ほしぞloveログ

天体観測始めました。

タグ:ASI178MC

M101に引き続き、TSA-120での単体銀河撮影の第2段、M51子持ち銀河です。


ピクセルサイズの小さいASI178MCで分解能を稼ぐ

M101よりだいぶん小さいので、ASI294MCで撮影すると

Stack_21_17_47_16bits_15frames_192s
のように、かなり小さく写ってしまいます。

しかもピクセルサイズが4.6umと大きめなASI294MCでは、解像度が足りなくてTSA-120の分解能は生かせきれないことが月とPowerMATEを使った検証でわかりました。

そのため、分解能を稼ぎたくてASI178MCで撮影してみたというのが今回の主題です。

でも実は今回の撮影は、上の分解能検証よりも先に済ませてしまっています。ASI178MCで撮影したものの妥当性を知りたくて上の検証をしたというのが実際です。結局、4倍バローを持って分解能は良くなったとしても、明るさが16分の1になるので厳しいというのが結論です。なので、口径を大きくして明るくして、焦点距離を上げてカメラの分解能を活かす方向で、系外銀河に関してはVISACを用いることになっていくのかと思います。

まあ、気を取り直してTSA-120とASI178MCで撮影したM51を処理してみたいと思います。


撮影状況

撮影は先週土曜日のことなので、1週間近く経ってしまってます。もう結構忘れてしまっていますが、透明度は良くなく、北極星がかろうじて見えるくらいでした。しかも風がかなり強かったです。最近もそうですが、春なのでしょうか、なかなか透明度がよくなりませんし、風が強い日が多いです。晴れているのに北極星が見えない日も多いです。

撮って出し(300秒1枚露光をDebayerしてAutoStretch)だとこんな程度です。おそらく風のせいでしょう、星像が肥大してしまっています。

L_2020_04_25_21_04_01_Bin1x1_300s__21C_RGB_VNG

まあ、それでも一応写ってはいますね。あと炙り出すと178はアンプグローがかなりひどいです。しかも右上、右下、左下と3方向。ホットピクセルもひどいです。

結局今回は300秒露光を22枚で、トータル1時間50分の撮影。その後ダークを同条件で30枚撮影しました。


画像処理

画像処理は結構手抜きです。手抜きと言う意味は、
  1. 中心部のみを使っているのでフラット補正はそもそもあまり必要ないことと、長時間露光フラットはむしろ補正しない方が縞ノイズ回避できることがわかっていること、短時間フラット補正もイマイチまだ正しいかどうかわからないので、いずれにせよフラット補正はなし。
  2. また、UTOさんのコメントにより、Optimizeオプションのないダーク補正は、バイアス情報を含んで補正しているので、バイアスファイルも撮影せず。
と言う意味です。アンプグローが激しいので、ダーク補正だけはしっかりやります。

処理はいつものようにPixInsightでBatchPreProcessingですが、問題点が一点。星の数が少ないせいか位置合わせがうまくいかなくて、マニュアルでStarAlignmentをやり直しました。その際、「Star Detection」の「Noise Scales」を2に上げたらうまく行きました。ノイズスタック直後のオートストレッチ画像です。

integration

アンプグローがほぼ無くなっているところに注目です。バイアスノイズっぽいのも出ていません。カラーバランスですが、赤が小さく出てしまっているようです。ASI294MC Proの時とは逆のセンスです。

ここまできたら次はStarNet++。でも今回あまりうまくいきませんでした。明るい星は分離できるのですが、暗い星がうまく分離できません。おそらく風のせいで星像が甘いため分離できないのだと思います。これってStarNet++の弱点なんですかね。以前、M57やM1で試した時は全く分離できないこともありました。長焦点で星像が甘くなるとうまくいかなくなるのが一つの特徴かもしれません。

仕方ないので、一部分離できた状態でPhotoshopに渡します。ここからは適当に炙り出して、Dfine2とDeNoiseで適当にノイズをごまかして、ブレた端をトリミングして出来上がりです。

integration_PCC_AS_HT_SNP3_cut
  • 撮影日: 2020年4月25日20時48分-4月17日22時53分
  • 撮影場所: 富山県富山市下大久保
  • 鏡筒: Takahashi TSA-120
  • 赤道儀: Celestron CGEM II
  • カメラ:  ZWO ASI178MC
  • 撮影条件: ゲイン220、温度20℃、露光時間300秒x22枚 = 1時間50分 
  • フィルター: サイトロン QBP (48mm)
  • PixInsight、StarNet++、Photoshop CC、DeNoise AIで画像処理

