ほしぞloveログ

天体観測始めました。

カテゴリ:観測・撮影 > 系外銀河

M104の画像処理も終わり、補足も含めてブログ記事も書き終えたと思って安心していました。


次に撮影したヘルクレス座銀河団の画像をチェックしていたら、なんとM104をさらにもう1日ぶん追加で撮影していたことに気づきました。その日のシンチレーションが悪ければ無視していいのですが、こういう時に限ってなぜか有意にいいのが撮れてしまっているんですよね。


まずは画像のチェック

SubframeSelectorで個々の画像のFWHMを見てみます。L画像を3日間撮影しているので、それぞれL1、L2、L3とします。前回までで、L1がFWHM = 13pixelくらい、L2は20pixelくらいで、L1にL2から特に悪いものを除いたものを画像処理に回しました。L2の内、特に悪いものは20pixelよりもさらに悪く、残ったいいものでも20pixel程度だったので、L1とは明らかに差があるものを混ぜて処理してしまいました。それでも、実際インテグレートした画像のFWHMを測っても、そこまで有意な落ちがなかったので良しと判断しました。

FWHMを順に見ていきます。まずはL1です。133枚あって、前回までの画像処理では全て使いました。ここでは後に見たL3の基準に合わせた判断をしてみていて、FWHMが12以上、もしくは星の数が35以下なら弾くと判断しています。赤のx印はダメだという判断で、撮影したL1の133枚のうち40枚が残るという判断です。この判断は後で使います。_
SS_L1

L2は酷いもので、上の判断に従えば全滅です。これでも前回はBlinkで見た目判断でダメなものはすでに捨てていて、その残りの56枚でこの結果です。
SS_L2

最後はL3です。新たに発掘された4月12日に撮影したものですが、FWHMだけ見ても9以下のものもあり、L1と比べても全然いいのがわかります。途中時間が経つと悪くなってしまっているので、FWHMが12以上、もしくは、星の数が35以下は使わないという判断をここでしました。FWHMが12という理由は、前回の主にL1のFWHMが13程度だったので、それよりもいいものを使おうということ、星の数は、飛び抜けて数が少ないものを捨てようという意図です。L1にも同様の判断をしたものが、上の図の結果というわけです。L3は全部で139枚撮影して、そのうち24枚除いた115枚を採用しています。
SS


L1とL3の画像で比較

L2は論外なので使わないとして、まずはL1を全て(赤のxは無視して)使った場合と、L3を基準内で使った場合を比較します。それぞれWBPPでインテグレートしてできたL画像に、ABEの4次とDBEをかけて、BXTのCorrect onlyをかけ、その後BXTの星の縮小を0.5、ハロは0、PSFはオートで、背景は1.0をかけます。2枚ともインテグレート後も全て同じ条件で処理しています。

できた2枚の画像を前回締めしたハッブルの画像とほぼ同じ位置で切り取り、重ねてGIF画像で切り替えて見えるようにしてみました。
L1

違いがわかりますでしょうか?ぱっと見どこが違うかわかりにくいかもしれませんが、じっと見てるとモヤっとしてるか、星になっているかなど、違いが見えてくると思います。恒星が大きく見えるのがL1、小さく見えるのがL3です。BXTを同様にかけても、出来上がりの恒星の大きさは元の恒星の大きさに依るということがまずわかります。

上の画像だとちょっとわかりにくかもしれないので、L1でBXTに拾われなくて、L3でBXTに拾われたと思われる恒星を拾ってみました。
L3_marked
もしかしたら取りこぼしているものもあるかもしれませんし、判断が難しいものもありましたが、とりあえず24個と少なくとも無視できないくらいの数の違いがあります。

これらは最終処理で見える星として生き残るものです。一方、モヤモヤしていてまだBXTで取りこぼしてしまっているものも多数あることもわかります。これらは最終処理では背景に埋もれてしまい、星として見えることはないですし、モヤモヤも背景をある程度明るくしないとわからないので、実質的には表には出てこないでしょう。それでも、どれだけシンチレーションがいい日に撮影したとしても、BXTを使う限り、その閾値の上下で星として生き残るか無視されてしまうかが決まってしまうのかという問題は、今のところ避けることはできないようです。かといって、BXTを使わなければ、さらに多くの星が星として成り立たずに背景に埋もれてしまうので、今の所BXTを使う方向でいくほうが有利なのかと思います。

いずれにせよシンチレーションでBXTの有効範囲が大きく変わり、シンチレーションがいいほどより多くの恒星を救えることがわかりました。

一方、銀河本体はというと、あまり目に見えては改善しているように見えませんが、それでも細かいところを見てみると少なくとも何か改善はあるように見えます。


L3画像に同基準のL1画像を加えてみる

次に興味があるのが、L1にL3と同じ採用基準でいいと判断した画像を、L3画像に加えてインテグレートしたものを考えてみます。せっかく撮影した画像をできるだけ使いたいというもったいない精神です。

枚数は元のL3が115枚で、同条件で採用されたL1が40枚です。枚数が(115 + 40) /  115 = 1.38倍に増えたので、S/Nは√1.38 = 1.16倍くらいよくなるはずです。インテグレーション直後の画像でPIのScript -> Image Analysis -> SNRView (PI上にロードしてある画像のS/Nを一度に評価してくれる)比較してみると、L3のみのS/Nが41.24dB、L3+L1のS/Nが42.65dBでその差は1.41dB = 1.176倍になり、ほぼ枚数増加で期待されるS/Nの増加となっていることがわかります。

これで気を良くしたので、恒星の数も増えると期待して、改めてL3だけの画像と、L3+L1の画像を同様にGIFで比較してみます。
L3_vs_L1L3

こちらはさらに変化がわかりにくいですね。なのでこれも同様に、変化のあった恒星を丸で囲みました。非常に面白い結果です。まず、青丸がL3+L1でBXTに構成として認識されずL3のみのときにBXTで認識されたと思われる恒星です。数を数えると12個もあります。黄色の丸は逆にL3+L1の方がBXTで救い取られている恒星ですが、こちらの方が数が圧倒的に少ないです。撮影枚数の少ないL3だけの方が、恒星に関してはより分解能が出ているということで、S/Nとは逆転現象が起きてしまっています。
L3_vs_L1L3_marked

ちなみに紫色の丸はL3とL3+L1で位置がずれてしまっているものです。BXTで何らかの認識はされたのですが、補正が必ずしもうまくいっていないということでしょうか。どちらの位置があっているかはわからないですが、そもそもたまたま量画像で星の一致しているからといって、必ずしもその位置が正しいかどうかはわかりません。元々相当暗くて淡くて広がってしまっている星です。シンチレーションで星の位置がぶれていたり、インテグレートする時に画像を歪ませていることもありするので、この結果だけでBXTに問題があるというのは早計でしょう。これらのことについては、別途きちんと定量的な評価をすべきかと思います。


S/Nと分解能の関係は?

さて、このS/Nと恒星の分解能について少し考えてみます。私は最初単純に枚数が多いL3+L1の方がS/Nもよくなり、分解能も良くなると思い込んでいました。S/Nは数値的にもほぼ理論に従いましたが、分解能に関してはL1を加えた枚数が多い方が悪くなってしまっているようです。

このことについては、ラッキーイメージ的な解釈である程度納得することができました。L3に加えたL1画像は、基準が同じといってもL3と比べたら、L3の中でもかなり悪い画像に相当するものなのかと思います。ここでいう悪いというのは、FWHMが12に近い大きなもので、星の数も少ない方という意味です。たとえ枚数が少なくても、いい画像のみを集めて使うラッキーイメージと似たことが起こったと思うと、S/N(明るい信号部分と暗いノイズ部分の比)は悪くても、明るいところの分解能は得をするということでしょうか。

こう考えると、S/Nと分解能は結構独立で、別個のパラメータと考えた方が良さそうです。今回はL3をFWHMが12以下で区切って使っていますが、銀河部分をメインに考えるとS/Nは十分取れているので、もっと枚数を減らしても良いのではと考えることもできます。FWHMの基準を厳しくしたほうが、元々の目的のM104の内部の構造を出すという目的からは、正しいのではないかと推測できるわけです。

でもこれをどこまで攻めてもいいのか?S/Nをどこまで落としてもいいのかの基準がよくわからないので、判断が難しいです。例えばL3画像でFWHMを10以下として、枚数は半分程度に減ってしまうかもしれませんが、実際に試して画像処理までしてみるのは価値があるかもしれません。

と、ここまで記事を書いて疑問に思ったので、焦らずに疑問はできるだけ解決するということで、実際に試してみました。条件はSubframeSelectorでL3画像のうちをFWHM10以下、かつ星の数が50以上のものを採用するとしました。枚数的にはFWHM12以下、かつ星の数が35以上だったときに115/139枚だったのが、44/139枚と、3分の1強くらいになりました。これで全く同じ条件でWBPPをかけインテグレーション直後でまずはS/Nを測定してみると、115枚だった時が上でも示しましたが41.24dBで、さらに女権を厳しくした44枚の方が37.57dBでした。115枚と44枚から計算したS/Nの改善比はsqrt(115/44) = 1.62です。一方インテグレーションした画像の実測値での比は41.24 - 37.57 [dB] = 3.67 [dB] = 10 ^ (3.67 / 20) = 1.53となるので、1.62から少しだけずれますが、まあ誤差の範囲内で一致してるといっていいでしょう。

