ほしぞloveログ

天体観測始めました。

カテゴリ:観測・撮影 > Lucky Imaging

前回、昼間にMEADE 25cmシュミカセで遠くを見てみると、どうも地面の揺れが星像を乱している可能性が高いことがわかりました。その結果を踏まえて、防振をして夜に実際の星像を確認してみました。

防振

まず、防振のシートとして百円ショップで耐震マットと、それをはさみこむコルク板を用意しました。

IMG_7114


こんな風に挟み込みます。これを三脚の足の下に置きます。

IMG_7115

ただしこれは結局失敗に終わりました。使い終わった後にはこんな風になってしまいます。

IMG_7118

コルク板だと、さすがにウェイトも合わせて50kgくらいになるものを3点だけでは支えきれないようです。後日改良バージョンで、三脚の脚が当たる上のコルク板を厚さ5mmのゴム板に取り替えてみました。

IMG_7263

この時の手で揺すってみた時の揺れ具合が以下の動画になります。


一秒間に4回くらい揺すると一番よく揺れるので、共振周波数が4Hzくらいということがわかります。かなり軟らかいのと、揺れを止めるとすぐに減衰することから、そこそこの防振性能はありそうです。

この状態でM57を見てみました。さらにいくつかわかったことがあります。どうも光軸があっているところと、あっていないところの差が激しいことがわかりました。この原因は、BSアンテナでの光軸調整をきちんと画角の真ん中で行わずに、そのまま見えた位置、すなわち真ん中からずれた位置で行なっていたからです。これは全部の画角を見ながら、焦点をずらしてやると内外像が同心円になっているところと片側に寄っているところがあることで、すぐにわかりました。これを副鏡を調節することでうまく画面中央が同心円になるように光軸を合わせてやります。

Capture_00002 03_25_02


それでも4隅にいくほど偏っていって同心円になっていないことがわかります。これはコマ収差からくるものと考えられます。このLX200-25は短焦点バージョンで、Fが6.3しかありません。コマ収差はFの2乗で効いてくるので、例えばF10のC8と比べると、(10/6.3)^2=2.5 倍程度コマ収差が大きくなります。これを緩和するために、コマコレクター を入れるのですが、MEADE用のものはもう入手が難しいため、手持ちのF6.0まで対応するバーダーのMPCC Mark IIIを使っています。F値が少しメーカー値から外れるので対応外なのですが、それでも下記の様にかなりマシになります。

Capture_00001 03_23_00

それでも左端がまだ偏っています。何度かやったのですが、どうしても毎回左端のみ偏ってしまいます。もしかしたら主鏡の方が傾いているのかもしれません。と、MEADE25cmについてやっとここら辺までわかってきという状況だというところでしょうか。とりあえずトリミングして中央部を使う分にはそこまで問題ではなさそうなので、今回はそのまま撮影を続けます。

さて、実際の撮影ですが、ターゲットは惑星状星雲のM57。かなり小さい星雲で、白色矮星の中心星が見えるかなど、分解能を見るにはもってこいです。星像肥大を防ぐラッキーイメージの手法を生かすべく、露光時間は5秒に抑えました。合計306枚撮影し、AutoStakkert!3で上位60%、合計15分18秒分をスタックしています。ただ、SharpCapでfitsフォーマットで出力するとモノクロのままなので、事前にPixInsightでDebayer処理をしてカラー化しています。スタック後Registaxで細部を出し、その後PixInsightでDynamicBackgroundExtraction、PhotometricColorCalibration処理をした後、ある程度のストレレッチをした段階画像が以下になります。

TIFF_lapl5_ap2685_RS_DBE_DBE_AS

この時点でもかなりの分解能が出ているのがわかります。ただ、やはり四隅はコマ収差の影響が見えてしまっています。その後PhotoshopCCに渡してもう少しあぶり出した後、中心部をトリミングしたものが以下になります。

TIFF_lapl5_ap2685_RS_DBE_DBE_AS_nik_cut4_nik
富山県富山市下大久保 2019/5/22 23:33
LX200-25 + CGEM II + ASI294MC(非冷却)
f=1600mm, F6.3, gain 420/570, 5sec x 306枚のうち上位60%を使用、総露出時間15分18秒
AutoStakkert!3, PixInsight , PhotoshopCCで画像処理後中心部をトリミング 



