんど取れなかったというのが実情です。

出にくいと言われている青に目処をつけたかったので、まずは月が出ていないうちに、OIIIの撮影からです。撮影日は9月6日。もう一月近くも前になります。露光時間は5分とし、ゲインは一番得をする120。もしこれで何も出ないようなら、次回はゲインを300にするか、露光時間を10分とかにするかもです。こちらは25枚撮影して18枚使えました。最後は曇って中断です。

対してHαは青より出やすいだろうとタカをくくって、半月期の月がかなり明るい時に撮影しました。というより、最近全然晴れることがなくて、それでもかろじて天気が良かった9月23、24日に渡って撮影しているのですが、両日と月が出ている時です。しかも2日とも曇りに近くて雲越しの像になってしまい、ハロっぽくなったり淡いところが見込みがなさそうでした。結局使えたのは24日の分だけで、枚数で言うと65枚中22枚が使えただけでした。両日もやはり曇って中断です。


各種補正フレームの撮影

上述の通りライトフレームはNINAで撮影しましたが、後日バイアス、ダーク、フラット、フラットダークの各フレームの撮影をSharpCapで撮影して、ビニングの名前の定義の違いで画像処理にトラブったという話を前回の記事で書きました。



でもそれは画像処理になって初めて発覚したことで、撮影自体はなんの問題もなかったです。撮影条件は
  • バイアス: 0.0032ms露光、ゲイン120、500枚
  • ダーク: 300s露光、ゲイン120、31枚
  • フラット: 1s or 16s露光(部屋の明るさに依る)、ゲイン120、50枚
  • フラットダーク: 1s or 16s露光(部屋の明るさに依る)、ゲイン120、50枚
となります。

あえて言うなら、OIIIとHαでフラットフレームを個別に撮っているところくらいでしょうか。もしかしたら一緒にできるかもしれませんが、まだよくわかっていません。フィルターによってムラの出来方が違うと言う話もあるので、念のため各フィルターでフラットフレームを撮っています。そのため、ライトフレームの撮影が数日に渡ってしまったのはラッキーでした。一日での撮影だと、フィルターを交換するたびに途中でフラットを撮らなくてはならなくなります。

これを考えると早めにフィルターホイールに入れてしまった方が良さそうです。今のRGBフィルターを入れ換えるか、8枚入るのを買ってRGBもHα、OIII、SIIも全部入れてしまうか、5枚のをもう一台買ってナローバンドフィルター用に別で作るか、迷ってます。


画像処理

画像処理の最初はいつものようにPixInsightです。ビニングの問題でWeighted Batch PreProcessing (WBPP)ができなかった以外は、極めてストレートフォワードでした。

Hα画像とOIII画像の合成はChannelCombinationを使います。R、G、BにHα、OIII、OIIIをそれぞれ当てはめます。

あとはStarNetで恒星と星雲部のマスクをHα、OIIIと別々に作っておきました。でも結局使ったのはHαのマスクだけでした。最近StarNetのマスク作りはトラブルが少なくなりました。コツはSTFのオートストレッチとHTで恒星がサチり気味なストレッチをかけて、そこにStarNetをかけることです。こうするとかなり綺麗に分離できるようです。

一つトラブルを思い出しました。PCCがどうしても上手くいかないのです。位置特定のPlate solveの方は問題ないのですが、色を決めるところでどうやっても最後エラーで終了してしまいます。かなりパラメータいじったのですが、最後諦めてしまいました。もしかしたらAOOで2色が同じなので、そもそも原理的に出来ないのかもしれません。今後の検証項目です。

ストレッチはArcsinhStretchとMaskedStretchを併用しました。それでもASが強すぎて恒星の色が強く出過ぎたのと、MaskedStretchで恒星がサチらないようにしたので、少し眠い恒星になってしまった気がしています。恒星は多少サチるくらいが鋭く見えて好みかもしれません。

ここまできたら、16bitのTIFFにして、あとはPhotoshopに受け渡します。

炙り出している過程で気づいたのですが、青はまだ出ているものの、赤の出がいまいちはっきりしません。淡いところがどうしてもノイジーになるので、一部DeNoise AIを使いました。


なぜ赤色が弱いのか?

