ほしぞloveログ

天体観測始めました。

タグ:大気分散

月曜でしたが、在宅勤務。せっかく明るいうちから自宅にいるので、夕方の月を見ます。


夕方の月と地球照

この日は月齢4日、まだそれほど太くはありません。明るい夕方だと白い月です。最大光度に近い金星も近くにいるはずですが、肉眼だとまだよくわかりません。せっかくなので3倍の星座ビノを使ってみました。これならさすがに青い空の中の金星も一発で見つけることができました。位置さえわかれば簡単です。肉眼でもすんなりと見つけることができました。 

そうだ、地球照でも撮影しようと思い、さっそくTSA-120をセットします。まだ北極もあまり見えていないので、極軸も適当です。

夕方と食後の暗くなってから、何ショットか撮影しました。

18_59_37_lapl2_ap231_RS2_cut
  • 富山県富山市下大久, 2020年4月27日19時6分、月齢4.3
  • タカハシ TSA-120 + 35フラットナー + ZWO ASI294MC Pro (常温17.6℃) + Celestron CGEM II
  • SharpCapで撮影、露光時間 25ms, gain 50, RAW16で記録、800/1000フレームを使用
  • AS3でスタック, Registax6でWavelet, PhotoshopCCで画像処理 、月が画面に広がるようにトリミング
右下に赤い収差が見えているのは大気分散だと思われます。収差の方向と月の向き、高度からのずれの量も計算値とほぼ一致します。

ついでに、目で見た明るさに(感覚で適当に)近づけてみました。こちらはトリミング無しです。でもこういったのってどうやって客観的な明るさにすればいいのでしょう?難しいです。

18_59_37_lapl2_ap231_RS2_evening

さらに地球照です。これもどんな色が正しいかよくわからないですが、夕方感を出してみました。

19_02_07_lapl2_ap3065_evening


PowerMATEを用いての分解能比較

さて、今日の課題はここからです。TSA-120に35フラットナーを付けた状態で、宮路泉さんにまだそのままお借りしている4倍のPowerMATEでどうなるかを見てみます。焦点は出るのか、分解能はどうなるか、変な収差は出ないかなどです。

接続は特に困ることもなく、35フラットナーの後ろにそのままPowerMATEを取り付けて、特に延長塔などつける必要もなく、そのまま少しフォーカス位置をずらすだけでピントが出ました。同様に月の一部を撮影しました。結果には影響ないと思いますが、ミスでRAW8で保存してしまいました。まあ、分解能をみたいだけなので多分問題ないでしょう。

とりあえずその結果です。

20_53_02_lapl2_ap723_RS
  • 富山県富山市下大久, 2020年4月27日20時53分、月齢4.3
  • タカハシ TSA-120 + 35フラットナー + PowerMATE x4 + ZWO ASI294MC Pro (常温16.9℃) + Celestron CGEM II
  • SharpCapで撮影、露光時間 25ms, gain 300, RW8で記録、800/1000フレームを使用
  • AS3でスタック, Registax6でWavelet, PhotoshopCCで画像処理 

でもまあこれはどうでもよくて、見たいのはPowerMATEありなしの比較です。両方の画像を拡大して比較します。

comp2

左が4倍のPowerMATEあり、右がPowerMATE無しです。左はQBPを入れてしまったで色が違うとかは気にしないでください。

PowerMATE無しもかなり検討していますが、やはりジャギーが目立ってしまっています。わかりにくい場合は画面をクリックして拡大してみてください。また、以前の結果と同じくPowerMATEによる変な像の乱れは私が見る限り確認できません。結論としては、今のTSA-120とASI294MCの組み合わせでは、4倍のPowerMATEを入れた方が有意に解像度が高いと言うことが言えます。

ここで少し比較のための情報を。
  • レイリー限界が1秒角くらい1ピクセルが1秒角くらい。なので、1ピクセルがレイリー限界と等価くらい。
  • でもカラーCMOSカメラなので、モノクロCMOSカメラに比べて解像度は4分の1程度のはず。 
レイリー限界を超えて見える可能性についてです。
  • 他数枚をスタックしているのでレイリー限界以上に(多少)解像度が上がってもおかしくはないはず。
  • RegistaxのWavelet変換でシャープになっている
  • 強度の画像処理はしていないので、擬似的に解像度を上げるようなことにはなっていないはず
これらの条件はPowerMATEのある無しに関わらず同じです。また、今回はカラーCMOSカメラなので、PowreMATE無しだとレイリー限界に全然到達していない可能性が高いです。PowerMATEで分解能が上がりましたが、レイリー限界が見えているかどうかは、今回の結果だけでは良くわかりません。PowerMATEで4倍にしているので、一応カラーCMOSであることも考えると、1ピクセルがちょうどレイリー限界と計算上はコンパラなくらいです。

と思って、最後の最後でPowerMATEありの方を1ピクセルが見えるくらいに強拡大してみました。
PowerMATE_Extended
まずは大気分散リミットのようです。どうやら、PowerMATEのおかげで大気分散が姿をあらわにしてきました。一応ちょっと検証します。