まだコマ収差の影響が見えてしまっていますが、ボテっと感がかなり改善され、分解能的にはそれほど悪くないレベルになってきました。シンチレーションの違いもあるので直接の比較はなかなか難しいのですが、それでも明らかに分解能は改善されていてこれまでで一番細かく見えているので、防振の効果はあったと言っていいのかと思います。

まだ15分程度の短時間のテストですが、今後トタール時間を延ばし、冷却もしてみた場合にどれくらい出せるのか、楽しみになってきました。

 

ラッキーイメージングを少し始めたのですが、どうも腑に落ちません。トラベジウムの分離がイマイチできていない気がするのです。


星像の大きさについて

もともとは、MEADEの25cmシュミカセで0.1秒と1秒と10秒で星像を比べたのがきっかけです。もしシーイングが悪いせいで揺らぐなら、露光時間が短い場合と長い場合で、星像にあからさまに差がつくはずです。ですが、結果は差はつきますが本当にごくわずか。いろいろ試していたとき気づいたのが、そもそも中心像でもボタっとしていて、星像が大きすぎるのではないかということ。

それでも念の為ですが、M42を高解像度で撮ったと言われている、他の方の、すでに画像処理を施した他とトラペジウム周りを見比べてみると、自分のものはベストではないが、それほど悪いわけでもなさそうです。画像を見比べただけの分離度はそんなに差はありません。

また、もう一つ気づいたことがあって、微恒星がどこまで出るかも一つの指標になりそうです。例えばトラペジウムだけを分離度よく見せかけようとしたら、画像処理でどうにかできてしまいます。でも微恒星が写るかどうかは解像度に結構依っているようで、トラペジウムだけよく分離しているように誤魔化しても微恒星が出てこなくなります。なので、微恒星も同時にみるとどれだけ分解能が出ているかが判別しやすくなります。


目的

と、ここまでが前置きで、今回試したかったのは果たして理屈の上ではどれくらいの分解能があるはずで、実測した分解能とどれくらい乖離があるかを見極めることです。

もともとの目的は、今の手持ちのMEADE25cmおよびC8の性能がきちんと出ているのか、まだ性能が引き出せるい可能性があるのかを探りたいということです。要するにボテっとしている星像はこんなもんで正しいのか、それとももっと改善できるかが知りたいのです。

今回検討したことは4つ。
  1. エアリーディスク(Airy disk)
  2. レイリー限界(Rayleigh criterion)
  3. スポットダイアグラム(spot diagram)
  4. シーイング(seeing)
です。


エアリーディスク

エアリーディスクによる星像がどのようになるかですが、式の上ではエアリーディスク径Dairy

DD=2.44Fλ

のようになります。ここで、は鏡筒のF値で、λ は波長です。ただ、エアリーディスク径といっても、式だけみると一体どこの径のことを言っているのかよくわかりません。よく調べてみると直径とのことです。それでも直径といってもどこのことなのか?これはなぜこの式が出てきたのかの導出を調べるとすぐにわかります。エアリーディスクの振幅は横軸を星像の半径方向、縦軸を振幅ととると1次ベッセル関数で表すことができます。式としては
2J1(x)/x

となり、半径 の関数である1次ベッセル関数 J1(x) を半径xで割ったような式です。この式の導出自身は平面波仮定した波素を無収差レンズに入れた時に、結像点でどのような振幅になるのかを積分してやるのですが、ここでは式の導出自体は目的ではないので、解説はその他専門の文献に譲ります。

上の式は振幅なの、実際の光強度にするためには2乗してやる必要があります。2乗したものをグラフに表すと、
airydisk

のようになります。エアリーディスク径といっているものは、このグラフで0からみて正負の方向に最初に0になる点の間の距離のことを言います。この点を求めるのはちょっと面倒なのですが、Mathematicaなどがあれば

In[192]:= FindRoot[(2 BesselJ[1, x]/x)^2 == 0, {x, 1, 5}]

Out[192]= {x -> 3.83171}

のように簡単に求めることができます。最初にゼロになるxは+/-3.83程度とわかります。

なんでこんなことをするかというと、実際の星像では強度がゼロになるところなど見えるわけがなく、普通真ん中が明るくて徐々に暗くなっていくような正規分布のような強度を持っているものにはFWHM(Full Width Half Maximam, 半値全幅)といって、最大強度の半分になるところの直径で評価します。