赤が出ない理由ですが、私は単純に月夜の晩に撮影したからかと思っていたのですが、Twitterで先に画像だけ投稿したところ、おののきももやすさんから同じように月夜でもないのに赤が出ないという報告がありました。

さに、gotodebuさんから、そもそも水素のバルマー系列じゃなくて窒素の禁制線が出てるのでHαフィルターだと通りにくいのではと言う指摘もありました。Hαは656.3nm、窒素の禁制線は654.8nm,658.4nmとのことで、ともに2nm程度しか離れていません。今回使ったHαフィルターは7nmです。半値全幅が7nmだとしても、十分中に入っていて7−8割は透過してもおかしくないと思います。gotodebuさんによると、もう少し幅の広いQBPだと赤がはっきり出るとのことなので、一度QBPで撮影してみるのも面白いかもしれません。


結果

さて、画像処理の結果です。M27が見やすいようにトリミングしてあります。

Image09_DBE2_stretched7_cut_crop_b

  • 撮影日: 2021年9月6日21時14分-23時23分(OIII)、9月24日22時13分-9月24日0時12分(Hα)
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: Takahashi TSA-120 + 35フラットナー
  • フィルター: Barder 7nm Hα, 7nm OIII
  • 赤道儀: Celestron CGEM II
  • カメラ: ASI294MM Pro (-10℃)
  • ガイド: f120mmガイド鏡 + ASI120MM mini、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、露光時間300秒x18枚 = 1時間30分(OIII)、300秒x22枚 = 1時間50分(Hα)
  • 画像処理: PixInsight、Photoshop CC、DeNoise AI
目的の一つだった回りの淡いところはそこそこ出ているようです。ただ、やっぱり赤が出ていない気がします。もう少し出てもいいと思うのですが、やはりリベンジ案件でしょうか。

それでも前回のM27の撮影よりははるかに進化しています。2018年11月なので3年くらい前です。
integration_DBE_DBE_PCC_st4_cut

3年前と今回の違いですが、口径は25cmと12cmで半分以下、焦点距離は1600mmと900mm、カメラはカラー常温とモノクロ低温、フィルターなしとナローバンドフィルターなどがです。画像処理の進歩も大きいです。3年前はそこそこ写ったと思っていましたが、比べてみると違いは明らかで、ずいぶん進化したことがわかります。

あと、トリミング前の画像はこちらになります。どのくらいトリミングしたかがわかるかと思います。

Image09_DBE2_stretched7_cut_b

いつものアノテーションです。
Image09_DBE2_stretched7_cut_b_Annotated


まとめ

初めてのナローで、今回は比較的簡単なAOOに挑戦してみました。自宅でもナローなら淡いところも出ることがわかったのは大きな収穫です。ただし月がある場合とない場合ではまだ写りは変わるのかもしれません。

あとトータルの撮影時間も実は大したことありません。いや、時間はかけたのですが使える枚数が少なかったです。倍くらいの露光時間があればもしかしたら劇的に変わるのかもしれません。

天気のせいで日数はかかってしまいましたが、今まで見えなかったものが見えてくると思うとナローバンド撮影もかなり面白いです。AOOにとどまらず、SAOとかにも挑戦してみたいと思います。

一晩に2回も機材を出し入れすることになるとは。そして同じネタで2回もブログ記事を書くことになるとは。

前の記事で雨が降りそうで撤収したと書きました。21時頃です。21時20分にはブログを書き終えてました。その後、テレビを見ながらソファーでうたた寝。22時30分過ぎ「もう眠いから今日は寝るか」と思いつつふと外に出てみると、まさに月が顔を出しそうなところでした。

IMG_3369

もう全部片付け終わっていて機材を、急遽再セットアップです。面倒なのと、どれだけこの転機が持つか分からないので、極軸も取らずにとりあえず導入。

IMG_3370

とりあえず1ショット、1000フレーム分撮影しました。

一旦落ち着いてカメラの回転角やピントを再度調整し、思ったより揺れているな(もしかしたら温度順応が不十分で筒内気流だったかも)と思いながら、あと500フレーム撮影して、その場で画像処理。先にTwitterにだけ投稿しておきました。

