今回の記事は、普段私が何気に気を使ったりしていることや、小ネタなどをまとめてみることにしました。よかったら参考にしてください。細かいことなので、あまり記事とかにしてこなかったことも多いです。
あくまで個人のやり方なので、この方法が正しいなどという気はさらさらないですし、この方法を押し付けるようなこともしたくありません。むしろ、これを見てもっといいアイデアがあるぞとか、自分で工夫してもらってさらに発展させてもらえると嬉しいです。
それではいきます。
倍率の高い状態で見たり撮影したりする望遠鏡。揺れは大敵です。
まず、L字型の構造は出来るだけ避けたほうがいいです。必要なら三角板をL字の真ん中に入れて補強するなどします。頭でっかちで、根元が細いのもだめです。赤道儀は基本的にL字や頭でっかちになりやすいですね。
基本的には、構造的に一番弱いところで一番大きく揺れます。極端に弱いところを途中に作らないことが重要です。
揺れに関しては重量というよりは慣性モーメントが効いてくるので、
構造がしっかりしているはずなのに、ガタガタする場合はたいていクランプやネジの緩みです。特に赤道儀は、車などで運んでいると長期の間に自然にネジが緩むことがよくあります。外に出ているネジだけでなく、内部のネジまで含めて緩みを各自で定期的にチェックするか、それができなければメンテナンスに出すなどが必要になります。
一例ですが、私はガイド鏡でさえこれくらいガチガチに固定しています。高さもたわみなどが少なくなるようにできるだけ低くしています。
もう一例、重い鏡筒なのでできるだけ鏡筒位置が低くなるような鏡筒バンドを選び、かつ長いロスマンディー規格のアリガタを使い、バンド間の距離をできるだけとっています。
これだけバンド間の幅を取っていると、プレートより上は揺れに関しては無視することができて、それより下の赤道儀自身(今使っているCGEM IIの場合)の方が弱い構造となるので、揺れの大きさはそちらで決まります。
鏡筒の上部や下部に長めのアルカスイスプレートをつけておくと便利です。取っ手がわりにもなります。
さらに、ガイド鏡、ファインダーなどの下部にアルカスイスクランプをつけておくと、コンパクトな機構で安定に鏡筒に取りつけることができ、かつ取り外しが楽になります。
アルカスイス互換クランプは構造的に精度の許容範囲が広いため、安価なものでもそこそこ安定していて、気軽に使えるので使い勝手がいいです。。
また、Vixen規格のアリガタからアルカスイスへの変換アダプターを作っておくと便利なことが多いです。
例えばAZ-GTiはVixen規格のアリミゾですが、上記アダプターでアリミゾからアルカスイス互換クランプに変換することで、L字フレームをつけたカメラや、上下にアルカスイス互換プレートをつけた軽い鏡筒なら、十分な強度で取り付けることができます。それだけでなく、このアダプターはかさ上げも兼ねていて、鏡筒が三脚に当たることをある程度防いでくれます。
さらに、この変換アダプターに使っているアルカスイス互換クランプのつまみのところには水準器が付いているので、AZ-GTiの経緯台モードの最初の設置の時に、鏡筒の水平出しに便利で、これがあるとないとで初期アラインメントの一発目の導入精度が全く違ってきます。
AZ-GTiを使ったときに実感したのですが、上のかさ上げ用のアダプターでも不十分なときにはハーフピラーが便利です。AZ-GTi三脚セットに付属のものもそこそこの強度があfり悪くないです。特に天頂近くを見るときに、鏡筒が三脚に当たるのを防ぐことができます。
トラブルを避けるためには、あらゆるところをシンプルにした方がいいです。例えば、一つの箇所でトラブルが起きる確率が10%とすると、もしそれが10箇所あるとトラブルが起きる確率は1-0.9^10=0.65と、何と60%以上の確率で毎回何かトラブルが起きることになります。一つトラブルが起きると撮影としては大抵全て失敗してしまいます。意外なほどこの法則は当てはまったりするので、トラブルが起こる箇所の数を減らすことは、撮影の成功に直結します。
2. 特にケーブルはコネクタ部や内部で接触不良になったり、引っ掛けたり、可動部で挟んだり、何かとトラブルが多いです。持ってくるのを忘れることもよくありますね。
3.、4. 複雑なソフトの多用も考えものです。確かに全部連動してがうまく動くとカッコ良くて満足できたりするのですが、一つ動かないと全部動かなくなるとかの、互いのソフトの動作状況に依存するような組み合わせは最小限にすべきです。私は撮影時はPHD2と撮影ソフトのディザーのみの関係に抑えてます。各機器間を繋ぐASCOM関連の安定度は重要で、必ず事前にきちんと動くかチェックするようにしてます。