ではエアリーディスクのFWHMはどれくらいでしょうか?先ほどの式を2乗したもので、今度は0ではなく0.5になるようなところを求めればいいということになります。

In[198]:= FindRoot[(2 BesselJ[1, x]/x)^2 == 0.5, {x, 1, 5}]

Out[198]= {x -> 1.61634}

で、xが+/-1.62程度です。上のグラフで見ても実際にそれくらいのところですね。 なので、エアリーディスクの式を1.62/3.83=0.42倍したものがFWHMでみたエアリーディスクからくる星像と考えることができます。波長は目視の標準的な緑の550nmを選び、例えばC8の場合F10を考えると

DC8,FWHM=2.44Fλ=2.44×10×0.55[um]=5.66[um]

となり、FWHMでみたエアリーディスク径は5.66[um]となります。

これを現在使っているASI294MCProで何ピクセルに相当するかも見たいので、画素ピッチ4.63[um]で割ってやると、1.22[pixel]となりますが、これだけみるとエアリーディスク径とピクセルサイズが大体同じくらいと、ずいぶん小さいことがわかります。

さらに、um(マイクロメーター)単位のものを秒角(arcsec)で表すために、umからarcsecに変換することを考えておきます。式としては

Cumarcsec=tan(12×60×60π180)×2×f×1000

となり、焦点距離 に依存します。基本的にはある焦点距離のレンズを通したものが、ある大きさ[mm]のセンサー面で結像し、そのセンサーの大きさを単位1としたという意味です。tanの中のセンサーの大きさ「1」を2で割っているのは、センサーの真ん中から片側分の大きさで決まるからです。3600で割っているのは秒から度にするため、あと、Excelなどの関数で計算する場合は単位がラジアンなので度からラジアンへの変換係数として180度で割って、πをかけています。最後の1000倍はセンサーの大きさを[mm]単位、エアリーディスクを[um]と考えたための変換係数です。

例えばC8の焦点距離200mmを入れてやると変換係数は9.70[um/arcsec]となりますが、実はエアリーディスクがF値の関数なので、エアリーディスクのF値と変換係数の焦点距離fがキャンセルします。そのため、エアリーディスク径は視野角の秒で書くとF値や焦点距離にによらず一定で、FWHMで書いた場合0.584[arcsec]程度となります。


レイリー限界

レイリー限界を考えてみます。これも式は調べるとすぐに出てきます。

DR=127.5D[mm][arcsec]

鏡筒の口径[mm]だけで決まる量で、C8の場合の200mmを考えると、0.638[arcsec]となります。単位が秒角で出てくるので、上で求めた変換係数ををかけてやると、6.18umとなります。ん、FWHMで見たエアリーディスク径と結構近いですね。でもこれはある意味当たり前で、レイリー限界が、2つの同じ高さのエアリーディスクを並べた時に、片側の最初の暗いリングの中心が、もう片側の強度のピークと一致する距離と定義したからです。なので結局(元の定義の)エアリーディスク径の半分程度になり、一方FWHMで見た時のエアリーディスク径も元の定義の半分くらいになるので、同じような量になるわけです。

というわけで、結論としてはレイリーレンジはエアリーディスクと同じような原因なので、とりあえずここでは考えなくていいでしょう。

でもなんで一方のエアリーディスクは[um]で求めて、もう一方のレイリー限界は[arcsec] で求めるんでしょうね?両方ともarcsecで式を書いておいた方が、F値によらないので楽な気がするのですが。


スポットダイアグラム

だんだん、現実的になってきます。スポットダイアグラムはなかなか評価が難しいのですが、とりあえずC8相当の口径20cm、F10のシュミカセをLensCalでシュミレートしたスポットダイアグラムを元にします。緑の550nm付近が支配するくらいだと下からわかるように、黒い参照円の直径が20umなので、緑の部分は8um程度です。

IMG_6880

緑だけでなく、可視光とされる範囲の波長を考えると40umくらいになってしまいます。

IMG_6881

どの色までを考えるかはなかなか難しいです。実際の色のついた星をある波長依存性を持ったカメラで撮影して像を結んだものが、映った星像となるので、一概にはなかなか言えません。ここでは最大系として可視光を仮定します。

スポットダイアグラムは点光源とみなせる線素が多数入った時に収差によってどれくらいスポットが広がるかを示している図であって、少なくともLensCalではエアリーディスクの効果は入っていないようです。なので、それぞれの線素がエアリーディスク径を持つと仮定すると、スポットダイアグラムの外部にエアリーディスクの半径分の広がりを持つと考えることができます。スポットダイアグラムのFWHMは外周にある線素のエアリーディスクのFWHMだけ考えればいいので、下の手書き図のようにFWFMで考えたエアリーディスクの半径を外周に持つような台形に近い形となり、それをスポットダイアグラムの径と考えていいのかと思います。