E_0Tb3QVQAERd4_
  • 月齢14.6日
  • 撮影日: 2021年9月21日23時00分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: Takahashi TSA-120
  • フィルター: なし 
  • 赤道儀: Celestron CGEM II
  • カメラ:  ZWO ASI294MC Pro(常温で使用)
  • ガイド: なし
  • 撮影: SharpCap、露光時間2ミリ秒x250/500枚  
  • 画像処理: AutoStakkert!3、Registax6


撮影終了後、改めて周りを見渡してみました。

月は南の高いところに昇り、中秋の名月の名にふさわしく周りを明るく照らしています。
誰もいなくて、虫の鳴き声と涼しい風が秋の気配を漂わせます。
月を独り占めした夜の世界の帝王のような、それでいて誰かが入ってきてすぐに壊れてしまいそうな、そんな緊張感のある世界でした。

こんな雰囲気まで記録できるのはまだ記憶だけなのでしょうか。文章はそれを思い出すきっかけになりますね。いつか写真にそんなことまで写しとれるようになれればと思います。月を撮影していると、いつもこんなことを考えてしまいます。

皆既月食の敗北で打ちのめされ、仕事が忙しいのと、天気がイマイチでしばらく立ち直れなかったのですが、5月29日の土曜日、晴れたので今度山に行くための準備をしました。超コンパクトな電視観望システムの構築です。でもその後も、しばらく乗り気にならず、記事も今になってしまいました。

Capture_00001 19_32_37_WithDisplayStretch

皆既月食の日に一瞬だけ見えた月です。その後撤収まで二度と出てきてくれませんでした。夕方青空が見えてきたのでTSA-120とFS-60CBと50mm+6Dで広角とフル体制だったのに...。

IMG_2469


歩きでも持っていける電視観望システム

来週6月12日、久しぶりに立山に行きます。スターウォッチングの講師です。車は駅に止めてそこからケーブルカーとバスなので、持っていける荷物の量が限られます。立山のスターウォッチングも最初の頃は張り切ってAdvanced VXを丸々海外旅行用の大きなトランクに入れて持っていってたりしたのですが、そのうち機材の軽量化とともにNexstar、AZ-GTiと楽になっていきました。それでも鏡筒はずっとFS-60CBでした。前回FMA135で電視観望を試したのですが、口径3cmにもかかわらず、その性能の良さとコンパクトさもあり、すこぶる快適でした。



でも欲望にはキリがなく、これだけコンパクトになってくるとAZ-GTiでさえ大きいと思ってしまうのです。立山は歩きもありますし、荷物は軽ければ軽いほどいいです。もう少しコンパクトにならないか試してみました。ポイントは3つです。
  1. AZ-GTiを無くしてただの自由雲台に
  2. ついでに三脚も超コンパクトなものに
  3. ASI294MC Proの広いセンサー面積を利用
組み上げた様子はこんな感じです。

C49BABB6-CFC1-4ACA-8436-40C8DF3738E7

重さは三脚まで合わせても1550g。これなら歩きでもほとんど苦にならないでしょう。でもコンパクトにしても使いにくかったらしょうがありません。そのため検証したいことが3つあります。
  1. 手動できちんと導入できるか?
  2. 星雲はリアルタイムで見えてすぐに見つかるか?
  3. M57などの小さな星雲を解像できるか?
ここら辺を順次確認してしていきたいと思います。


まずはいつものM57

立山でのスターウォッチングが20時くらいからだと思います。6月なので、その時間M57は確実に昇ってきています。M57を見るべく、まずはベガを目印として導入します。導入といっても自由雲台のネジを緩めて、ベガの方向に向けるだけです。ちょっと狙いをつけるのに手間取りますが、さすがに明るいのでPCの画面で見てもすぐに分かります。ただ視野角から言っても、こと座全体が入るか入らないかくらいなので、注意深くM57に向かいます。