5. トラブったときに接続できなくて画面で何も見ることができない状況とかは、できれば避けたいです。PCをモニターがわりに使えるようなこんなアダプターを用意しておくと、別途モニターとかを用意する必要がなくなるのでいいかもしれません。
ケーブルは回転の中心で固定したほうがいいです。例えば、鏡筒につけてあるカメラやガイド鏡に行くケーブルは、鏡筒と赤道儀の接合付近で一回ベルトでまとめてとめています。こうしておくと赤道儀が回転しても、ケーブルが変に引っ張られたりする危険が減ります。このことは、APTなどを使った子午線自動反転でのトラブルを少なくすることにつながります。
三脚、ハーフピラーなど随所に裏がシールになっているマジックテープをつけてます。そこにもう一方のマジックテープを貼ったバッテリー、Stick PCなどをペタペタくっつけてます。こうすることでケーブルの長さを短くすることに貢献しています。
庭撮りや遠征時に使うライトです。これの前のモデルを持っています。
電球分が取り外して懐中電灯のように使えるし、題において上から押すとスイッチが入ります。電球色で、暗いモードと明るいモードがあって、暗いほうのモードは天体観測には適度な明るさで、かつ1000時間以上持つので便利です。新しいモデルの高級バージョンは、6段回に明るさを調整できるみたいです。
特に電視観望の時など、ノートPCを使う場合には、折りたたみ式のアウトドア用の机を使います。椅子もあると楽です。
椅子は写真に写っているような高さ調整のできるものがいいです。私はルネセイコウのプロワークチェアを使っています。
これだと眼視の時にも相当低い位置から(高い位置よりも低い位置で安定して見えるほうが重要、腰が痛くなるのを避けることができます)見ることができて便利です。特に観望会などで足腰の弱いお年寄りの方がいる時には威力を発揮します。
撮影時にはStick PCを使っています。小さく軽いのでマジックテープで三脚などに固定できるのと、Windowsのリモートデスクトップ機能を使うと、離れたところからでも他のPCから様子がわかるので、遠征時には車の中から、庭撮りでは自宅の中から、特に冬はヌクヌク状態で撮影しています。夜中じゅう放っておいて寝てしまっても、ベッドのところにiPadとかのタブレットを置いておけば、目が覚めた時にチラッと確認してまた眠ることができます。
最近はASIAir Proとか流行っているので、同様のことができますね。私はWindowsのソフトを使いたいのでStick PCですが、ASIAir Proは手軽さという面では上かと思います。
極軸を合わせるのは極軸望遠鏡でもいいですが、最近では精度的には何らかのPCを使ったツールを使った方がいいでしょう。特に長時間撮影では精度の違いが重要になってきます。極軸精度が不十分だと一方向にずっとずれ続ける(「ドリフト」とか「DC的な変動」とかいいます)のでガイドに負担がかかってしまいます。
具体的には、私はSharpCapのPolar Align機能を使っています。Plate solveでリアルタイムで極軸を合わせることができる、非常に優秀で簡単に使える極軸調整ツールです。残念ながら有料版でしか使えない機能ですが、年間10ポンド(千数百円)とお小遣い程度なので、この機能のためだけでも有料版にしてもいいくらいです。ガイド鏡のカメラがそのまま使えるので、経済的にも、機材を簡略化する観点からもメリットが大きいです。
ちなみに、極軸を合わせるためのカメラは回転中心に置く必要はありません。しょせん星という無限遠を見ていることになるので、当たり前といえば当たり前ですね。さらに、カメラは極軸の方向にピッタリ合わせることも不要です。画面内のどこかくらいに入っていれば十分です。これもカメラの映像のピッタリ中心で回転することが必ずしも必要ないことから、当然といえば当然ですね。というわけで、適当に置いたガイドカメラを使っても十分に極軸調整のためのカメラとして使うことができるということです。
極軸がきちんと取れてれば、初期アラインメントはワンスターアラインメントで十分です。無闇にツースターアラインメントや、スリースターアラインメントに時間をかける必要はありません。極端に言えば、高度なオートアラインメント機能などを使わずに、手動で導入しても構いません。だって、極軸があっていれば、どの星を見てもあとは自動で十分な精度で追尾してくれてくれるからです。