IMG_6879

計算すると、スポットダイアグラムの広がりの40[um]にFWHMでのエアリーディスク径5.66[um]を足すことになって、45.66[um]。ピクセルに直して、9.86[pixel]です。かなり大きく、C8の場合はスポットダイアグラムが支配的なのがわかります。

ただしスポットダイアグラムを見てもわかるように、実際には端の方ほど密度が少ないので、このモデルは多分正しくなくて、やはりもっと中心が盛り上がったような、FWHMでは測ってももっと径が小さく出るようなモデルにするべきかもしれません。ここら辺は次の課題とします。


実際の星像と比較してみる

さて、実際に撮影した星像を見てみましょう。2019/4/4にC8でASI294MCPro撮影したものです。

IMG_6884


シーイングの影響を少なくするために露光時間25msecで撮影した動画から、一枚だけ抜き出してFWHM測定します。測定はPixInsightを使いました。そのままのRAW画像だとBayer配列なので、PixInsight上でDeBayerをして、測定したい星像を選択します。選ぶのは少なくともサチっていない星。さらにFWHM測定ツールがカラー画像には適用できないので、gray scaleに変換してから測定しています。結果は12.62[pixel]とのこと。計算より3割ほど大きいですが、まあまあの一致です。

ただし、例えばトラペジウムのところを3次元の等高線図で見てみると、

IMG_6882

結構尖っていてあまり台形っぽくないので、やはりモデルの方があまり合っていないかもしれません。実際にはスポットダイアグラムも端の方の効果が小さくなる気がするのですが、その一方でそのようにすると形ももう少し尖り、計算上の見積もり径は小さくなるので、結果としてはズレていく方向になってしまいます。

もう一つは観測時に鏡筒のピントや光軸がずれていた可能性があることです。ピントはSharpCapでFWHMが最小になるように合わせたので、それほどずれているとは思えませんが、光軸はあまり自信がないです。露光時間がもっと短ければ、さらに計算値に近づくかもしれません。ここら辺も次回もう少し見直すところでしょうか。


シーイング

やっとシーイングにたどり着きました。シーイングが悪いと、露光時間が増えていけば星像が大きくなるはずです。

ではC8で露光時間を先ほどの100倍の25秒かけて撮影した動画から一枚を取り出したものを見てみます。同様のFWHMを測定してみると結果は19.56pixel。0.25秒の時の倍近くなので、明らかに肥大しています。

IMG_6885

この大きさがシンチレーションで決まっているとすると、スポットダイアグラムで決まるような径を持った星像がシンチレーションで揺らされて、ランダムにある範囲内を動き回ると考えられます。スポットダイアグラム径と同程度のゆらぎの場合にはスポットダイアグラムの形や強度も揺らぐと考えられますが、ここではそれはないと仮定します。そのため簡単なモデルとしてはやはり、スポットダイアグラムの時と同様に外周にエアリーディスクの半径が付いた台形型の星像が得られるとします。

モデルからどれくらいのシーイングがあれば星像はどのくらいの大きさになる計算できます。実測が19.56umなので、先に求めたumから秒角への変換係数を用いると、25秒露光ではシーイングにより9.3秒角も揺らされていることになります。日本では2秒角だと静かな方で、3秒角くらいが平均、ひどいと10秒角くらいになるとのことです。確かにこの日シーイングはひどかったと考えられますが、一応C8の結果の9.3秒角は10秒角という範囲内で、評価はそれほど間違っていることはなさそうです。


MEADE 25cmで測定した時の場合

以上のことを、前回MEADEの口径25cm、焦点距離1600mmで測定した時の結果とも照らし合わせてみます。MEADEの場合、エアリーディスク系はFWHMで0.85[pixel]とかなり小さくなります。これはF値が小さくなるためです。そのためスポットダイアグラム、シーイングでも外周のエアリーディスク半径自身が小さくなるので、ともに星像の肥大が多少抑えられます。