問題はこの視野角で見るとM57は相当小さくて、恒星と区別がつきません。

Capture_00001 21_30_33_WithDisplayStretch

どこにあるかわかりますか?場所としては真ん中少し下の明るい2つの星の間です。拡大していくと見えてきます。

Capture_00001 21_30_33_WithDisplayStretch_cut

明るい星2つを拡大します。明るい星が上下にあって、その真ん中らへんです。これでもまだ厳しいくらいですかね。

すごいのは、FMA135はかなりの解像度なので星が肥大することがほとんどありません。マイクロフォーサーズサイズのASI294MCなら四隅までほぼ完璧です。もっと拡大するとM57がちゃんと見えてきます。SharpCap上で600%まで拡大したものをiPnoneで撮影したものが下になります。これだけ拡大しても恒星とはっきりと区別できるのはさすがの性能です。

3B615621-82A9-4788-88D1-B13277F65F92

それでもこれだけ拡大しているので、解像度はギリギリと言ったところでしょうか。中心星は残念ながら見えませんが、M57とはっきりと認識できます。


早速トラブル

でもいきなり問題点が露呈しました。気軽に机の上に置いて見ていたのですが、PCの操作をするたびに机ごと揺れるのです。

C857EEA5-33D8-4446-BA8B-75A87880E135

そのため、まずM57の導入を済まし、Livestackを立ち上げたところでPCを膝の上に置いて、Livestackをリセットして画像をスタックします。そうしないとブレブレになってしまうのです。地面に置くか、別の独立した机に置いた方がいいかもしれません。

M57の結果:
  1. は一応手動で導入できたので合格。
  2. はリアルタイムで見るには小さすぎ。
  3. はギリギリ合格。
としました。


かわいいM27

次に昇りはじめのM27亜鈴状星雲です。

これはとにかく難しかったです。M57から下に下がっていけばいいのですが、目印がないと星図などと比べながらかなり注意深く移動していく必要がああります。ゆっくりやればいいのですが、お客さんがいて早く見せなくてはと焦ると多分導入できないと思います。M27はM57と比べると大きいですが、それでもかなり広角でとても小さいので、よほど注意深く画面を見ていないと見逃してしまいます。

Capture_00002 21_49_17_WithDisplayStretch

解りますでしょうか?下の木の左上、ぼやけた電線の少し上です。かわいいM27が見えています。時間的にも昇りはじめの頃です。

見つかった後は拡大すれば十分きれいに見ることができます。
M27_02
M57よりはだいぶん大きいので、M27ならもう十分な解像度かと思います。

M27の結果:
  1. の導入は難しい。
  2. はかろうじて星雲と認識できる。
  3. は十分解像する。
となりました。


屋根から昇る北アメリカ星雲

北に向かって白鳥座を見ます。ある程度時間が経ってくると白鳥座も昇ってくるので、観望会途中から見えてくると思います。北アメリカ星雲は相当大きいので、導入は簡単です。デネブを見つけたらその少し下にあります。ただし、やはりFMA135のF値では暗いのか、リアルタイムで見るには少し淡いです。でも場所は大体わかるので、露光時間を伸ばすかLivestackするかですぐに出てきます。

F2808181-1DA6-42AD-BF96-555D5461688D

屋根から昇る星雲シリーズですが、このネタ以前もやったことがあり、 私のお気に入りです。面白いのは、屋根と星雲の位置を調整するのに気軽に机を持ち上げて、ちょうど両方が視野に入るようにできることです。初期アラインメントとかが存在しないので、途中でも机ごとだろうがなんだろうが移動できます。

北アメリカ星雲の結果:
  1. の導入は簡単。
  2. は淡いのでリアルタイムだとちょっと厳しい。
  3. はもちろん余裕。
大きな星雲は楽です。


M8干潟星雲とM20三列星雲ここに文章を入力

一度南のほうに行きます。白鳥座が見えている頃には天の川中心も見えるようになっているでしょう。まずは大物のM8干潟星雲とM20三裂星雲です。

これは一発で導入できました。ここら辺まで明るい星雲だとFMA135でも探しながらリアルタイムで見ることができます。

M8_02

今回は自宅でのテストで、月がでいないと言っても光害もあるのでQBPをFMA135の先端に取り付けているので、三裂星雲の青はほとんど出ていませんが、立山でフィルターなしで試してみたら周りの青色も見えてくるかもしれません。本番が楽しみなところです。