まとめ

最後まで仕上げましたが、恒星はぼやっとしてるし、星雲は細部が出ない出ない。口径、ピクセルサイズ、透明度などもまだ問題がありますが、今回の一番の原因は風でしょう。これはリベンジ案件です。いつか取り直します。まだ未処理物がいくつか残ってます。連休中にのんびりやります。


2020/5/17追記: VISACで撮影し直しました。





連休ですが、富山は相変わらず天気はよくありません。こんな時はたまっていた課題を片付けます。


CMOSセンサーを顕微鏡で見るとどうなる?


事の発端は、小海の星と自然のフェスタでスタベのアルバイトのK君がASI294のセンサー面を実体顕微鏡で見てみたいと言った事です。ASI294は電視観望用に持っていますが、うちにはたまたま実体顕微鏡もあります。下の子Sukeの自由研究のために2017年の原村星まつりで買ったものです。これならなんとかなりそうです。

ところがシベットさんからコメントで実体顕微鏡では倍率が低すぎるのではという指摘がありました。なぜかうちには倍率の高い生物顕微鏡もあります。これも同じく下のSukeの自由研究のために2016年の原村星まつりで購入しています。というわけで、必要なものはそろっているので実際に見ることにしました。果たして何が見えるのか?

IMG_9068


まずは実体顕微鏡

手持ちの実体顕微鏡は対物レンズが4倍、接眼レンズが10倍で、40倍のものです。ここにASI294を置いてやればいいのですが、カメラ本体が大きすぎでレンズに近づき過ぎてしまいピントが出ません。仕方ないので、今回はもっと奥行きの短いASI224MCで試すことにします。K君、ごめんなさい。

ASI224MCのセンサーサイズは4.8×3.6mm、解像度は1304×976で一素子のサイズは3.75×3.75ミクロンとのことです。

IMG_9091

センサーは思ったより小さく、周りに金色の線がたくさんつながっています。これを40倍の実体顕微鏡で見てみました。とりあえずiPhoneのカメラで撮ってみます。

IMG_9036

よく見えていますが、センサー面はのっぺりしているだけでやはり全然倍率が足りないことがわかります。

でも実体顕微鏡は簡単には倍率を変えることができません。いろいろ考えて、手持ちのアイピースを利用することにしてみました。接眼レンズを片方外します。31.7mmのアメリカンサイズは径が大き過ぎたので、昔の1インチタイプのものを使いました。手持ちは20mmと12.5mmと9mmの3つ。

IMG_9071

最初に20mmのもので見てみます。1インチサイズだと今度は径が小さすぎるので、とりあえず固定せずに穴に入れるだけです。

IMG_9039

もともとついていた10倍のレンズより少しだけ大きく見えます。

IMG_9037

10倍レンズは焦点距離25mmとか30mmくらいなのかと思います。この時点で50倍とか60倍相当かと思います。当然これだけだとまだ倍率は不十分なので、さらに倍率を上げるために12.5mmレンズを取り付けます。

IMG_9041

これも穴に入れただけで固定していませんが、まあとりあえずそこそこ安定して見えるものです。像はというと、

IMG_9029

接続線は大きく見えてきましたが、センサー面はほとんど変化なしです。最後9mmを試します。

IMG_9043

IMG_9061

ここでiPadのLEDで光を当てたこともあり、基板のパターンが見えてきました。しかもピントを調整してセンサーの端をよく見ると目盛りのようなものが見えます。

IMG_9064

小さな目盛り10個につき大きな目盛りがあり、大きな目盛りを数えると長辺で14個、短辺で10個程度あります。センサーサイズが4.8×3.6mmなので、大きな目盛り2個で1mmはないくらいということがわかります。上2枚の写真のセンサーの枠の太さは同じなので、遡っていくと全体サイズまで直接比較することができると思います。

これで倍率は手持ちの1インチアイピースでは限界です。最終倍率は120倍程度かと思われますが、それでもセンサー面の構造は全く見えてきません。やはりもっと倍率の高い生物顕微鏡が必要なようです。


生物顕微鏡なら見えるか?