例えば、前回
  • 0.1秒露光: FWHM = 6.952 pixel
  • 1秒露光: FWHM = 7.333 pixel
  • 10秒露光: FWHM = 8.108 pixel
という結果が得られましたが、これはあくまでスタックされたものです。それでも0.1秒露光の動画から一枚だけ抜き出してきてFWHMを測定しても6.0pixel程度とほとんど変わりません。スタックはそこそこうまくできていることがわかります。また、10秒露光でも肥大がそれほどないことから、この日はシーイングが相当よかったことがわかります。

例えば10秒露光で、もし星像がシーイングで制限されているとしすると、その揺れ幅はモデルから4.4秒角程度と計算できますです。C8で測定した時よりもはるかにシーイングの影響が少なく、揺れも少なかったものと考えられます。実際の動画を今更ながら見ても、ほとんど揺れていなかったことがよくわかります。トラペジウムのところで分離が悪いように見えましたが、あからさまにサチっていたので、これは何の評価にもなっていませんでした。

このような日はスポットダイアグラムで支配されるような星像がえられているはずなので、スポットダイアグラムがさらにいい鏡筒を選ぶことで、星像の大きさは改善されるはずですが、逆に言うとラッキイメージングで星像があまり改善されない日ということもできます。

本当はC8でやったような計算をMEADEの25cmでやりたかったのですが、MEADE用のスポットダイアグラムがなかなか計算できない、もしくは見つからないのです。なので、MEADEのスポトダイアグラムは適当に仮定していますが、もしこの日がシーイングの影響が小さくて、スポットダイアグラムがほとんど径を制限しているとすると、18[um]ほどになります。これが正しいなら、中心像に関してはC8よりもMEADEの方がはるかに性能がいいことになります。ただし、四隅のコマ収差はF値の2乗に反比例して悪くなっていくので、MEADEの方が(10/6.3)^2=2.5倍くらい大きく出るはずです。コマ補正は必須でしょう。


考察

モデル化などまだ不十分な点はありますが、それでも今回のことからいろいろなことがわかります。
  • 露光時間が長くなると星像が肥大化することが確かめられた。
  • 露光時間によって径が変わる範囲では、シーイングによる影響が効いていると思って間違いない。
  • C8で測定した日はシーイングが悪かったようである。
  • このような場合、星像の大きさは現実的に撮影するような1秒以上の時間単位ではシーイングに制限されている。
  • 1秒をはるかに切るような短時間露光では、シーイングの影響のない星像を得ることができる可能性があるが、明るさが足りない、撮影枚数が増える、スタック処理が大変などを考えると、あまり現実的ではない。
  • ラッキーイメージで露光時間を短くすれば星像の改善にそのまま繋がる。
  • MEADEで測定した日はシーイングが良かったようである。
  • 短時間露光のスタック方法も、特に問題ないこともわかった。一枚だけの星像の径と、スタックした後の星像の径を比較すればすぐにわかる。
  • このような日は鏡筒の、特にスポットダイアグラムの性能が効いてくるので、より性能のいい鏡筒が星像を改善する。
  • 逆に言うと、ラッキーイメージでの星像の改善をあまり望めない日でもある。
画像を見ただけでは実際の径は全然わかりません。階調圧縮や拡大でFWHM径は容易にかわってしまいますし、単に画像処理で小さく見せてしまうこともできます。サチらない範囲で星像を撮影して、きちんと測定することが大事です。


課題もまだあります。
  • スポットダイアグラムの中心と端の部分で同じように評価していいのか。端の方が密度が薄くはずなので、実効径はもう少し小さくていいはずである。また、波長によってスポットダイアグラムがちがうので、これも端の方がより密度が低く、実効径はもう少し小さくなるはず。
  • 超短時間で露光した場合は、スポットダイアグラムで支配されるような径に一致するのか?もしそうなら、それがスポットダイアグラムの実測径とすることができそうである。

結論

まず結論の一つとして言えることは、実際の撮影では、短時間露光の動画を見て、明らかに揺れている場合は露光時間を短くとるといいということでしょう。短時間露光の動画を見て、あまり揺れていなければ露光時間を延ばしてリードノイズの効きを緩和していった方が有利です。

それでは今回の元々の目的の、C8やMEADEで撮影した星像はおかしいのでしょうか?それとも正しかったのでしょうか?計算してみると、シーイングにかなり左右されますが、少なくとも説明できる範囲内には入っているようで、光軸など多少の改善の余地はあるものの、性能としておかしなことが出ていると言うことではないようです。