では同様にL3で115枚使った時と、44枚使った時を、GIFアニメで比較してみます。
L3_115_L3_44
S/Nで高々1.5倍程度の違いなのに、大きく違って見えます。違いを挙げてみると、
  1. 115枚の方が、恒星が大きく見えて、44枚の方は恒星が小さく見える。
  2. 44枚の方が背景がノイジーで荒れている。
  3. 44枚の方はBXTで救いきれていない、取りこぼしている恒星が多い。
  4. 銀河本体の評価は難しく、一見44枚の方が細かいところまで出ている気もするが、ノイジーなだけの気もする。
1. 恒星の肥大に関しては、FWHMが小さい44枚の方が(同じパラメータの)BXTをかけた後でも小さくでるので、FWHMだけで判断してしまっていいでしょう。やはりラッキーイメージ的なFWHMが小さいものを選ぶのは、恒星の鋭さでは結果的にも有利です。

2. 見かけの背景の荒れ具合はどこまで炙り出したかだけの問題なので、背景が荒れ荒れに見えるのは気にしないでください。同じS/Nの画像でも強炙り出しすれば荒れて「見えて」しまいます。

3. それよりもここで重要なのは、暗くて淡い恒星の出具合が全く違ってしまっていることです。明るい恒星は元々S/Nが高いので、2枚の画像であまり差はないですが、暗い恒星はS/Nが低いのでNの影響をより大きく受けます。

例えば、115枚インテグレーションした画像の中で、BXTでギリギリ生き残った星のS/Nをインテグレーション直後の画像で測定すると (実際は淡い星の範囲を決めるのが難しいので測定もなかなか難しいのですが)、少なくとも2から3くらいはあります。一方、115枚画像で生き残った同じ星と同じ位置の、44枚の画像で生き残らなかった星のS/Nを測定すると1から1.5程度で、優位に差があります。115枚の時に2とか3あったS/Nが、枚数が44枚と少なくなりノイズが1.5倍ほど上がり、S/Nも1.5分の1ほどになり、恒星として認識されなくなったということかと思います。

このように、高々1.5倍程度のわずかなノイズの増加が、淡い部分には決定的に効いてしまうわけです。

4. 構成のFWHMが小さいと背景の分解能もより出ているはずですが、いかんせんノイズのNが悪くて判断がつきにくく、全体としては44枚の方が不利と言っていいでしょう。


こうなるともうラッキーイメージで枚数を制限するか、S/Nを稼ぐために多少FWMHは悪くても枚数を増やすかは、トレードオフですね。恒星の鋭さを取るか、淡い恒星が残るのを取るかです。銀河本体も同様にトレードオフかと思います。要するにその場その場に置いて、どちらを取る方が有利か判断して決めるべきなのかと思います。しかもインテグレーションまでしての判断なので、手間も時間もかかり、きちんとやろうとするとかなり大変になりそうです。

それよりも、これ以上の劇的な改善を考えるとすると、
  • 同等のシンチレーションのいい日に、より多くの枚数を撮影するか
  • 同等のシンチレーションのいい日に、より暗い空で撮影するか
だと思います。今のノイズは光害によるスカイノイズが支配的なので、このスカイノイズを改善する方法を考えるべきだということです。言い換えると、ここまで来てやっと自宅の光害が問題になるレベルに辿り着き、やっと暗い場所で撮影するべきかどうかの議論する価値が出てきたということなのかと思います。これまでは基本自宅撮影が多くて、今回のM104は系外銀河で背景を気にしなければ銀河本体はそこそこ明るいので、自宅でも十分だと思っていました。今のところ自宅だと厳しいと思ったのが、
  • M81を撮影した時のIFN
  • Sh2-240やダイオウイカなどのものすごく淡い天体を撮影した時
ですが、今回の
  • 系外銀河周りの恒星を出したい時
が新たに加わり、3つになりました。

まだ暗黒帯とかにあまり手を出していないので、ここら辺もいずれ暗いところを求めることになるかと思いますが、徐々に自宅撮影の限界が見えてきたということだと思います。今のところ頻繁に遠征に行くのは時間的に厳しいので、貴重な遠征の機会を逃さないように、あらかじめ遠征時のターゲットをはっきり決めて置くことがこれからの課題でしょうか。


画像処理

FWHMを12ピクセルで切ったL3のみ44枚でインテグレートしたL画像と、前回までの画像処理で使ったRGB画像を使って、画像処理をしてみます。

比較しやすくするため、ハッブル、今回、前回の順で並べます。
STScI-01EVT8YHAGM2WGQTV3DGKRFZ7Q

Image07_rot_Hubble_mod_cut

Image07_rot5_Hubble

恒星のシャープさは上がりました。救い上げた星の数は増えましたが、一部以前残っていた星が新たに消えてしまっているものもあります。でも、ハッブルの画像みたいに微恒星が一面に星が散らばっている様子からは程遠いので、ここら辺が次の課題でしょうか。

銀河本体は一部前回のほうが良かったところもあるように見えますが、基本的には今回の方が細部も出ていて、明らかに良くなっています。ハッブルの画像に多少なりとも近づいているのかと思います。どうやら改めて全画像処理工程をほぼやり直した甲斐はあったようです。

全体像も更新です。
Image07_middle

Image07_ABE1_crop_ABE4_DBE_BXTc_SPCC_BXT_LRGB_BXT_back_GHSx3_low
  • 撮影日: 2024年4月10日20時27分-4月11日3時18分、4月12日21時49分-4月13日0時46分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: 無し
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120で露光時間1分でL: 115枚、R: 59枚、G: 51枚、B: 64枚、総露光時間289分 =4時間49分
  • Dark: Gain 120で露光時間1分が204枚
  • Flat, Darkflat: Gain 120で露光時間 LRGB: 0.01秒でそれぞれ128枚
  • 画像処理: PixInsight、Photoshop


まとめ

今回いろいろ試したことで、FWHMで分解能を評価できる手法はある程度確立できたのかと思います。やはりシンチレーションの影響は大きく、まずはいい日を選ぶことかと思います。その一方、淡い部分はS/Nの、特にノイズが大きく関係するので、全体の仕上がりとしてはFWFMだけでなく、枚数をある程度確保するか、スカイノイズを回避する必要があるのかと思います。

長かったですが、M104はとりあえずこれで完了とします。次回M104に挑戦するときは、暗い場所に行って撮影し、恒星がどこまで出るのか挑戦してみたいと思います。



久しぶりのブログ更新になります。皆様いかがお過ごしでしでしょうか?ゴールデンウィークは天気も良く、特に後半は新月期に入り絶好の星見日和だったのかと思います?

私はというと、あいにくGW中に体調を壊してしまい、前回の小ネタ記事を書いて以降ほぼ何もできない日が続きました。やっと体力も少し回復してきて、今もこの記事は病院の中で書いています。と言っても今回のM104の撮影はずっと前に終わらせていましたし、画像処理もブログ記事ある程度まで終えていたので、少し仕上げたくらいであまり無理はしないようにしています。

せっかくの長期休暇の新月期、暑くもなく寒くもなく、大きな太陽黒点と低緯度オーロラを横目にと、数々の絶好のチャンスを逃してしまい残念でなりません。その不満を払拭すべく、少しづつですが再開していきたいと思います。


三たびM104、でも本当は4度目

M104は分解能ベンチマークのような役割もあり、これまで何度か撮影しています。最初は2021年4月にVISACで。中心部を拡大すると、まだまだ無理やり解像度を出している感があります。


次は2022年8月、SCA260を手に入れてからより大きな口径で違いを見ました。


ただ、SCA260は焦点距離が1300mmとそこまで長くないので、M104は小ぢんまりと写ります。そのためこの時は
  1. バローなどなしでbin1の場合
  2. 2倍のPowerMATEを使ってbin2の場合
で比較しました。1素子あたりの明るさと画角は同じになるようにして比較したということです。違いはFOV(全体の視野角)と、bit depthになります。結果としては、恒星は2の2倍でbin2方が良かったですが、銀河本体は1の方がビミョーに良かったです。でも有意な差はほとんどなくて、結局1のほうがバローの挿入などの余分な操作がなく埃などが入る余地が少ないので、今後は1でいくという結論になりました。あと、この時はまだRGB合成のみで、L画像は撮っていませんでした。

その後、2023年5月にL画像だけ撮影していて、明らかに解像度が上がっていることまで確認したのですが、同時期にRGBを撮影する機会がなかったのでそのままお蔵入りにしてしまいました。2022年のRGB画像と合成しても良かったのですが、いまいち盛り上がらずに2024年を迎えてしまって、このままではさすがにダメだと思い、今回やっとLもRGBも一緒に撮影するに至りました。


NINAが重い

今回の撮影の少し前、3月18日にNINAの3.0が正式に公開されました。ただしちょっと重いみたいです。3.0にしてから撮影画像の保存にすごく時間がかかるようになりました。1枚撮影すると保存だけで毎回1分以上かかり、保存中は撮影は進まないので、かなりの時間ロスになります。