赤から青まで約20ピクセル。4倍なので、もともと5ピクセル。ということは画面からの概算は、1.08秒/ピクセルをかけて約5.5秒角。この時の月の高度は14度で、計算によると大気分散は6.2度。読み取り誤差を考えると大気分散で確定でしょう。

どうやら次に進む前に本格的にADCが必要か。


まとめと今後の方針

さて、これらの結果をものすごく単純にまとめると、ASI294MC ProだけではまだTSA-120の分解能を引き出し切れていないということだけは確実に言えます。
  • エクステンダーやバローレンズ
  • よりピクセルピッチの小さいカメラ
  • モノクロのカメラ
などが必要になります。もちろんこれらには欠点もあり、
  • エクステンダーやバローレンズは暗くなりますし、像を歪める可能性もあるので、高性能のものが必要となります。
  • センサーの感度は1ピクセルの大きさに大体比例するので、ピクセルピッチが小さくなると当然感度が落ちます。
  • モノクロカメラはカラーにしたい場合はRGBで撮る必要があるなど、手間も時間もかかります。
など、トレードオフになります。このような対策をして、次は大気分散のことを考えてやる必要が出てきます。


さて、今回の結果をどう活用するか。もともとは焦点距離900mmで撮影できる系外銀河を考えていたのですが、系外銀河って意外に、と言うか当たり前ですが小さくて、900mmで撮影できるものは少ないのです。口径からくる分解能に達しているかどうかを見極めたかったのですが、今のシステムではまだバローとかで焦点距離を伸ばしても得しそうということはわかったわけです。でも拡大すると暗くなるんですよね。4倍のPowerMATEだと焦点距離3600mmですが、明るさ16分の1です。
  1. 2倍くらいの性能の良いバローにして、今のカラーのASI294MC Proで撮り続けるか
  2. 口径の大きいVISACに移すか
  3. それともモノクロのカメラを買うか
うーん、迷いますが、やっぱり2かなあ?夏も近いので一度M57でVISACの再テストですかね。TSA-120では小さい銀河は諦めて、もう少し広い領域を目指すことになりそうです。



昨晩TSA-120のフラットナーのテストの一環で、月齢10.1日の月を撮影しました。


月のテスト撮影

シンチレーションも悪くなく、シャープな月が撮影できました。TSA-120に35フラットナーをつけ、焦点距離880mm。これをASI294MC Proで撮影しています。パラメータとしては露光時間75ms、ゲイン0で1000枚をserフォーマットで撮影して、500枚をAutoStakkert!3でスタック、Registax6でWavelet変換しています。

あ、実は先のM42の撮影のセッティングがそのままになって、月の撮影は実はついでです。そのため、48mmのQBP(Quad Band Passフィルター )が入っているのと、カメラを-15℃で冷却していますが、月の撮影で両方ともあまり意味はありません。

元の画像の画質が良いので、今回はRegistaxでの細部出しはかなり抑えています。あくまで自然に、軽くシャープさを上げるだけにとどめています。最後にPhotoshop CCで少しだけ暗い部分を炙り出しています。また、周りの黒い部分が大きいので少しだけトリミングしています。

20_51_08_lapl5_ap2162_RS

さすがTSA-120とも言うべきでしょうか、細かい描写まで含めて、かなりシャープにしかも自然に出ています。


ん?収差?

とまあ、ここまでは至って順調である意味普通なのですが、 Photoshopで画像処理をしている時にあることに気づきました。どうもよく見ると上部(北)が青色、下部(南)が赤色の収差があるのです。目の錯覚のレベルではありません。
upper_blue

low_red

画面でわかりますでしょうか?ごくわずかですが、月と背景の境目が、上は青、下は赤になっています。

ここで、以前スターベースでS君と話したことを思い出しました。「収差があるとクレームが来る鏡筒は意外なことにTOAやTSAの高性能屈折鏡筒に多い。基本的に鏡筒が持っている収差はほとんど出てこないため、大気収差が目立って見えてしまい、それを鏡筒が持っている収差と勘違いする場合がある。」とのことです。このことを聞いてはいたのですが、「もしかして調整ミスとかもあり得るのでは!?」と考えてしまったのが今回の記事の始まりです。


実際の収差量の見積もり

さてこの収差、いったいどれくらいの量なのか実際に撮影した画像から見積もってみました。PhotoshopでチャンネルをRGBに分けて、下側にずれている赤色を上にずらしてみます。でもほんの1ピクセル上にずらしただけで今度は赤が上に出過ぎます。TSA-120とASI294の解像度から考えると1ピクセル当たり1.08秒なので、1秒以下、まあ大雑把に言って0.5秒くらいの収差があることになります。

この量は大気によって起こっている分散で説明できるのでしょうか?これまで月を撮影してこんな収差が気になったことはありません。もしかしたらこの量は大きすぎで、鏡筒の調整不足から来ていたりすることはないのでしょうか?