シーイングがいい時にはこの鏡筒の性能に制限されることもありますが、シーイングが悪い時には性能は何ら問題ではないということがわかります。ただし、ラッキーイメージングでシーイングの影響を除いていく時に、鏡筒の性能で制限される時がくることがあるはずです。それでも現実の1秒程度の露光時間でもまだシーイングが効いている(星像が揺れている)時には鏡筒はこのままで十分でしょう。ただしこれはあくまで中心像のみの話で、周辺像の例えばコマ収差が効いてくるような場合はシーイングの影響よりもスポットダイアグラムで見た径が効いてくるので、この補正をきちんとするなりする必要があります。四隅の短時間露光映像もきちんと見て、全然揺れていなければラッキーイメージの効果はあまりなく、むしろ鏡筒の性能を改善した方がいいということです。

いずれも、結論としては短時間露光の動画を見てスポットが動くならラッキーイメージングで鏡筒の性能に迫る努力をする、動かないなら鏡筒の性能で制限されていると判断して差し支えないと思います。


まとめ

色々長々と書きましたが、計算量は大したことはありません。これだけの検討でかなりのことが納得できました。ラッキーイメージングで露光時間をどれくらいにすれば価値があるのかもだいぶんわかってきました。次回以降、実際の撮影で試していきたいと思います。

 


ラッキーイメージング事始め

以前から興味があったラッキーイメージングを始めようと思っています。必要そうなものは大口径の鏡筒、感度のいいCMOSカメラでしょうか。

とりあえず手持ちのMEADEの25cmのシュミカセと、新カメラASI294MC Proを投入します。初めての冷却カメラは、実はこのためでした。ターゲットは明るい星雲など。目的はどれだけシンチレーションを回避でき、微細構造を出せるかです。

今回はシンプルなテストで、ラッキーイメージングがどれくらい効果を期待できそうなのか、自分の環境でメリットはあるかなどを、まずはざっくりと知りたいと思います。


機材

今回使った機材です。
  • 鏡筒: MEADE LX-200-25 (口径254mm、焦点距離1600mm、F6.3)
  • 赤道儀: Celestron CGEM II
  • センサー:  ZWO ASI294MC Pro (ただし冷却機のは使用せず)
  • 電子ファインダー: ASI178MC + 50mm, f1.2ノーブランドレンズ
  • 対象: オリオン座 M42、トラベジウム周辺
  • 撮影ソフト: SharpCap 3.2 (64bit)
ラッキーイメージングは短時間撮影が特徴の一つなので、オートガイドもディザーも当然無し。ケーブルもカメラとPCを繋ぐだけのシンプルなものです。

MEADE25cmを出すのは久しぶりだったので、少し手入れしました。一番の懸念は赤道儀との固定で、これまでビクセン規格の細いアリガタを使っていたのですが、以前スターベースでLosmady規格の幅広のありがたを手に入れたので、これを新たに取り付けました。実際、CGEM IIに取り付けると、ずいぶんと楽に取り付けができ、位置調整もスムーズに行うことができました。やはり流石にこのクラスだと幅広の方が安定していて、調整している最中も安心感があります。

IMG_6762
Losmandyの幅広を初めて使いました。

夕方に鏡筒を赤道儀に設置して、暗くなるのを待ちます。極軸はASI178MCを使って50mmの焦点距離で、SharpCapのPolar Alignment機能で合わせただけです。自動導入も適当だったので、電子ファインダーがわりのASI178MCを使ってマニュアルでM42を入れました。極軸があっているのでとりあえず入りさえすれば、あとはほとんどずれることもなく、なんとかなります。

準備をしていると、ちょうどピント出しをしているくらいにかんたろうさんがやってきました。 長野から富山への移動の途中で寄ってくれたみたいです。そこからずっと一緒に試していました。


撮影条件

今回はSharpCapを使い、3つの条件で撮影しました。画素数はASI294MC Proの最大サイズの4414x2822ピクセルになります。露光時間、ゲイン、撮影枚数は以下の通り
  1. 露光時間: 0.1秒、gain: 570(max)、撮影枚数5000枚
  2. 露光時間: 1秒、gain: 370(maxの10分の1)、撮影枚数500枚
  3. 露光時間: 10秒、gain: 170(maxの100分の1)、撮影枚数50枚
露光時間をそれぞれ10倍づつ変えていって、出来上がりの明るさを同じになるようにするため、ゲインで10分の1づつなるように調整しています。1番のゲイン570はあぷらなーとさんの解析によると高すぎてデータが欠落するようなので、損をしているはずですが、最初のテストなのでとりあえず一枚あたりの明るさが同じになることを優先しました。