M8とM20の結果:
  1. の導入は簡単。
  2. は探しながらリアルタイムで見える。
  3. 3はもちろん余裕。
明るくて大きな星雲は超快適です。


M16とM17

すぐ上のM16わし星雲、M17オメガ星雲も見つけるのは簡単です。

64129D37-4025-4004-8024-A8A88300E72E

評価はM8とM20と同じです。


最後は網状星雲

最後は白鳥座に戻って網状星雲。こちらは目印のデネブとサドルから少し離れているのと、やはり淡いのでリアルタイムでは見えず、導入に少し時間がかかりました。

veil_01


網状星雲結果:
  1. の導入は少し時間がかかる。
  2. は淡いのでリアルタイムだとちょっと厳しい。
  3. は視野角的にもいい感じ。
この頃には月も雲も出てきて明るくなってきたので、ここで撤収としました。

moon_02

ちなみに月も拡大するとこれくらいの解像度で見えます。

moon_01

月としては少し解像度不足の感もありますが、機材を変更しなくても見えるので、観望会ではこれくらいでも重宝するのではないでしょうか?


まとめ

FMA135とASI294MCProと自由雲台を使った超コンパクト電視観望システムですが、大きな星雲はマニュアル導入で問題ないでしょう。立山はかなり暗くて環境の良い空なので、淡くてもさらに見やすくなると思います。ただし、M57とかM27とかの小さな星雲はお客さんがいる場合はAZ-GTiがあった方が安全な気がしました。でもお客さんと一緒に導入の苦労まで楽しむとしたら、マニュアル導入でも良いかと思います。

FMA135の性能は特筆すべきだと思います。これだけ短焦点で、これだけの分解能で、この値段。相当小さいM57から大きな網状星雲の全景まで、かなりの範囲で見ることができます。鏡筒の性能が遺憾なく発揮され、これまでとは一線を画した電視観望システムです。

今回、相当コンパクトなシステムとなりましたが、ASI294MCがProでないノーマルモデルならさらにコンパクトになって、超々コンパクトシステムとか言えたかもしれません(笑)。

でももうこれだけコンパクトならカバンに常時入れておいてもいいくらいです。夜になったら突然サッと取り出して電視観望!なんかかっこよくないですか?

いや、普通の人から見たらかなり変な人ですね...。


平日ですが、晴れていたので自宅で朝まで放置撮影です。ターゲットは迷いましたが三角座銀河M33。TSA-120とASI294MC Proで狙います。本当はTSA-120と6Dで試したかったのですが、少し面積が大きすぎます。でもこの間のM31がFC-76と6Dでうまくいったので、銀河をもう少し試したくて、より焦点距離が長く、よりセンサー面積が小さい方向に行きます。


撮影

夕方過ぎの暗くなったくらいではまだM33の高度はそこまで高くないので、準備はのんびり。機材を設置して、Stick PCでSharpCapでとるとどうも通信が不安定になります。Stick PCはネットワークに繋がってないとリモートデスクトップが成り立たないので、画面を見ることができず、何が怒っているかも分からなくなります。結局全くつながらなくなってしまったので、何が起きているのか見るのに、少し前に用意したモニターアダプターを使ってみます。どうやら再起動されたみたいで、アダプターを準備している間にネットワークも復帰していました。画面を見ながら、同時にpingで安定性を見ます。

IMG_1134

どうもCPUの負荷によって、通信が遅くなったり、止まったりするようです。その上で過度の負荷がかかると完全に止まってPCが再起動されるようです。

ここからは推測ですが、電源容量が足りてないのではないかと。CPU負荷が大きいと電力が足りなくて、Wi-Fiまで電力が回りにくくなり通信速度が落ち、さらにひどいとPC自身が電力不足で止まってしまいPCが再起動されるのかと思います。現在はLess is moreのバッテリーを使っていて安定だと思っていたのですが、電力的にはよくても電圧的には決して高いわけではないので、電圧不足になった可能性があるかと思っています。むしろ普通のUSBバッテリーに昇圧アダプターを使った方が安定なのかもしれません。