現在はStick PCで撮影し、micro SDに保存しているのです結構非力です。最初ディスクの書き込み速度を疑いました。でも撮影したファイル単体のコピペとかだと全然速く終わります。そこで、タスクマネージャーで撮影中の様子を見てみたら、NINAがものすごくCPUパワーを食っていて、かなりの時間100%になるようです。仕方ないので、以前の2.2に戻したら、ほぼタイムロス無しで連続で撮影できるようになりました。単にソフトが肥大したのか、それとも何か負荷が増えるようなバグっぽいものなのか、3.0がさらにアップデートされたらちょくちょくチェックしてみたいと思います。


今回の撮影

今回の撮影での大きな違いは、
  • 前回まではRGB撮影だけだが、今回はL画像を撮っているところ
  • 露光時間をこれまでの5分から1分にしたこと
です。L画像は実際の解像度向上に大きく貢献することになるかと思います。露光時間に関しては、SCA260+ASI294MM Proの場合gain120で露光時間5分だと、かなりの恒星がサチってしまうことに気づきました。特に、明るいL画像は深刻です。

下の画像は昨年5分で撮影したL画像を反転させています。bin1での撮影なのでそもそも12bit = 4096階調しかありません。ここでは階調の99%以上(4055/4096)になってしまっているところを黒くしています。

2023-05-11_20-58-14_M 104_LIGHT_L_-10.00C_300.00s_G120_0004
結構な数の星と、なんと画面真ん中の銀河中心までサチってしまっています。これはいけませんね。

下は今回露光時間を1分にしたもので、他の条件はほぼ同じです。だいぶマシになっていますが、それでもまだ飽和を避けることはできていません。少なくとも銀河中心は問題ないです。
2024-04-01_22-25-41_M 104_L_-10.00C_60.00s_0013

さらに露光時間を変えるにあたり、以下の2つのことを考えましたが、処理後の画像を見比べた限り違いはわからなかったです。
  1. 自宅撮影に限っていうとスカイノイズが圧倒的に支配的になります。露光時間を短くすると、読み出しノイズの効きが大きくなってくるのですが、露光時間を1分にしたくらいではまだまだ読み出しノイズは全然効かないくらいです。
  2. 淡い部分の階調がADCの暗い側にシフトするので、階調が出にくくなる心配もありましたが、まだ全然余裕があるようです。
LRGB画像は今後1分でいいと思います。ナローに関しては輝度が10分の1以下になるので、露光時間5分をキープするか、ダイナミックレンジがそこまで必要なければgainを上げてもいいかと思います。


画像処理 

WBPPでLRGBそれぞれインテグレートまでします。その後、すぐにRGBを合成して、カラーにしてからABEとDBEでフラット化をかけました。それぞれの色でフラット化してもいいのですが、カラーでやっても独立して働くので効果は同じはずで、1度で済むので手間を省いているだけです。

銀河で自宅撮影なので、背景のIFNなどは気する必要はなく、RGB画像もL画像も、気軽に簡単にフラット化してしまいます。だいこもんさんのブログ記事(元情報はUTOさんだそうです)によると、M104の周りにも相当淡い構造(更に大元がここ)があるようなので、試しに去年撮った5分露光画像も含めてL画像をかなり頑張って炙り出しましたが、私のところではその片鱗さえ全く見えませんでした。大顧問さんはチリで30時間露光して見えたとのことなので、自宅のような光害環境ではここまで淡いのは全然無理なのかと思います。なので、今回は背景は気にしないで、とにかく目的のM104本体の内部の細部構造がどこまで見えるかに全力を傾けます。

この内部構造、シンチレーションに強度に依存するようです。L画像は二日にわたって撮影していますが、二日目の画像は全然ダメで使うかどうか迷いました。1日目だけのもの133枚と、1日目133枚+2日目の中でもマシなもの56/103枚を使ったものを比較しましたが、見た目では違いがわからなかったので2日目のも入れたもので処理を進めました。

L画像はABEの2次、DBE、BXTをかけていますが、この時点でかなりの解像度が出ていて期待が持てそうです。
Light_BIN_1_8288x5644_60s_L_drizzle_1x_ABE4_DBE_BXTc_BXT_BXT03


LRGB合成

RGBとLをどう合成するかはいまだに迷います。過去に何度が議論しています。LRGB合成を初めて試したのは2022年10月のまゆ星雲です。この時わかったのは、L画像を合成したときに色がかなり出なくなるのですが、見えなくなっているだけで色情報としては十分残っているということでした。でもLとRGBをどのタイミングで合成すべきか、どういった比率で合成すべきかなどはまだまだ謎のままでした。


その後、この2つの過程でLRGB合成の経験的な方法はある程度確立したのかと思います。



そしてこのページである程度の理屈も含めて結論が出ています。


久しぶりのLRGB合成になるのでかなり忘れていることもあり、今回改めて読み直しましたが、今見てもかなり有用な議論です。当時のniwaさん、botchさん、だいこもんさんに感謝です。

今回まずは様子見で、PIのLRGBCombinationを使ってL画像を指定してRGB画像放り込んでみると、カラーノイズが結構目立ちました。RGBの撮影時間が短いので当然なのかもしれません。そこでLab分解してaとb画像にぼかしをかけてみました。以前うまくいった方法なのですが、今回はカラーノイズに対してほとんど効果が見られませんでした。カラーノイズ対策ができないのならa、b画像で何かする価値はほとんどなくなってしまいます。カラーノイズは後で対策できることと、奇をてらう方法はできるだけ避けたいこともあり、今回は素直にLRGBCombinationを使う方法を探ります。

未だ残っている一番の疑問は、LとRGBの混合比率です。これまでわかっていることは、
  • LRGBCombination処理はリニアでやらずにノンリニアでやること。ノンリニアとはフルストレッチしてからということ。
  • でもフルストレッチは厳しすぎる制限で、多少のストレッチでも大丈夫そうなこと。
  • リニアで処理すると、恒星内部に明るい飽和の飛びができ、後からどうしようもなくなること。
  • 飽和の飛びはL画像がRGB画像より暗い場合にできたが、L画像を明るくすると無くなること。

まず思っている疑問は、リニア段階での処理では本当にダメなのかということです。リニアはノンリニアの特別な場合と考えることができ、ノンリニアでいいのならリニアでも当然大丈夫だと思うからです。今のところ確認できている弊害は、
  • 恒星の飛び
だけです。

結論だけ言うと、今回リニア段階でLRGBCombinationを試しましたが、いずれも恒星の飛びは確認できませんでした。ただしこの結果は、LとRGBの明るさの違い(混ぜる比率)に依存しそうなので、その比率を変えて幾つか試しました。試したのはLRGBCombinationのCannel Weightsを変えることです。これらは相対的な比だけで決まり、例え全部を0.1とかにしても、処理後の画像の全体の明るさは変わらないことは以前確認しています。試したのは以下の4種類です。
  1. L : R : G : B = 0.1 : 1 : 1 : 1
  2. L : R : G : B = 1 : 1 : 1 : 1
  3. L : R : G : B = 1 : 0.1 : 0.1 : 0.1
  4. L : R : G : B = 1 : 0.01 : 0.01 : 0.01
いずれの場合も上で書いたように飛びは出なかったので、とりあえず今回は少なくともリニア段階でLRGB合成したとしても確認できるような問題は起きなかったと言えます。

その一方、できた画像の解像度には明確な差が出ました。下の画像になりますが、左から順に上の1,2,3,4となります。
comp

注意すべきは2, 3, 4で、Lの比率が高いとLRGBCombination直後はほとんど色がなく、一見モノクロのように見えることです。でも色情報はきちんとのこっているので、ここで心配する必要はありません。CurveTranformationで右のSの彩度を選んで曲線をΓの字になるくらいにして彩度を上げてやると確認できます。上の画像はそのように彩度を上げたもので比較しています。

4つの画像を見る限り、カラーノイズ、彩度に関しては明確な有利不利は確認できませんでした。最も大きな違いは分解能で、Lが一定以上の明るさがないとRGBが持つ低い分解能のままで制限されてしまうということです。わかりにくい場合は上の画像をクリックして拡大して比べて見てください。明確に違いがわかります。LとRGBの比が0.1:1や1:1ならばL分解能が十分生きてこなくて、1:0.1ならば十分、1:0.01にしてももう変化がないことがわかります。以前M106で試した時は1:0.25とかにして分解能が出たので、今回も再現性があり、ある程度L画像の明るさを保たないとダメだという結果を改めて確認できたことになります。

というわけで、今後もLRGBCombinationでシンプルに、Cannel WeightsだけLをある程度大きくしてLRGB合成をすればいいということにします。


結果

結果です。とりあえずはクロップして本体をある程度の大きさにしたものを完成とします。

「M104: ソンブレロ銀河」
Image07_middle
  • 撮影日: 2024年4月1日22時3分-4月2日2時41分、4月10日20時27分-4月11日3時18分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: 無し
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120で露光時間1分でL: 189枚、R: 59枚、G: 51枚、B: 64枚、総露光時間363分 =6時間3分
  • Dark: Gain 120で露光時間1分が204枚
  • Flat, Darkflat: Gain 120で露光時間 LRGB: 0.01秒でそれぞれ128枚
  • 画像処理: PixInsight、Photoshop

まず目的の銀河本体内部の構造ですが、結構出たといっていいかと思います。これはひとえにシンチレーションが良かったからと言うのが今回の結論です。BXTの効果も大きいかもしれませんが、シンチレーション自身が良かったのがまず第一だと思います。色は下に載せたハッブル画像に近くしました。

クロップ前の全体像になります。
Image07_low

恒例のAnnotationです。
Image07_low_Annotated

銀河っぽいシミがいくつかあると思ったのですが、候補に入らないものがいくつかあります。単に画像処理でなにか失敗してるのか、はたまたまだカタログ不足なのでしょうか?