撮影枚数はトータル時間が同じになるようにこれも10分の1づつ調整します。ちなみに、5000枚のファイルは114GBと凄い大きさになりました。これでもトータル時間わずか500秒、10分いかない程度です。10FPS程度出ていたので、実際の撮影時間はほぼそう露光時間と同じ500秒程度でした。

撮影中Darkだけはリアルタイムで補正しました、0.1秒露光のものは64枚、1秒のものは16枚、10秒のものは8枚のdarkフレームをスタックしてSharpCap上で撮影時に補正しています。

保存形式は16bit RAWのserの動画ファイルとなります。

当日のシンチレーションですが、目で見ても恒星が瞬いて見えたため、決していい方ではないです。透明度はそこそこ良かったです。


画像処理

まだあまりよくわかっていないので、とりあえずAutoStakkert3でスタックし、上位40%を使用しました。この40%については、今の所なんの根拠もありません。

さすがに0.1秒露光の5000枚の処理は1時間近くかかりました。惑星の時にはこんなにかからないので、やはり画素数が多くなると途端に処理が大変になります。

トラベジウムの比較


スタックして出来上がった画像のトラベジウム部分を、まずはなんの処理もせずそのまま拡大してみます。

0.1秒露光:
Capture_20_24_09__20_24_09_lapl5_ap21_Preview011

1秒露光:
Capture_20_36_54__20_36_54_lapl5_ap21_Preview01

10秒露光:
Capture_20_51_32__20_51_32_lapl5_ap21_Preview01


トラペジウムをよーく見比べると、一応ですが、露光時間が短い方が恒星間の隙間の距離が大きくなっています。でも「え、わずかこれだけ?」というレベルです。ラッキーイメージのシンチレーションを軽減するだけの価値がないレベルの結果です。どうやらいろいろ試す以前に、そもそも中心部での星像がどれだけ点像になるかの議論が必要そうです。

ピントの合い具合にもよるでしょうし、光軸調整もあまりしていなかったので、それも問題でしょう。さらに、シュミカセで副鏡があるために中心部分が遮蔽されMTFが落ちてしまうのも避けられません。また、画像処理している途中で気づいたのですが、撮影時すでにトラベジウムの恒星の中心部分がが0.999とほぼサチってしまっています。これだとそもそもの径を定義するのさえ、うまくできなくなってしまいます。MEADE以外にC8もあるので、鏡筒を変えて比較するという手も考えられます。

もう一つは、スタックするときにうまく恒星が最小になるようにする方法を考える必要があるかもしれません。AS3のパラメータをいじるだけで済むのか?他のソフトを使うべきなのか?それともそもそもあまり改善しないのか?

露光時間で比較する以前に、こういった部分でまずは中心部の星像をできるだけシャープにして、うまくスタックする方法を検討することが先決だと実感しました。これがわかったことだけでも、今回のテストの価値があったということでしょうか。


背景の比較

さて、スタックした画像をPixInsightで開いて、それぞれSTFでオートストレッチしてみました。

0.1秒露光: ノイズが相当ひどいです。ダーク処理をし忘れたかと思いましたが、きちんとしていました。ゲインが高いので、ダイナミックレンジが小さく、また読み出しノイズが効いてきます。露光時間が短いと流石にこれくらいのノイズは仕方ないのでしょうか?
Capture_20_24_09__20_24_09_lapl5_ap2_str

1秒露光: あまり目立たないですが、下の10秒露光と比べるとまだなめらかさが足りないです。
Capture_20_36_54__20_36_54_lapl5_ap2_str

10秒露光: かなりなめらかになります。そのかわり、やはり星像は多少大きく見えてきます。
Capture_20_51_32__20_51_32_lapl5_ap2_str



解像度に関して

星像の大きさについて少し掘り下げます。トラベジウムはサチっていたために、きちんと比較するのは難しかったのですが、それならば他にサチっていない部分を探せば、露光時間によってその星像の大きさが違うのかをきちんと評価できるはずです。