SharpCapの極軸合わせはかなり計算負荷が高く、これが終わってしまえば今回はこれ以上負荷の大きいことはしなかったので、バッテリーはそのままとしました。今回の撮影はNINAとPHD2を使ったのですが、これくらいの負担なら全く問題なかったです。昇圧の試験は次回以降に試してみます。

あとSharpCapですが、Stick PCのWindowsが64bitでももしうまく動かなければ32bitにしろと警告が出ます。実際、極軸合わせは警告ではなく動かなかったので、これ以降は32bit版で試すことにしています。


撮影状況

今回の課題は恒星のサチリと風での揺れでした。最初の300秒の露光時間のものはゲイン120で2時間くらい撮影したのですが、どうも明るすぎて恒星中心がサチっているようなのと、途中から風が出てきたので長時間露光だと星像が大きくなるようなのです。

途中でカメラがきちんとNINAで認識されていないみたいで、撮影は進んでいるのにファイルが生成されないというトラブルがありました。この時点で、ゲインはそのままの120で、露光時間を180秒にしました。
露光時間を短くするのは星像肥大にも有利かと思ったからです。同時に温度順応でピントがズレたことも疑い合わせ直したのですが、ピントは問題なかったという判断でした。でもこのピント確認自体がどうも悪さをしたようです。

朝になって見たらそれでも180秒露光のものも中心部がまだ少しサチっていました。それよりも途中から雲が出てきたみたいで、撮影した180秒のものの半分以上は無駄になってしまっていました。結局露光時間が不足しそうなので、300秒露光の2時間分と180秒露光の2時間分の計4時間分を使うことにしました。

PixInsightでは露光時間が違ったりすると別処理でスタックするので、ダークフレームも2種類用意します。フラットフレームはゲインを120と一致させたので一種類で済みました。


TSA-120でのフラットフレーム撮影

少しフラットについて書いておきます。TSA-120ではこれまでフラット補正がうまくいったことがありませんでした。撮影したフラットフレームが全然まともでないのです。FS-60とFC-76で障子越しの自然光でうまくいっているのですが、我が家の障子は枠が狭くてTSA-120の口径をカバーする面積の障子面がありません。一方、スーパーの袋で薄明後の空でフラットフレームを撮影してうまくいっている方もいるとのことなので、今回はスーパーの袋を二重にして輪ゴムでTSA-120に取り付け、太陽光が入っている部屋の日陰部分の白い壁を映すことにしました。

masterFlat-BINNING_1-FILTER_NoFilter

できたフラット画像は見た目はそれほど悪くありませんが、左の方に少し段差のようなものがあります。ビニール袋の取り付け方か、壁の光の当たり具合かと思って色々試しましたが、特に変化がないのでこれがTSA-120の特性かと思うことにしました。かなり炙り出しているので、それで目立っただけなのかもしれません。それよりも変化が大きかったのが、太陽に少しでも雲がかかった時で、光の光量が大きく変わることです。炙り出して見ているとすごい変化に見えるので、雲が完全に無い時を狙いました。でもこれはスタックするので、実際に光量が多少変化してもほとんど影響がないと思います。

フラット補正をした結果を見る限りは、特に問題なさそうなのでしばらくはこれでいくと思います。


画像処理

処理はいつも通りPIのWeightedBatchProcessing (WBP)で。出来上がりのライトフレームは、露光時間の違いにより300秒と180秒の2種類できるのですが、よく見ると300秒の方が細部が出ていてノイジー、180秒の方が細部がなまっているけど滑らかと、ちょっと予測と逆の結果となりました。後半のほうが風の影響が大きかったか、もしくはピント確認した時に合わせ直しが甘かったのが原因かと思います。

最初300秒のと180秒のをPIのImageIntegrationで合わせたもの(3枚以下だと処理してくれないので、それぞれコピーして計4枚をスタック)を処理したのですが、改めて4時間分合わせたものと300秒単体の2時間分を比べてみると、合わせたものの細部がどうしても鈍ってしまっています。泣く泣く2時間分を切り捨て、前半の300秒露光の2時間分だけで処理することにしました。
  • なかなか納得がいかず、何度もやり直して十日くらい過ぎてしまいました。いろいろ問題点はあります。露光時間が光害地にもかかわらず2時間と短いので、根本的にノイジー。
  • 明るい恒星の中心部がサチっているのに後から気付き、残ってしまっています。短時間露光を取り直してHDR合成しようかとも思いましたが、露光時間不足が決定的でそこまでやる価値はないと思い、今回は諦めました。
  • もう少し細部が出そうな気もしますが、ノイズを考えるとここら辺が限界かもしれません。