ハッブルとの比較

恐れ多くもハッブルと比べてみます。

まず今回撮影し画像を5度時計回りに回転させ、次のハッブル画像と同じような画角に切り出したものです。
Image07_rot5_Hubble

次がハッブル望遠鏡が2003年に発表したM104です。
STScI-01EVT8YHAGM2WGQTV3DGKRFZ7Q

もちろん分解能には全然差はあって追いつけっこないですし、恒星に至っては大きさも微恒星の写りも全く違います。でもなんかちょっと比べてみようと思うくらいにはなったのかなと思って、自己満足しています。


まとめ

足掛け2年にわたって悶々としていたM104にやっと決着がつきました。2022年の結果がこれなので、大きな進歩だと思います。
final

ソフトは変わりましたが機材は同じです。今回L画像を撮影したのは大きな違いですが、やはりそのL画像のシンチレーションの影響が一番大きいと思います。撮影時のHFRを見るとシンチレーションの評価になりそうなので、いい日かどうかを定量的に評価しながらL画像を撮影すべきなのかカラー画像を撮影すべきなのかを決めることなどができそうです。そこらへんの補足記事を次に書こうと思っています。

今回健康を害すると何もできなくなってしまうことを実感しました。まだ今後も長年続けていきたい趣味なので、少し体に気をつけて、無理をせずに楽しみながらやっていけたらと思います。

画像処理も溜まっています。ダイオウイカは昨年10月くらいから残ってますし、ヘラクレス銀河団、さらに南天がいくつか残っています。これらも焦らずに進めていきたいと思います。


一連のε130Dテスト撮影で、北アメリカ星雲とペリカン星雲網状星雲と撮ってきました。




今回は3例目で、光軸調整前にもう一つ撮っておいたものです。といっても網状星雲が昇ってくる前の夜の前半で撮るものがないので、春の残りのおとめ座銀河団をお遊びで撮ったというだけです。でも結果だけ見たら流石にすごいことになってたので、記事にまとめておきます。

おとめ座銀河団に関しては、2年前の2021年3月にFS-60CBとEOS 6Dで結構な広角で撮影しています。


さて今回は、2年前の結果をどこまで超えられるでしょうか?


撮影

今回の撮影でのポイントの一つは、カメラがASI6200MMで高解像度になったこと。頑張ってbin1で撮影したので、ピクセルサイズは3.74μmとなり、前回の6Dのピクセルサイズは6.5μmで、6.5/3.75=1.75倍。さらにカラーからモノクロになっているので単純に2倍をかけると一辺3.5倍の解像度になります。面積で見ると14倍なので、ピクセルを14ピクセルで表すことになります。もちろん光学性能の限界やシンチレーションなどから、ここまで差がつくことはないかと思いますが、どこまで光分解のに迫れるのか、少し楽しみです。

撮影画角ですが、前回のFS-60CBの焦点距離370mmに比べて、今回のε130Dは430mmなので、少し画角が小さくなります。前回は南北はM100からM87まで、東西はM90からNGC4216まで入れたのですが、今回はそこまで欲張れません。少し迷ったのですが、今回はM100とNGC4216は諦めました。その代わりにマルカリアンの鎖が画面真ん中に近くなるように、M87のさらに南側を少し入れています。

あ、そういえば初のε130DでのLRGB撮影になります。LRGBフィルターはZWOのものです。高くなく、性能もいいという評判でしたが、実際はどうでしょうか?


これまでの問題点

ε130Dの撮影に関しては、これまで問題点として
  • 北アメリカ星雲では四隅の星像が流れること、BlurXTerminator(BXT)でかなり補正できること
  • 網状星雲で迷光による明暗が残ってしまうこと
などがありました。今回特に、後者を今一度確認してみます。


背景ムラの確認

迷光についてですが、L画像の1枚撮りを見てみます。ABEの4次をかけて、その後オートストレッチをかけたものです。

_2023_05_15_21_01_13_L_10_00_300_00s_0001_ABE

背景が何もない銀河団の撮影なのでよく分かりますが、かなりひどい変なムラがあります。

試しに、今回の処理のために撮影したフラットフレームの1枚撮りの画像を、同様にABEの4次をかけ、オートストレッチをしたものがこれです。

2023_05_17_14_07_54_1x1_L_0_01s_g100_29_60C_0000_ABE

はい、ものの見事に再現できています。フラットは明るい部屋の中で壁に向かって撮影したものです。

最初は撮影時の自宅部屋の電気の明るさがカメラに漏れていったのかと思っていましたが、時間も状況も違うのに出るということは、鏡筒由来でしょうか?これは次の記事で検証しようと思います。


画像処理: 背景ムラ対策

上の画像の背景ムラは共に1枚撮りです。画像処理の際に、多少の背景ムラはフラット補正で消えてくれるのですが、ここまでひどいと完全には消えてくれないようです。例えば、WBPPの後にスタックされたmaster L画像にABEの4次をかけ、オートストレッチしてみてみると、以下のようにどうしても補正しきれない残差成分が残ってしまいます。

master_9576x6388_EXPOSURE_300_00s_FILTER_L_mono_integration_ABE

この取りきれない背景のムラを誤魔化すのに、かなり苦労をしました。今回は小さな銀河がメインで、背景に星雲に相当するようなものは(たとえあったとしても)無視するので、DBEをしつこく適用することにします。

一例ですが、以下のようなパラメータで自動でサンプルポイントを割り振り、さらに手動で銀河付近や恒星付近にかかっているものを削除又は移動して除きます。ポイントはsmoothing factorでデフォルトの0.25を0.05にしています。これは2次元のスプライン補完をどこまでスムーズにするかというパラメータで、0にすると最もスムーズに補完してくれるようです。
DBE
実際の打点がこれくらいです。
sample_cut

例えばRGB画像はスタックしてRGB合成した直後は以下のような画像でした。
ABE1_Image10_RGB_crop

補正された背景はこのようになります。かなりスムーズな除去になっているのがわかると思います。
ABE1_Image10_RGB_crop_backgroundのコピー

出来上がった画像ですが、これくらいまで補正することができました。
ABE1_Image10_RGB_crop_DBE_s
まだ少しリング状のムラが残っていますが、今回は銀河の画像なので後の画像処理で背景を暗くすることで、目立たなくすることができます。

でも分子雲が背景にもくもくしているような画像ではそう簡単にはいかず、前回の網状星雲では同様の形が残ってしまっているのが分かります。
AOO_crop_SPCC_BXT_HT_HT_NXT_bg_more_s


BXTによる星像ひずみの改善

まだ光軸調整をしていない状態で撮影しているので、今回もこれまで同様に四隅で星像が歪んでしまっています。

ABE1_Image10_RGB_crop_DBE_ok_SPCC_ABE4_DBE_SPCC_mosaic

下方向、もしくは右下方向に伸びてしまっています。これまでと同様な伸びなので、再現性はあるようです。

これらの歪みはBlurXTerminator(BXT)のおかげでかなりのレベルで改善されますが、残念ながら一部の伸びてしまった星は二重星のようになってしまいます。

ABE1_Image10_RGB_crop_DBE_ok_SPCC_ABE4_DBE_SPCC_BXT_mosaic

これは流石に許容範囲外なので、やはり光軸をきちんと直す必要があります。

bin1画像だからでしょうか、BXTによる恒星の縮小がちょっと効きすぎてしまい、星が全体に小さくなりすぎるので、今回は0.05と軽くだけかけました。一部を拡大して見た時に自然な大きさになる程度の大きさです。星雲部の細部出しも効きすぎるので、PSFはオート(数値を大きくするより機器が小さくなる)として、「Sharpen Nonsteller」も0.7と少し抑えました。これで十分な効果がありました。

最後にNoiseXTerminatorをかけ、背景のノイズを落としました。


画像処理結果

テスト撮影ですが、せっかくなので仕上げてみます。bin1のままだと画像サイズが大きすぎてアップロードできないので、一辺を50%に縮小してbin2相当にしています。

「おとめ座銀河団」
final_50
  • 撮影日: 2023年5月15日21時1分-16日0時7分、5月16日21時2分-23時23分、5月17日21時0分-23時6分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: ZWO LRGB
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f50mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin1、Gain 100、露光時間5分、L: 55枚、R: 11枚、G: 8枚、B: 11枚の計85枚で総露光時間7時間5分
  • Dark: Gain 100、露光時間5分、温度-10℃、37枚
  • Flat, Gain100、L: 0.01秒、128枚、RGB: 0.01秒、64枚
  • Flat, Darkflat: Gain100、0.01秒、256枚
  • 画像処理: PixInsight、Photoshop CC