IMG_9094


さて、生物顕微鏡に移ったのですが、ここで問題が発生しました。ASI224MCでも奥行きがあり過ぎて、ステージを一番下に下げても対物レンズの間に入らないのです。

IMG_9093


最初はセンサーがついている基板を外そうかと思いました。

IMG_9092

ですが、基板の右側についているコネクタをうまく外すことがどうしてもできなくて、泣く泣く諦めることにしました。ちなみに左上についている赤い検品シールは触るとすぐに崩れるタイプで、ネジを緩めるとシールが簡単にとれてしまいます。改造したかどうかのチェックを兼ねている様です。なのでこのカメラはもうメーカーのサポートは受けることができないと思っておいたほうがよさそうです。もし個人で分解する際は気をつけてください。

結局今回は仕方ないので、下の写真の様に顕微鏡のステージを取り外すことにしました。

IMG_9076

ステージに置くことができないので、CMOSカメラを手で持ちながら見ることになります。バランスが悪いのですが、何度か撮影すればいい位置とピントで写ることもあり、何とかなりそうです。

倍率は対物レンズが4倍、10倍、100倍。接眼レンズが10倍と15倍のものがあります。

とりあえず対物4倍と接眼15倍で目で見てみます。明かりがもっと欲しかったので、先日中身を取り替えたパワータンクの強力LEDで照らすことにしました。この状態で目で見てみると、手でカメラを押さえながらですが、何とか見ることができます。

ここで秘密兵器登場。今回の撮影のために、SVBONYの顕微鏡の差込口に挿すことができるアダプターを買っておきました。

IMG_9089

これはT2ネジが切ってあるので直接ZWOのASIカメラに取り付けることができます。

IMG_9084

これを生物顕微鏡の接眼レンズの代わりに取り付け、直焦点撮影をします。

最初はASI294MC Proを撮影用のカメラとして使いました。まずは最低倍率の4倍の対物レンズで撮影します。撮影はMacのASICAPを使いました。

2020-01-12-0626_0-CapObj_0001

すでに先ほどより大きく写り、遥かに精細に写っています。だんだん楽しくなってきました。

対物レンズの倍率を4倍のものから10倍のものに上げます。

2020-01-12-0607_4-CapObj_0000

おお!とうとうセンサー面の構造が見えてきました。

もっと倍率をあげたいのですが、100倍の対物レンズはセンサー面に相当近づけなければならなく、保護カバーを外さなければピントが合わなさそうです。さらに、かなり暗くなることがわかっているのであまりやりたくありません。いろいろ考えて、ASI294MCよりも一素子のサイズが小さくて分解能の高いASI178MCを使ってみることにしました。その結果がこちらです。

もうセンサー面の構造もはっきりと見えます。

2020-01-12-0634_3-CapObj_0000

でも構造は見えますが、RGBフィルターとかの影響がわかりません。目盛りがついているところから少し中に進むと紫のエリアがなくなる境目があるのですが、わかるのはこれくらいです。この頃になるとカメラの固定方法の工夫でかなりピントも合わせやすくなってきました。下はピントや撮影カメラのゲインを相当合わせ込んだ場合です。

2020-01-12-0636_7-CapObj_0000

かなりはっきり見えて、センサー10素子で目盛りが一つ進むこともわかります。なので目盛りはセンサーの数を表していたんですね。でも、これでも全部同じ素子のように見えてしまっています。

どうやっても進展がないので、ここでかなり悩みました。最後にとった方法が、わざとカメラを回転させて素子を45度傾けてみること。理由ははっきりとわかりませんが、これでやっとうまく見ることができました。最終結果です。

2020-01-12-0702_0-CapObj_0000

見事にRGGBフィルターの配列を見ることができます。これを見て改めて思うのですが、これだけの微細構造を作る技術は見事なものです。これが民生レベルで安価に購入できるというのはなんと幸せな世の中なのでしょう。

最後に、その時の撮影風景です。

IMG_9083


考察

とりあえずセンサー面の構造とRGGBフィルターの存在を確認することができました。対物レンズの倍率を上げ、十分な灯りを用意することができれば、もっと微細な構造を見ることができるかもしれません。

RGGBフィルターがかかっている部分と、かかっていない部分の境目もはっきりとわかります。RGGBフィルターは全面にかかっているわけではなく、センサーの端の方はフィルターはないことがわかります。


問題はここから何を引き出すかです。K君と話した時、サッポロポテト現象を解明したというようなことを言っていた気がします。サッポロポテト現象はあぷらなーとさんも困っているようです