結果です。

masterLight_180_integration_DBE_AS_hakiOK_all4
  • 撮影日: 2020年11月12日21時1分-13日22時55分
  • 撮影場所: 富山市自宅
  • 鏡筒: タカハシ TSA-120 (口径120mm, 焦点距離900mm) + 35マルチフラットナー(x0.98)
  • 赤道儀: Celestron CGEM II
  • センサー: ZWO ASI294MC Pro (-15℃) 
  • ガイド: PHD2 + f=120mmガイド鏡 + ASI290MMによるディザリング
  • 撮影: N.I.N.A、Gain 120、露光時間: 300秒 x 21枚 = 1時間45分
  • 画像処理: bias 100枚、dark 100枚、flat(12.5ms) 100枚、flatdark 100枚を使いPixInsightでスタック、Photoshop CC, DeNoiseで仕上げ

まとめ

風の影響が大きく、星像が肥大したことがそもそもの問題でした。

口径が大きくなるとより明るく撮影できます。その一方、明るくて恒星がサチってしまう恐れがあります。中心をサチらせても淡いところを出すのか、サチるのは絶対に避けるべきなのか、HDRを前提に短時間露光も別撮りするのか、ここら辺はこれから検討すべき課題です。

星像肥大でピンぼけを疑って、その後のピントが合わせきれなくて、2時間分の画像を無駄にしてしまいました。そのため露光時間不足から、画像処理も少し諦めた感があります。M31アンドロメダ銀河は自宅撮影でも処理に余裕がありました。露光時間が4時間半と長かったこともありますが、やはり根本的に明るい銀河だったからだと思います。M31で気を良くして撮影したM33ですが、M31に比べたらやはりM33は淡いです。と言っても銀河の中では大型な部類なのは言うまでもありません。自宅撮影ではやはりここら辺が限界なのでしょうか?露光時間をもっと長くしてリベンジしたい気もまだあります。

あ、それでも前回、3年近く前のM33が縮緬ノイズで救いようがなかったので、自己ベストは更新です。

あと2つ画像処理が残ってます。太陽とかすぐに記事に書けるものと、どんどん先送りになっているネタの差が激しいです。残ってる画像処理の一つは夏の天の川。もうとっくに季節が過ぎ去ってしまいました。あせらずに頑張って、そのうちやります。


CBPの作例の最後になります。みずがめ座のらせん星雲です。撮影日が8月21日でのんびり画像処理していたので、もうかなりのことを忘れてしまっています。下の文書の撮影時の様子は、撮影当日か次の日に書き留めておいたことです。やっと記事として日の目を見ます。

一晩で2対象の撮影

秋の星座なので、そこそこ高度が上がってくるのが夜少し遅くなってからです。なので前半は前回示した三日月星雲を撮影してました。



らせん星雲がのぼる頃には三日月星雲の撮影をやめて、らせん星雲へと移りました。

撮影時のStick PCのトラブル

三日月星雲のときは調子良かったStick PCでの撮影ですが、らせん星雲に移ろうと準備をしているときにStick PC自身が何度か落ちました。特に、ShaprCapを使う時が多かったような気がします。このStick PCの弱点の一つなのですが、ファン側を床などにくっつけてしまってしばらく運用すると、温度が上がって確実に落ちるようです。また、極度に暑い夏はSharpCapとかでの計算量が増えると反応が無くなってしまうことがあるようです。ただしファンは回りっぱなしなので、外見を見ただけではわかりません。

今回は外での撮影だったので、直につなぐモニターを用意していなくて、リモートデスクトップで見ていて反応が無くなったということしか分からかったので、最後どうやって落ちたのかよくわかっていません。ネットワークトラブルでただ単にリモートデスクトップが繋がらなくなって落ちたと勘違いした可能性ももしかしたらあり得ます。特に、Stick PCをモニターしているクライアントの方のWi-Fiを弱い方につなげていたことが後でわかったので、そのせいの可能性があります。