ただし、仕上げたというには問題があることもわかっています。一つは、既に上で説明しましたが、一部の星がBXTで二重星のようになってしまうことです。もう一つは上下でピントにずれがあるため、明るい恒星の光条線が二重になってしまっていることです。

doubleline

これもみっともないので許容範囲外です。どう光軸調整するか、最優先事項でやらないと、今後撮影が進まなくなりそうです。

LRGBフィルターに関しては、特にハロなども出なくて、今のところ特に不満は感じません。2インチフィルターは根が張るので、安価なものが使えると助かります。ZWOのLRGBフィルターは見ている限り十分な性能を持っているようです。


Annotation画像

恒例のアノテーションですが、やはり銀河団はこれをやらないと気が済まないですね。すごいことになります。

ABE1_Image10_RGB_NXT_Annotated_s

一体幾つの銀河があるのか...。宇宙はすごいですね。

でもこれだと流石にちょっと分かりにくいので、PCGを除いたものです。メシエ、NGC、ICまでなのでずいぶんシンプルになるとはいえ、それでも結構な数の銀河です。
ABE1_Image10_NXT_Annotated2_s


マルカリアンの鎖

このままの大きさで見るだけだと細かすぎて面白くないので、ここから拡大していきます。まずはマルカリアンの鎖。

Markarian_large

Markarian_large_Annotated

過去画像と比較します。上から2017年3月: FS-60Q+EOS 60D2021年3月: FS-60CB+EOS 6D、同画角で切り出した今回のものとなります。

MARKARIAN_edit2

01_Markarian_comp

Markarian

こうやってみると、分解能、恒星、色など格段に進歩しているのがわかると思います。


更なる拡大

もっと変わりやすい比較をしてみます。2021年の時には完全にアラが見えていた、拡大しすぎた画像になります。まずはM99付近です。上が2021年、下が今回です。
07_M99_small

M99


流石に雲泥の差ですね。銀河の分解能もそうですが、特に肥大していない恒星、恒星の色など、前回の拡大画像はは出すのを憚られましたが、今回は十分に見ることができます。ここまで拡大しても破綻しないのはε130DとASI6200MM Proの分解の、さらにBXTの効果もあるかと思います。というか、ここまで出ていいのでしょうか?すごいです。

ついでにですが、前回はどうしてもできなかったAnnotationが今回は素直に通りました。恒星の写りが良くなったからでしょうか?これだけ見てても楽しいです。
M99_Annotated

最後、M88とM91回りの拡大です。同じく上が2021年で、下が今回です。こちらも分解能が格段に上がっているのがよく分かります。
10_M91_M88

M88_M91

Annotationです。
M88_M91_Annotated


まとめ

まだまだ光軸調整など問題も残っていますが、ε130Dのポテンシャルを十分に感じることのできる結果でした。BXTの効果もありますが、それでもここまで拡大しても恒星が十分鋭く写っているのはすごいと思います。

とりあえず、今回でテスト撮影は終わりです。とにかく早く光軸問題と、背景ムラ問題をなんとかして、早く本番撮影を迎えたいです。

これまで超新星を多数発見している板垣公一さんによって、M101において2023-05-19 17:27:15(UTC)に新たに超新星が発見されました。日本時間では20日2時27分になります。発見時は14.9等級で、現在も増光中のようで、すでに2023ixfという名前がついています。


近い距離での超新星

M101までの距離がWikipediaによると20.9 ± 1.8 x 百万光年 (6.4 ± 0.5 メガパーセク)とのこと(より正確にはここ)で、比較的近い距離での超新星になります。それでもニュートリノが検出された大マゼラン雲の超新星爆発1987aが51.4 キロパーセクで16.8万光年とはるかに近かったのと比べると、今回の2023ixfは1250倍ほど遠い距離で起こったことになります。

詳しい情報は、Latest Supernovaeに集められていています。順に辿っていくと発見後の盛り上がりの雰囲気を感じることができます。例えばAstroNote 2023-124ではその時点で最も早い時間に出現したのがA. V. Filippenkoらによって2023-05-19 06:08:00と確かめられていて、それ以前では2023-05-18 10:17:15にはATLASによって出現が確認されていないことがわかります。

輝度変化はここにまとめられていて、下の方のlight curveを見ると時系列の変化がわかります。


超新星爆発前

私はたまたま5月17日の夜にM101のL画像を撮影していました。去年撮影したM101がRGB撮影だったので、L画像を追加して分解能を出そうと思っていたからです。今回撮影した画像を探ってみると5月17日18時8分(UTC)が最後で、少なくともこの画像では超新星は確認できませんでした。でも結構発見時に近い時間なので、どの程度迫っているのか興味が湧いてきました。

板垣さんが発見した時間には、既に超新星は出現していたわけです。ではいったいつ出現したかというと、これも上記ページから辿ることができるAstroNote 2023-133を見るとわかります。このページの一番下のpdfファイルを見てみると、5月18日19時32分(UTC)にはまだ起こっていなくて、5月18日20時29分(UTC)には存在が確認されているので、57分間にまで絞り込めていることがわかります。

こう見ると、自分で撮影したものは今確認されている一番遅い時間に1日くらいまで迫れているので、かなりラッキーだったのではないでしょうか。実際、爆発後の画像はすごい枚数がネットで確認できますが、爆発前の画像はそこまで多く確認できません。

というわけで、まずは爆発前の画像です。L画像のみの撮影だったのでモノクロです。基本的には、スタックして、ABEを1次でかけてカブリをとり、オートストレッチをかけたのみで、BXTなど出来るかぎり何も加工はしていません。bin1で撮影していてファイルサイズが大きすぎるので、アップ時に解像度を半分に落としています。

masterLight_BIN_1_8288x5644_300_00s_L__ABE_STF_s
  • 撮影日: 2023年5月17日22時21分-5月18日3時8分(JST)、5月17日13時21分-18時13分(UTC)
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: 無し
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (0℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120で露光時間5分x47=235分 =3時間55分
  • Dark: 0度、Gain 120で、露光時間5分x44枚
  • Flat, Darkflat: Gain 240で露光時間 0.01秒x128
  • 画像処理: PixInsight

超新星爆発後

超新星爆発のニュースを聞いたのが5月20日で飛騨コスモス天文台の観望会の日の午前中くらいだったと思います。天気予報も良くなさそうなので大した機材は持っていかなかったのですが、観望会中はそこそこ晴れている時もあったので(機材があり、かつお客さんを放っておけば)撮影できたかもしれません。といっても、もし撮影しようとしたらSCA260+CGX-Lと重機材コースになるので、気楽に持っていくのはやはり大変だったのかと思います。

それ以降ずっと晴れませんでしたが、ようやく5月24日に少し晴れて、M101と超新星爆発を撮影することができました。それでも少し曇りがちの日で、使えなかった画像も多いです。

masterLight_BIN_1_8288x5644_300_00s_L_ABE_STF_s
  • 撮影日: 2023年5月24日21時58分-23時1分(JST)、5月24日12時58分-14時1分(UTC)
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: 無し
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (0℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120で露光時間5分x10=50分
  • Dark: Gain 120で露光時間5分x44枚
  • Flat, Darkflat: Gain 240で露光時間 0.01秒x128
  • 画像処理: PixInsight
露光時間が短くて少しノイジーですが、左の腕のところに明らかに明るい星が出現しています!


比較

というわけで、これがやりたかったのです。
masterLight_BIN_1_8288x5644_300_00s_L_integration_ABE1_DBEcrop2

上の2枚の画像からGIFアニメを生成しています。

Twitterに上のアニメ投稿したら、100リツイート、400いいね超えとなりました。やはりわかりやすい画像はいいですね。


カラー化

L画像のついでに少しだけRGB画像も撮影したので、カラー化してみました。と言っても露光時間はLRGB全部で5分x24枚=2時間とかなり短いので、かなりノイジーです。

Image47_DBE_bg_cut2_s

背景の銀河に比べても、超新星はかなり青みががかって見えることがわかります。

まとめ

超新星を写すのは初めてのことです。しかも出現1日ちょっと前にたまたま撮影していたので、出現時間に結構迫れたは嬉しかったです。

今回調べていて、超新星の発見がいかに大変なことがよくわかりました。しかも今は機械サーベイが主流です。アマチュアで発見を続ける板垣公一さんには尊敬の念しかありません。


一連のBXTによる再画像処理の4例目です。これまで以下のように3つの再処理例を記事にしてきました。





元々BXTで言われていた星雲部分の分解能、あまり話題になってなくて遥かに期待以上だった恒星の収差補正など、劇的な効果があります。

その一方、最近のM106の画像処理で分かったのは

  • BXTで銀河中心部の飽和が起きることがある。
  • BXTの恒星認識に引っかからない微恒星が小さくならなくて、恒星の明るさ位に対する大きさの逆転現象が起きる。
  • 光軸調整が不十分なことから起きる恒星の歪みはBXTで補正できなくてむしろ変な形を強調してしまうことがある。
  • BXTはリニア段階(ストレッチする前)で処理すべき(とBXTのマニュアルにも書いてあります)だが、LRGB合成はノンリニア(ストレッチしてから)処理すべきなので、リニアでできるRGB合成した後の段階ではBXTを使うことができるが、(額面通りに理解すると)LRGB合成した段階でBXTを使うことはできないということになる。
など、弊害や制限も少なからずあるということです。

M106も2度処理しているのである意味再処理なのですが、BXTを使っての「過去画像の」再処理という意味では、銀河を扱うのは今回初めてになります。これまで手をつけなかったことには実は明確な理由がありますが、そこらへんも記事に書いておきました。

そう言ったことも踏まえて、今回のBXTを使った処理では何が分かったのでしょうか?