サッポロポテト現象は各素子についているマイクロレンズ効果が原因のようですが、はっきりとした解決策はあまりないようです。今回はやっとCMOSセンサーの素子の構造が見えたくらいなので、まだゴールまでは程遠いと思います。

今回の結果をどう活かすのかが今後の課題でしょう。


まとめ

こんなふうに工夫でどんどん見えてくるような実験は超面白くて大好きです。

とりあえず今回分かったことは、
  • 実体顕微鏡ではCMOSセンサーの構造を見るには倍率が低すぎる。
  • 生物顕微鏡を使うことでCMOSセンサー面の構造、RGBフィルターの様子を見ることができる。
  • センサー1素子そのものを十分な解像度で見るには至らなかったが、まだ拡大率を上げる手は残されているので、1素子をもう少しはっきり見ることもできるかもしれない。

課題としては
  • センサーを置く架台をしっかりしたほうがいい。
  • センサー面についている保護ガラスを外して、高倍率で撮影してみる。
  • 動画撮影でスタックするとさらに解像度が上がるかもしれない。
  • ASI294MCのセンサー面を見てみる。
ことくらいでしょうか。あー、今回も面白かった。


K君、遅くなってすみませんでした。やっとなんか見えるくらいにはなってきました。

K君、次は何を見てみたいですか?


新しく導入したASI178MCですが、電視に関してはASI224に一歩譲ることが判明したので、早速その日のうちに電子ファインダーとして使ってみることにしました。

M57_system


レンズは最初ノーブランドのCマウントの安い16mmを使ったのですが、星像がリング状になったり、レンズ中心を基準に同心円状に引き延ばされたりして、せっかくのASI178MCの高解像度が全く無意味になってしまう状況でした。そこで、CanonレンズをCマウントに変換するアダプターを持っているのを思い出し、先ごろ買ったシグマの10mmの超広角レンズの出番がまだあまりなかったので、ASI178MCに直付けしてみました。これは大正解で、星像が綺麗な点になり、かなりの範囲にわたって画面に表示ができるようになりました。40度x30度の範囲を示すので、ほぼ全ての星座をそれぞれ画角に収めることができ、これは画面を見ながら星座を探すのだけでも面白いです。

もう一つのCMOSカメラASI224MCはこれまで通りFS-60CBに取り付けて電視です。2つのカメラがそれぞれ違った範囲を同時に見せてくれるので、とても楽しいです。しかも、風が強くて寒かったので、自宅からリモートで色々導入して画面上で見えるわけですから、楽しくないわけがありません。

その様子をビデオに撮ったので紹介します。 実際にはStick PC中の仮想画面で3つの画面を行き来するのですが、ビデオ撮影のためにちょっと狭いですが、一つの画面にまとめてあります。ビデオの中で解説もしているので、基本的には見てもらえればいいのですが、左下がCartes du Cielで今赤道儀がどこを向いているか、これからどこを見たいか自動導入先を指定したりします。左上が、ASI178MCの画面で、かなり広い範囲を見ることがでkます。今回はその中の一部を表示しています。右側がASI224MCで、星雲、星団が色付きで映ります。


夜中を回って、すでに夏の星座も出始めていたので、M27亜鈴状星雲からM57惑星状星雲、最後はM13と行きました。月齢18日なので、まだまだ明るいですが、輝度の高いM27やM57はこんな状態でも綺麗に見ることができます。しかも今回はビデオに撮るためにスタック無しで撮影したのですが、スタックすればもっと色鮮やかに綺麗に見ることができます。

他にも色々導入して遊んでいたのですが、一つだけ。タットル・ジャコビニ・クレサーク彗星です。実は自分で導入して彗星を見たのはこれが生まれて初めてです。さすがに尾っぽまでは見えません。

Comet_41PTGK



昨年のうちはAdvanced VXの自動導入で電視をしていました。結構完成したと思っていたのですが、PC上で自動導入ができるようになり、さらに今回新たなCOMSカメラで広い範囲をみる電視ファインダーも併設しましたが、たったこれだこのことで、楽しさが3倍くらいになって気がしています。できるなら豪華に外でモニターを3台並べて、みんなでワイワイ言いながらここら辺を見ようとか言えたら本当に楽しいだろうなあと思います。

ASI178MCは電視にあまり向かないとわかったので残念だったのですが、そのセンサーの大きさと高解像度は電視ファインダーには結構向いていると思いました。怪我の功名です。 

このページのトップヘ