今回一番の失敗が、夜中に赤道儀を反転してから撮影を初めて放って寝てしまって、朝確認したら午前2時で撮影ファイルの生成止まっていたことです。1時間半ぶんくらいの撮影時間を無駄にしてしまいました。確認したら撮影用に走らせておいたソフトも全部立ち上がっていなかったので、どうもPCが再起動されたような形跡があります。これがトラブルで止まったのか、アップデートとかで再起動されたのかは分かりません。そもそのアップデートはその日のうちに事前にしておいたので、そんなに連続であることはないと思うのですが。

-> その後記録を見たら、撮影をしたその日(夜中)に幾つかの「品質更新プログラム」というのが3つインストールされていました。これが再起動を要請したかどうかまで分かりませんでしたが、どうやらこれが怪しいです。アクティブ時間を撮影時の夜から明け方にしておく方がいいですね。


画像処理と結果

最初、ダークを昔撮ったもので使いまわして処理しました。露光時間は3分で同じですが、温度が0度のライトフレームに-10℃のダークフレーム、ゲインが220のライトフレームに180のダークフレームを使ってしまってます。これだとものの見事にアンプグローが出てしまいました。気を取り直して露光時間、ゲイン、温度全部合わせて取り直して改めて処理。きちんとアンプグローも消えてくれました。やっぱり横着はダメですね。バイアスはあり、フラットは無しです。バイアスはダーク内に含まれているはずなのでなしでもいいのかもしれません。フラットは代わりにABEを使い、StarNetで恒星と分離してから、星雲側の背景にのみ、細かいところを補正するために再度DBEを使いました。そこそこ炙り出していることになって、ノイズが目立ち始めてるので、これ以上を求める場合は露光時間を増やすしか改善していかないと思います。

「らせん星雲」
masterLight_ABE_ABE_DBE_ALL3

  • 撮影日: 2020年8月21日午前0時2分-1時29分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: Takahashi TSA-120 + 35フラットナー + CBPフィルター
  • 赤道儀: Celestron CGEM II
  • カメラ:  ZWO ASI294MC Pro、温度0℃
  • ガイド: PHD2 + f=120mmガイド鏡 + ASI290MMによるディザリング
  • 撮影: NINA、ゲイン220、露光時間180秒x32枚 = 1時間36分  
  • 画像処理: PixInsight、Photoshop CC

期待していた、瞳の虹彩のような線はあまり出なかったです。背景が少し荒くなっています。これらは露光時間が1時間半と短かったせいでしょう。

今回は赤と青とかだけでなく、惑星状星雲らしいカラフルな天体です。CBPで撮影しているので、色がどこまで正しいかがよくわかりません。そもそも色情報は欠けてしまっている可能性が高いので、それらしい色に仕上げているだけです。そこに根拠はありませんが、大きくいじるような必要は全然なかったので、CBPの色バランスはそれほど悪いわけではないかと思います。


CBPフィルター検証のまとめ

これまで、CBPで三裂星雲の一部網状星雲北アメリカとペリカン星雲三日月星雲、らせん星雲と

あとやり残したのは、M42すばると、アンタレス付近とかでしょうか。多分これらはCBPでも難しいと思います。暗い空に勝るものはなくて、これらを自宅から満足いくくらい出すのがもっと大きな目標ですが、焦らずにゆっくりやっていこうと思います。

今回でCBPの初期評価はおしまいです。今回の検証を通して把握できたのは以下のようなことです。
  • QBPほどではないにしろ、十分な光害防止効果がある(QBPの1.3倍くらいしか背景が明るくならない)
  • 青色もかなり出る(紫外の方まで透過して、かつCMOSカメラも感度がある)
  • 赤外起因のハロも防げる
  • 色バランスがあまり崩れない
これまで評価の高かったQBPにも勝るほどメリットが多いです。はっきり言って、十分すぎるほど使えることがよくわかったので、今後も完全に実戦投入決定です。


 

このページのトップヘ