子持ち銀河

ターゲットのM51: 子持ち銀河ですが、昨年4月に自宅でSCA260を使い、ASI294MM ProのRGB撮影で総露光時間4時間半で撮影したものです。

実はM51の再処理、かなり初期の頃に手掛けています。時期的は最初のBXTでの再処理の最初の記事の三日月星雲よりも前に試しています。銀河はBXTで分解能が上がることをかなり期待していました。でも改善がほとんど見られなかったのです。

BTX導入直後くらいに一度M51の再処理を試み、その後三日月星雲とかを処理してある程度技術的にも確立してきた後に、さらに再処理してみたM51です。
Image199_ABE_ABE_ABE_DBE_NTX_HT_CT_CT_NXT_CT2_cut1

同じ画角の元の画像を下に載せます。
64da897b_cut

再処理ではHαを載せていないので、派手さはないのは無視してください。2つを比較してみると、確かに少し分解能は上がったかもしれません。でも思ったほどの改善ではありませんし、むしろノイジーになるなど、悪くなっているところも見受けられます。なんでか色々考えたのですが、恐らくですが以前の処理はDeNoise AIを利用するなどかなり頑張っていて、すでにそこそこの解像度が出ていたということです。言い換えると、(今のところの結論ですが)いくらAIと言えど、画像に含まれていない情報を引き出すことは(例え処理エンジンは違っても)できないのではということです。逆に情報として含まれていないものを飛び抜けて出したとしたら、それは流石にフェイクということになります。

BTXとDeNoise AIを比べてみると、DeNoise AIの方が(天体に特化していないせいか)大きくパラメータを変えることができるので、おかしくなるように見えると思われがちですが、おかしくならない程度に適用する分には、BXTもDeNoise AIもそこまで差がないように思いました。DeNoise AIはノイズ除去と共にSharpen効果もあるのですが、BXTはノイズについてはいじることはないので、DeNoise AI = NoiseXTerminator + BlurXTerminatorという感じです。

それでは、DeNoise AIではなくBlurXTerminatorを使う利点はどこにあるのでしょうか?最も違うところは、恒星の扱いでしょう。DeNoise AIは恒星ありの画像は確実に恒星を劣化させるので、背景のみにしか適用できないと思っていいでしょう。その一方、BlurXTerminatorはAIと言っても流石にdeconvolutioinがベースなだけあります。星像を小さくする効果、歪みをかなりのレベルで補正してくれる効果は、BlurXTerminatorの独壇場です。恒星を分離した背景のみ、もしくは恒星をマスクした背景のみの構造出しならDeNosie AIでもよく、むしろノイズも同時に除去してくれるので時には便利ですが、やはり恒星をそのままに背景の処理をできるBXTとNXTの方が手間が少なく恒星のダメージも全然少ないため、天体写真の処理に関して言えばもうDeNoise AIを使うことはほとんどなくなるのかと思います。


L画像を追加してLRGBに

さて、上の結果を見るとこのままの状態でBXTを使ってもあまり旨味がありません。根本的なところでは、そもそもの元画像の解像度がをなんとかしない限り何をやってもそれほど結果は変わらないでしょう。

というわけで、RGBでの撮影だったものに、L画像を新たに撮影して、LRGB合成にしてみたいと思います。当時はまだ5枚用のフィルターホイールを使っていて、Lで撮影する準備もできていくてLRGBに挑戦する前でした。この後のまゆ星雲ではじめて8枚用のフィルターホイールを導入し、LRGB合成に挑戦しています。

撮影日はM106の撮影が終わった3月29日。この日は前半に月が出ているのでその間はナローでHα撮影です。月が沈む0時半頃からL画像の撮影に入ります。L画像だけで合計47枚、約4時間分を撮影することができました。

ポイントはASI294MM Proで普段とは違うbin1で撮影したことでしょうか。RGBの時もbin1で撮影していますが、これはM51本体が小さいために高解像度で撮影したいからです。bin2で2倍バローを用いた時と、bin1でバローなど無しで用いた時の比較は以前M104を撮影した時に議論しています。


解像度としてはどちらも差はあまりなかったが、バローをつける時にカメラを外すことで埃が入る可能性があるので、それならばbin1の方がマシというような結論でした。

以前RGBを撮影した時は1枚あたり10分露光でしたが、今回は5分露光なので、ダーク、フラット、フラットダークは全て撮り直しになります。


画像処理

画像処理は結構時間がかかってしまいました。問題はやはりLとRGBの合成です。前回のM106の撮影とその後の議論で、理屈上は何が正しいかはわかってきましたが、実際上は何が一番いいかはまだわかっていないので、今回も試行錯誤です。今回下記の6つの手順を試しました。Niwaさん蒼月城さんが指摘されているように、LinearでのLRGB合成で恒星の色がおかしくなる可能性があるのですが、今回は際立って明るい恒星がなかったので、LinearでのLRGB合成がダメかどうかきちんと判断することができなかったのが心残りです。
  1. RGBもL画像もLinear状態で、LRGB合成してからBXT
  2. RGBもL画像もLinear状態で、BXTをしてからLRGB合成
  3. RGBもL画像もLinear状態で、だいこもんさんがみつけたLinLRGBを使い、HSI変換のうちIとL画像を交換
  4. RGBとL画像とLinear状態でBXTまでしてから、フルストレッチしてNon Linear状態にしてからLRGB合成。
  5. RGBとL画像とLinear状態でBXTまでしてから、フルストレッチしてNon Linear状態にしてからLab変換して、aとbをconvolutionでStdDev=5でぼかしてからLab合成。
  6. RGBとL画像とLinear状態でBXTまでしてから、少しだけストレッチしてLinearに近いNon Linear状態にしてからLab変換して、aとbをconvolutionでStdDev=5でぼかしてからLab合成。
と試しました。赤は間違ったやり方、紫はまだ検証しきれていないやり方です。

ちなみに
  • BXTはリニアで使うべし。
  • LRGBはノンリニアで使うべし。
というルールがあるので、最も正しいと思われる順番は
  • WBPP -> ABE or DBE -> RGB合成 -> RGB画像にSPCC -> RGB画像、L画像それぞれにBXT -> ストレッチ -> LRGB合成
かと思われます。この手順は4番に相当します。RGBがノイジーな場合には5番もありでしょうか。

それぞれの場合にどうなったか、結果だけ書きます。赤はダメだったこと、青は良かったことです。
  1. 星雲の明るい部分に青飛びが見られた。(極端に明るい恒星はなかったので)恒星などの飛びは見られなかった。LRGB合成した後でBXTをかけるので、本来恒星が小さくなると期待したが、うまく小さくならず、変な形のものが残った
  2. 星雲の明るい部分に青飛びが見られた。(極端に明るい恒星はなかったので)恒星などの飛びは見られなかった。1に比べて恒星が明らかに小さくなった。
  3. 星雲の明るい部分に青飛びが見られた。(極端に明るい恒星はなかったので)恒星などの飛びは見られなかった。1に比べて恒星が明らかに小さくなった。ちなみに、LinLRGBはPixInsightに標準で組み込まれているものではなく、Hartmut Bornemann氏が作ったもので、ここにインストールの仕方の説明があります。
  4. 青飛びが少し改善した。1に比べて恒星が明らかに小さくなった。ただし最初にストレッチしすぎたせいか、解像度があまり出なかった。
  5. 青飛びが無くなった。1に比べて恒星が明らかに小さくなった。ただし最初にストレッチしすぎたせいか、解像度があまり出なかった。
  6. 青飛びが無くなった。1に比べて恒星が明らかに小さくなった。ストレッチしすぎてなかったせいか、一番解像度が出た

というわけで、正しいと思われる4番は悪くないですが、青飛びを完全に解決できなかったことと、ストレッチの度合いがRGBとLが別だとどこまでやっていいかの判断がつきにくく、結局6番を採用しました。でもストレッチをあまりかけずにLを合成することが正しい方法なのかどうか、いまだによくわかっていません。その一方、Lab変換でabをボカしたことが青飛びを完全に回避しているので、手段としては持っておいてもいいのかもしれません。