画像をぱっと見るだけだと、輝度によって半径が見かけ上大きく変わるので、全然判断できません。なので評価はFWHMでします。今回はPixInsightを使いました。それぞれの露光時間の画像からPreview機能ででサチっていない恒星を切り抜き、Previewタブを右クリックして「Make Image」で独立した画像にします。これを一旦「IMAGE」「Color Spaces」「Convert to Grayscale」で白黒画像にしてから、「SCRIPT」「Image Analysis」「FWHMEccentricity」で半値全幅を見積もります。写真に撮った画像はすでにSTFでオートストレッチをかけて見かけ上サチっているように見えますが、実際の解析はスタックしたての画像で解析しています。そうしないと、多分輝度が圧縮されて半径も変わってきてしまうからです。

0.1秒露光: FWHM = 6.952 pixel
IMG_6771

1秒露光: FWHM = 7.333 pixel
IMG_6772

10秒露光: FWHM = 8.108 pixel
IMG_6774


となるので、確かに露光時間が短いほど星像は小さくなっていることがわかります。ただし100倍露光時間が変わって、わずか15%ほどの改善です。それでもこれは解像度に直結するはずで、実際2割解像度が変わると見た目にはっきり分かるくらい改善されます。

ここで元の画像をRegistaxでWavelet変換して細部を出してみます。0.1秒露光と10秒露光の画像を見比べます。Wavelet変換のパラメータは全く一緒にしてあります。ホワイトバランスは合わせていませんが、輝度のみ比較しやすいように、少しだけ変えています。

0.1秒露光
Capture_20_24_09__20_24_09_lapl5_ap2_RS_PS

10秒露光
Capture_20_51_32__20_51_32_lapl5_ap2_RS_PS

0.1秒露光の方がノイジーなのは変わらないとして、やはり多少細部まで出ていることがわかります。この部分をこれからいかに引き出すか、ノイズをいかに減らすかが今後の課題になってくるのかと思います。


一応仕上げ

せっかく撮影したので、少しだけ仕上げます。ただし、使ったのは10秒露光の画像です。流石に0.1秒露光の画像を仕上げても、ノイズが多すぎで全く使い物になりませんでした。むしろ、光害や露光時間不足で撮影がうまくいかなかった時の画像処理の苦労を彷彿とさせ、ものすごい無理をしてあぶり出す時の感じだったので、早々と諦めました。

Capture_20_51_32__20_51_32_lapl5_ap2_RS_finalize2

仕上がりを見ると、
  • コマ補正がまだ十分でない
  • 明る恒星がサチっているため不自然(RegistaxでのWavelet変換でエッジが強調されてしまった)
などの反省点がありますが、今回はまだテスト撮影なのであまり気合を入れずにこれくらいにしておきます。


課題と今後

もう一つ反省するところがあります。ダーク補正についてです。ダークフレームのノイズが0.1秒露光のものに一番残っている可能性が高いことに気づきました。やはりダークノイズの枚数も撮影枚数と比例させるべきでした。例えば0.1秒露光のものは1000枚、1秒露光のものは100枚、10秒露光のものは10枚とかです。今回の場合0.1秒露光のものが一番ノイジーだったのですが、単に相対的に少ない枚数で作ったダークフレームが、スタックした画像に比べてまだノイジーで、ダーク補正の時にノイズを新たに加えてしまっている可能性があります。


さて、課題をまとめておきます。
  • 光軸調整をきちんとする
  • トラベジウムがすでにサチっていたので、もっとゲインを落として比較すべき
  • ダークをきちんと考えて枚数を撮る
  • C8とも比べてみる
  • 冷却に挑戦する
といったところです。これらを踏まえて、もう少し検証したいと思います。


まとめ

今回は、ラッキーイメージングを試してみました。まずはテストでしたが、結構面白い結果が得られました。

  • 露光時間が短くなるにつれて星像の大きさは改善される。
  • 同時に解像度も改善されるようである。
  • ただし、その効果を生かすためには光学系の設定を詰める必要がある。

冷却でも改善されそうなので、まだまだ楽しみです。長焦点のキリッとした画像をいつか撮影したいです。


21時過ぎ、かなり寒くなってきたのでかんたろうさんと一緒に一旦自宅に退散。子供達、特にSukeがかんたろうさんと遊びたそうでしたが、次の日もかんたろうさんも私も仕事なので、あまり遅くまでダラダラしているわけにはいきません。子供達は春休みなので気楽なもんです。「泊まってっていいよ」とかふざけたことを言っていました。22時頃かんたろうさんが帰る時に外に出ると、空はすっかり曇っていました。ほんの少しのチャンスだったようです。また晴れ間を見つけて試します。


このページのトップヘ