大気分散の計算

大気収差は正式には大気分散と言うそうです。大気分散の計算は、多少複雑な式に見えますが、微小量を無視すればわりと簡単に計算することができます。「大気分散」で検索すれば数式は探せば各所で見つかるのですが、今回は色の違いでの大気分散が知りたいので、波長の依存性を考慮した式を使う必要があります。でも簡単に見つかるうちのいくつかが(論文レベルなのに)どれも間違いがあったので、注意が必要です。大元の式を論文に載せる際に、タイポで写し間違えたものと考えられます。全部書くと長いので、0次オーダーの簡略化した式を書いておきます。

まず、「大気差」Rというのは「天体の見かけの高度」から「天体の真の高度」を引いたものとして定義されています。大気差Rは以下の式で計算されます。

R=(n01)tan(90V)[rad]

[deg]は見ている天体の見かけの高度です。n0は屈折率で、
\[(n_0-1)=C(\lambda)\frac{P}{T}\times10^{-8}\]
\[C(\lambda)=2371.34+683939.7(130-\frac{1}{\lambda^2})^{-1}\]
と表されます。このCが波長に依存する部分です。

ここで、Tは温度[K]なので15°Cとして288K、Pは気圧[hPa]で1013hPaとしました。λ[μm]は対象の波長で、ここでは赤色が0.65μm、青色が0.45μmとしました。赤色の場合のRrと青色の場合のRbの差が今回求めたい収差となります。撮影時の月の高度が69°で、大気差を求めると、ラジアンと分角、秒角に注意して、Rrが21.52秒角、Rbが21.82秒角となるので、その差は0.31秒角となります。

撮影した画像から評価した0.5秒角くらいなので、オーダーでは結構あっています。それでも上の計算はかなり簡略化された式を使ったので、誤差も大きいです。簡略化されていない式を使って、もう少しまじめに計算すると0.600秒角となります。こちらのほうは実際の画像から見積もった(1ピクセルズレだと大きすぎ、0.3ピクセルズレとすると小さすぎという感じです)評価に相当近いです。

エクセルで計算した過程をここにアップロードしておきました。簡略化していない式で計算してありますので、ここを見るとどんな計算過程かもわかるかと思います。興味がある方はご覧ください。


考察

実際の画像から評価した赤色と青色の収差が、大気分散と仮定して計算した値とほぼ一致したので、今回見えた収差は大気によるものと考えて良さそうです。鏡筒の調整不足なんてことは考えなくていいということがわかりました。

さて少し考えたいのは、なぜ今回この収差が「初めて」気になったのかです。以前撮った月の画像を見てみました。まずFS-60CBとASI178MCで撮っていたものだと、分解能不足で大気収差を認識することはできていません。同ページのC8で撮ったエッジを見ても、収差らしき色はほとんどわかりません。スーパームーンの時にFS-60CBで撮ったものでも同様です。

かなりシャープな像が特徴のVC200Lで撮った満月の画像を見てみると、確かに少し赤と青がわかるかもしれませんが、エッジを出しすぎていたせいもあり、当時は全く気付くことはありませんでしたし、気にもなりませんでした。

今回TSA-120でこの収差が気になったのは、やはり鏡筒の性能がいいということと、もう一つはRegistaxでのエッジ出しを控えたこともあるのかと思います。でも0.5ピクセルというと0.5秒角ということになり、既に口径120mmのレイリー限界の1秒角を超えているようなものです。まあ、色での判断という大局的な話なので、実際の分解能があるということには直接はなりません。また、レイリー限界というのもある意味ただの指標なので、カメラの分解能、画像処理での炙り出しによってはそれ以上に見えることはあり得る話です。ただ、ここまで鏡筒の原理性能に迫ることができるTSA-120は、やはり高性能の鏡筒というということなのでしょう。

もう一つ、QBPの影響についても少し述べておきます。月の前の撮影のセッティングがそのままでQBPが入ったままでした。今回の収差は、上部が赤で下部が青なのと、計算値ともほぼ合うことから明らかに大気分散と言えると思います。なので、QBPで変な収差が起こっているようなことは基本的に無いと言っていいでしょう。少なくとも、大気収差が気になるレベルで見ても何の影響もないということで、撮影レベルでも安心してQBPを使えるのかと思います。では、QBPが逆に大気分散をより炙り出したと言う可能性はあるでしょうか?これはもう少し追調査が必要です。少なくとも、QBPで余分な波長の光はカットされているので、コントラストが上がりより見やすくなったと言うのはあり得るのかと思います。


まとめ

結局、鏡筒の性能を一瞬でも疑った私がバカでした。タカハシ高性能屈折鏡筒恐るべしです。

スターベースのS君の話は多分誇張でもなんでもなく、本当にクレームが来るのでしょう。そのことを聞いていて、金星を見た時も大気収差と疑わなかった私でも、今回はもしかしてと疑ってしまいました。

こんな大気収差の描写と議論ができるくらいのきちんとした設計と、それを引き出すタカハシ工場の職人芸的な調整には感服しました。


このページのトップヘ