仕上げ

その後、Photoshopに渡して仕上げます。分解能を出すのにものすごく苦労しました。AstrtoBinでM51を検索するとわかりますが、形の豪華さの割に、大きさとしては小さい部類のM51の分解能を出すのはなかなか大変そうなのがわかります。物凄く分解能が出ている画像が何枚かあったので「おっ!」と思ったのですが、実際にはほとんどがHubble画像の再処理でした。1枚だけHubble以外でものすごい解像度のものがありましたが、望遠鏡の情報を見たら口径1メートルのものだったのでさすがに納得です。それよりもタカsiさんが最近出したM51の解像度が尋常でないです。口径17インチなので約43cm、これでAstroBinにあった口径1メートルの画像に勝るとも劣りません。43cmでここまででるのなら、自分の口径26cmでももう少し出てもおかしくないのかと思ってしまいます。今回私の拙い技術で出せたのはこれくらいです。クロップしてあります。

「M51:子持ち銀河」
masterLight_ABE_crop_BXT_BXT_Lab_conv5_Lab_CT_bg2_cut_tw

  • 撮影日: RGB: 2022年4月2日20時32分-4月3日3時50分、LとHa: 2023年3月29日20時17分-3月30日4時34分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader RGB、Hα
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 240で露光時間10分がR: 7枚、G: 7枚、B: 10枚、Gain 240で露光時間5分がL: 47枚、Hα: 21枚の計27枚で総露光時間240+340 =580分 =9時間40分
  • Dark: Gain 240で露光時間10分が64枚、Gain 240で露光時間5分が128枚
  • Flat, Darkflat: Gain 240で露光時間 RGB: 0.03秒、L: 0.01秒、Hα: 0.2秒、 RGBがそれぞれ64枚、LとHαがそれぞれ128枚
  • 画像処理: PixInsight、Photoshop CC

元の大きさではこうなります。ただしbin1のままだと画素数が多すぎてブログにアップロードできないので、解像度を縦横半分のbin2相当にしてあります。

masterLight_ABE_crop_BXT_BXT_Lab_conv5_Lab_CT_bg2_lowreso

中心部を比較してみます。左が昨年のRGBだけのもの、右がL画像とHα画像を撮り増ししたものです。
comp

見比べると、明らかに今回のL画像が入った方が分解能が増していることがわかります。ただすでに画像処理がキツすぎる気もしています。今の機材でこれ以上の分解能を求めるにはどうしたらいいのでしょうか?

考えられる改良点は、
  • シーイングのいい時に撮影する。
  • Lがフィルター無しなので、UV/IRカットフィルターを入れて赤外のハロなどをなくす。
  • 振動が問題になる可能性があるので、三脚の足に防震シートなどを入れる。
  • 読み出しノイズに制限されているわけではなさそうなので、揺れ対策で1枚あたりの露光時間を3分ほどにしてみる。
  • Lの総露光時間をもっと増やす。
  • 暗い空で撮影する。
  • バローを入れて焦点距離を伸ばし、かつbin1で撮影する。
などでしょうか。小さな天体を撮影する際の今後の課題としたいと思います。


まとめ

BXTという観点からはあまり大したことは言えていません。分解能という観点からはDeNoise AIとそこまで能力は差がなさそうなことがわかりますが、恒星の収差補正などに利点があり、今後DeNoise AIを使うことはほぼなくなるでしょう。リニアなステージで使うことが正しそうで、RGBとLで別々に処理して合成しても問題なさそうなことがわかりました。BXTなしとありでは分解能に圧倒的に差が出て、今回もM51としてはそこそこの分解能になっていますが、まだ鏡筒の性能を引き出し切っているとは言い難いのかと思います。

RGBだけの場合と、Lがある場合では分解能にあからさまに差が出ることが改めてわかりました。でもなぜそこまで差が出るのか、自分自身本質的にはあまりよくわかっていません。単にLの露光時間が長いからなのか? R、G、Bとフィルターで光量が減るので、それに比べて全部の光子を拾うLが得なのか? それとも他に何か理由があるのか? 一度、R、G、B、Lを全て同じ時間撮影して、RGB合成したものからLを引き出して比較してみるのがいいのかもしれません。

とまあ色々議論したいことはありますが、庭撮りで着実に進歩はしてきていて、M51がここまで出たこと自身はある程度満足しています。でももう少し出るかと淡い期待を抱いていたことも事実です(笑)。


先日、M106の記事をアップしましたが、記事を書き終えてから画像処理にアラがかなりあることに気づき、改めて再処理をしました。



でもこの再処理過程、苦労の連続で思ったより時間がかかりました。以下にまとめましたが、実際にはこんなにすんなりとはいっていなくて、いろんな回り道をしてある程度見通しがついたものだけを列挙しています。


問題点

問題点は以下の通りです。問題の大きさの順に、
  1. 周辺部のディスクの淡いところがノイジーで、解像度がイマイチです。改めて完成画像とマスターL画像と比べてみると、淡いところ、特に微恒星が相当欠落していることが判明しました。
  2. 明るい恒星がひしゃげていることに気づきました。
  3. 銀河中心が飛んでしまっていることに気づきました。
  4. 光条線が全然キリッとしていません。もしかしたら、微妙な画像の回転が影響しているのでしょうか?
などです。

色々調べていくと、ある程度原因と解決策が見えてきました。とりあえず簡単なところから順に行きます。


3. 銀河中心の飛び

問題3はBXTの弊害と結論づけました。

原因は、リニア画像の段階でBXTをかけていたため、銀河中心を強度に強調してしまい、その結果中心部のみ飛んでしまっていたようです。

解決策は、ストレッチ後の画像にBXTを適用することで解決しました。左がBXT->MaskedStrerchの順で、右がMaskedStrerch->BXTの順です。

comp

なんでこんなことに気づかなかったかというと、下がBXT適用後にPI上でSTFで見かけ上のオートストレッチをした画像なんですが、これだと周りも飽和気味で中心部だけ飛んでしまっているのは判別できないからです。
02_BXT_STF_Image05_ABE_DBE_SPCC_DBE_clone_Preview031

ちなみにオートストレッチしないとこんなふうです。左がBXTする前で、右がBXTをかけたあとです。これならすぐにわかるんですが、普段はSTFをかけた画像しか見ないので、気づくことができませんでした。
comp2


4. 光条線のシャープさ

問題4は撮影中にカメラが開店してしまった可能性があるので、L画像をプレートソルブにかけて調べてみました。プレートソルブは回転角まで出るので、ずれがあった場合に比較することでわかります。

L画像は1日目と4日目にのみ撮影しています。結果は、1日目のL画像がが90.50度で、4日目のL画像が86.13度と、なんと4度以上回転していました。1日目は29枚、4日目は51枚撮影していて、4日目の方が撮影枚数は多いので、少し惜しいですが1日目の分を丸々捨てるとことにしました。さらに4日目の人工衛星の軌跡がひどいものを5枚省いて、46枚でスタックしました。

まずは光条線の評価です。左が1日目と4日目を合わせた80枚、右が4日目だけの46枚です。そこまで大きくは変わりませんが、よく見ると確かに46枚だけの方が光条線は多少鋭くなっているように見えます。でも、正直もう少し鋭くなることを期待していました。-> (追記): 最後まで仕上げたら、明らかな違いになりました。1日目を捨てて正解でした。

comp_original

SCA260の分解能を少し疑ったのですが、例えばこの記事の画像を見る限り
  • 明るい星の光条線は十分に鋭く出ていていること、
  • 中途半端な明るさの星の光条線はそこまで鋭くないこと
などがわかるため、とりあえずは今回撮影した程度の鋭さが標準だと思うことにします。


もう少しL画像を評価

このL画像の枚数の違いですが、問題2に関しても議論することができそうなので、もう少し検証します。上の左右の画像をよく見比べると、微恒星に関してはやはり枚数の多い左側の方が明らかに暗い星まで写っていることがわかります。

ではこの画像にそれぞれBXTをかけてみます。同じく、左が1日目と4日目を合わせた80枚、右が4日目だけの46枚です。

comp_BXT


2つのことがわかります。
  1. 1日目に撮影した画像が加わると、明るい恒星の場合、中心部分が右に寄ってしまい、左にハロのようなものが残る結果になってしまいます。
  2. BXTによる恒星の縮小ですが、(微恒星がより出ていないはずの)右の方の画像の方が、左の画像と比べて、より多くの恒星に適用されていることがわかります。
まず1の原因ですが、元の1枚1枚の撮影画像を見てみると、明らかに星像が縦長になっていることに気づきました。1日目から4日目を全部比べてみると、日が変わっても出ていること、画像の中の位置によらず、常に縦が長くなるような方向に出ています。上の右の画像は問題ないように見えても所詮程度問題で、彩度を出すとかしていくと結局目立つようになります。撮影時の問題であることは明らかで、鏡筒の光軸ずれ、カメラ側のスケアリングのずれ、赤道儀での縦揺れなどが考えられます。前回撮影のM81の時の画像を見直してみても、こんな現象は出ていないようなので、おそらく1月から3月の間に光軸のずれが起こった可能性が高いのかと思います。ただし、波長によって出る出ないが違い、縦長がひどい順にG>L>R>B>>Aとなっているのは、まだ少し解せないところです。とりあえず今回はこの縦長星像、画像処理でなんとかごまかしますが、まずは次回鏡筒の光軸を見直すことにします。

次の2ですが、これは結構面白いです。BXTで恒星をdeconvolutionするためには、恒星をきちんと恒星として認識してもらわなくてはダメなのですが、左の画像は恒星であるのに恒星と認識されていないものが多いのです。何故かは元画像を見比べてみるとよくわかりました。 おそらくシンチレーションの違いで、1日目の画像は星像が大きく、4日目の画像は星像が明らかに小さいのです。動きの多い1日目の画像が混ざったことで点像とは見なされなくなってしまい、恒星と認識されなくなったのではと思われます。日が変わった場合の撮影では、このような違いにも気をつける必要があることがよくわかります。

いずれにせよ、BXTはかなり暗い最微恒星については恒星と認識するのは困難で、deconvolutionも適用できないようです。そうすると逆転現象が起きてしまうことも考えられ、より暗い星の方がそれより明るい星よりも(暗いけれど)大きくなってしまうなどの弊害も考えられます。

考えるべきは、この問題を許容するかどうかです。

この逆転現象とかはかなり拡大してみないとわからないこと、収差の補正や星雲部の分解出しや明るい恒星のシャープ化など現段階ではBXTを使う方のメリットがかなり大きいことから、今のところは私はこの問題を許容して、BXTを使う方向で進めたいと思います。シンチレーションの良い日を選ぶなどでもっとシャープに撮影できるならこの問題は緩和されるはずであること、将来はこういった問題もソフト的に解決される可能性があることなども含んでの判断です。


1. 淡い部分、特に微恒星が全然出ていない

問題1が1番の難問です。そもそも何故LRGB合成なのに、L画像相当の解像度が出ないのかという問題です。

これが撮影してスタックしたL画像: 
L

一方、これがRGB画像から引き出したL画像:
RGB_Lab_L

2枚を比較すると、当然撮影したL画像の方が圧倒的に情報量が多いわけです。

で、これが前回記事でアップした画像のPhotoshopに引き渡す前くらいの画像です。これが上の2枚のどちらに近かったというと、あからさまに後者のRGBから引き出したL画像の方に近いのです。
Image05_ABE_DBE_SPCC_DBE_BXT_MS

なんでこんなことが起きてしまったか、よく考えます。まず今回の撮影はRGBの撮影枚数がそれぞれ10枚程度と、L画像の(1日目、4日目合わせた)76枚と比べてかなり少ないです。こんな場合は、PixInsightでLRGB合成をする際に、LとRGBををどのような比率で合成するかをよく考えなくてはダメだったのです。

前回のLRGB合成でやったことは、L:R:G:Bを1:1:1:1の割合で混ぜたことでした。いや、これさえも本当に実現できているのかよく判りません。実施際にはLRGB合成の際に、L、R、G、Bそれぞれの画像を一度にチャンネルウェイトを0.25:0.25:0.25:0.25で合計1になるように合成しています。合計1にするのはサチるのを避けるためですが、どうもこのチャンネルウェイトは比だけを見るみたいで、絶対的な明るさは変わらないようです。例えば、R、G、Bを0.025:0.025:0.025として一桁落として合成しても、暗くなったりしません。絶対的な明るさは下のLightnessで決まるようです。1より小さくすると合成後が明るくなります。

さて、今回撮影したL画像のS/NはRGBに比べて遥かに高いので、Lの比率を大きくした方が得なはずです。試しにL:R:G:B=0.5:0.25:0.25:0.25で合成すると細部が表現され始め、L:R:G:B=1:0.25:0.25:0.25とするとさらに分解能が上がることがわかりました。その一方、Lの比率が大きくなるので、当然合成直後の画像は色がほとんど出ていなくて、かなりモノクロに近い画像になっていきます。それでも、その後に画像処理を進めていくと彩度を出すことはできるので、色情報がなくなっているわけではないようです。ただしRGBのS/Nが悪いので、色を出していくとどうしもノイジーになってしまうようです。

問題は数値の調整はできるものの、どのような比率でLとRGBを混ぜればいいのか結局のところよくわからないということです。そもそも、RGB画像をLab空間で考えると、単にLを取り替えることをすればいいはずです。それで彩度は保たれ、シャープさは良くなるはずなんです。

それならばいっそのこと、本当にRGBをLabに変換して、Lのみを入れ替えるという操作をしてやった方がいいのではと考えました。その結果が以下になります。
Image141_2

この方向は結構正しいようで、少なくとも細部は十分に出ています。また、Lab合成を使うという考えに基づくと、SPCCは合成前のRGBの時点でやった方がいいという考えに行き着きます。Lの明るさは調整可能なので、元のRGBとは彩度がずれる可能性があるからです。

さてこのLab分解とLab合成でLだけ変える方法、一見うまくいっているようですがまだ問題があって、試しに明るい恒星を見てやると以下のように緑や青が目立つようになってしまいます。

Image141_clone_Preview01_autostretch

これを回避するために色々試してみたのですが、どうやらL画像の明るさがab画像より暗い場合に起こるようです。そのためLab合成の時にL画像を少し明るくして合成します。すると以下のように、変な色が飛び出るようなこともなくなります。

Image230

一見モノクロに見えますが、色はきちんと隠れていて、試しにCurvesTransformationなどで彩度を上げると以下のように色が出てきます。
Image230_CTx5

ところが、ここでまた問題です。このように彩度を出していくと、再び緑飛びが出てきてしまうのです。
Image230_CTx5_cut

結局のところ、Lab合成でどうあがこうとしても、元の画像が悪い状態で彩度を出したら同じことの繰り返しで、変な色飛びはどうしても出てしまうということがやっと理解できました。

それで結局何をやったかというと、Lab合成する際に色情報であるaとbをぼかしてから合成することです。ここら辺はそーなのかーさんのこのページを参考にさせていただきました。


今回はConvolutionでStdDevを5として3回かけ、明るい恒星の色バランスの崩れがなくなるくらいまで、かなりぼかしました。少なくともこれで緑の形がおかしくなるようなことは避けることができました。ただし、ぼかしのバランスがaとbでどうしてもずれてしまい、恒星周りに均等にリング状の緑の輪がかかってしまったので、SCNRでProtction MethodをMinimumNeutralに、Amountを0.5にしてかけて緑を除きました。この時点でやっとBXTをかけます。結果は以下のようになりました。

Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT

色情報を相当ぼかしたわけですが、人間の目の色情報の分解能はかなり弱いと指摘されていて、実際に色が出ていないように見えることはほとんどありません。

これでやっと満足です。この後はPhotoshopに引き渡しますが、Hαジェットを除き、もうすでにかなり仕上がり状態に近いです。


やっと仕上げまできたー!

Photoshopはもうノンリニア編集なので、好きなように仕上げます。主には彩度出しでしょうか。Hα合成も2度目なので、少し余裕が出てきました。結果が下の画像になります。まずはジェットがよく見えるように銀河をアップで。

Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT_bg4_cut_s

次に全体像です。


「M106」
Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT_bg4_cut

  • 撮影日: 2023年3月19日20時48分-20日4時9分、20日19時25分-23時19分、28日19時51分-29日4時38分、
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: SHARP STAR製 SCA260(f1300mm)
  • フィルター: Baader RGBHα
  • 赤道儀: Celestron CGX-L
  • カメラ: ZWO ASI294MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、Gain 120、露光時間5分、L:80枚、R:10枚、G:10枚、B:14枚、Hα:44枚の計158枚で総露光時間13時間10分
  • Dark: Gain 120、露光時間5分、温度-10℃、32枚
  • Flat, Darkflat: Gain120、露光時間 L:0.001秒、128枚、RGB:0.01秒、128枚、Hα:20秒、17枚(dark flatは32枚)
  • 画像処理: PixInsight、Photoshop CC


最初に挙げた問題点順に評価していくと、
  1. 銀河の淡いディスク部分の分解能はかなり出ました。
  2. 恒星のおかしな形もほぼ無くなっています。
  3. 銀河中心部の不自然さももうありません。
  4. 光条線も明らかに鋭くなりました。
と、こちらもほぼ満足です。

加えて、ジェットをもう少し派手にしてみました。自宅でここまで出れば上出来かと思います。というか、すでにちょっと炙り出し気味で、今の手持ちのHαだとこれくらいが限界かと思います。

最後は恒例のAnnotationです。
Image249_a_conv5x3_bconv5x3_Lab_CTx3_SCNR_HT_SCNR_BXT_bg2_cut_A

 

まとめ

時間はかかりましたが、再処理を突き詰めていってよかったです。あからさまに良くなったことと、じっくり付き合ったことで次回以降にどうすればいいか、かなり得るものがありました。自宅撮影の結果としては、ある程度情報を引き出しきれた気はしていて、かなり満足しています。

そもそも撮影に問題はありましたが、いつも完全ということは当然ないので、画像処理でのリカバリも含めていつもこれくらい時間をかけないとダメなんだということが、今回とても実感できました。実を言うと、特に恒星ですが、もう諦めようと何度思ったことか。

今回の方法は真っ当なものではないのは重々自覚していますが、撮影はいつもうまくいくとは限らなくて、せっかく時間をかけた画像をできるだけ使ってあげたいので、手持ちの手法としては持っておいてもいいかと思いました。というより、画像処理は一辺倒にはなかなかいかないもので、撮影画像に応じて臨機応変に対応することが大切なのではないかと、改めて感じました。


このページのトップヘ