逆に、極軸が取れていない場合は複数の星を使った初期アラインメントが必要になります。それでも特に長時間露光の撮影時には、原理的にきちんと極軸を取ったものに勝てません。なので、極軸の精度はかなり重要になります。どれくらいの精度で合わせればいいかは
を見てください。ざっくり言うと、極軸を1分角の精度で合わせておけば、もう十分な精度と言えるでしょう。極軸望遠鏡でこの精度を出すにはなかなか難しいと思いますが、SharpCapなどのツールを使えばかなり簡単にこのレベルの精度を出すことができます。
極軸をきちんと合わせているのに、初期アラインメント時に視野に入らない場合は、赤道儀の水平出しに気を使ってみてください。その際、水準器があると簡単ですが、水準器がついていない場合はホームセンターなどで買ってきて、赤道儀の平な面を見つけてそこに水準器を置き、一度水平を出してから赤道儀に直接接着してしまうと、毎回合わせることができるようになります。
バーティノフマスクもいいですが、他にも精度良くピントを合わせる方法はたくさんあります。例えば、恒星のFWHM(半値全幅)を自動で測定してくれる機能が撮像ソフトには付いていることが多いです。BackYardEOSやSharpCapでは私も FWHMを常用しています。このFWHMが最小になるようにピントを調節します。このピントを調節するのも、やり方一つでかなり精度が変わってきます。ここら辺も経験が効いてきますが、コツを知っているか知っていないかでかなり違います。例えば、
さらに、ネジの精度が良すぎて変化がわかりにくい時の方法です。
合わせてこちらもお読み下さい。
とまあ、今回はこんな所ですが、また何かありましたら随時追加してきます。
あくまで個人のやり方なので、この方法が正しいなどという気はさらさらないですし、この方法を押し付けるようなこともしたくありません。むしろ、これを見てもっといいアイデアがあるぞとか、自分で工夫してもらってさらに発展させてもらえると嬉しいです。
それではいきます。
機材が揺れないように
倍率の高い状態で見たり撮影したりする望遠鏡。揺れは大敵です。
まず、L字型の構造は出来るだけ避けたほうがいいです。必要なら三角板をL字の真ん中に入れて補強するなどします。頭でっかちで、根元が細いのもだめです。赤道儀は基本的にL字や頭でっかちになりやすいですね。
- 鏡筒と赤道儀の接合部
- 赤緯体の根本
- 赤経体の根本
- ウェイトとウィエイトバー
- 赤道儀と三脚の接合部
- 三脚の足の接合部
基本的には、構造的に一番弱いところで一番大きく揺れます。極端に弱いところを途中に作らないことが重要です。
揺れに関しては重量というよりは慣性モーメントが効いてくるので、
- 同じ重さなら、長い方がより揺れる。
- 同じ重さなら、重量が端にあるものほどよく揺れ、重量が中心(支点に近いところ)にあるほど揺れにくい。
構造がしっかりしているはずなのに、ガタガタする場合はたいていクランプやネジの緩みです。特に赤道儀は、車などで運んでいると長期の間に自然にネジが緩むことがよくあります。外に出ているネジだけでなく、内部のネジまで含めて緩みを各自で定期的にチェックするか、それができなければメンテナンスに出すなどが必要になります。
一例ですが、私はガイド鏡でさえこれくらいガチガチに固定しています。高さもたわみなどが少なくなるようにできるだけ低くしています。
もう一例、重い鏡筒なのでできるだけ鏡筒位置が低くなるような鏡筒バンドを選び、かつ長いロスマンディー規格のアリガタを使い、バンド間の距離をできるだけとっています。
これだけバンド間の幅を取っていると、プレートより上は揺れに関しては無視することができて、それより下の赤道儀自身(今使っているCGEM IIの場合)の方が弱い構造となるので、揺れの大きさはそちらで決まります。
アルカスイス互換クランプ/プレートの利用
鏡筒の上部や下部に長めのアルカスイスプレートをつけておくと便利です。取っ手がわりにもなります。
さらに、ガイド鏡、ファインダーなどの下部にアルカスイスクランプをつけておくと、コンパクトな機構で安定に鏡筒に取りつけることができ、かつ取り外しが楽になります。
アルカスイス互換クランプは構造的に精度の許容範囲が広いため、安価なものでもそこそこ安定していて、気軽に使えるので使い勝手がいいです。。
- 面で固定なので安定。
- プレートの長さが相当長いものまで選べる。
- クランプの長さも結構選べる
また、Vixen規格のアリガタからアルカスイスへの変換アダプターを作っておくと便利なことが多いです。
例えばAZ-GTiはVixen規格のアリミゾですが、上記アダプターでアリミゾからアルカスイス互換クランプに変換することで、L字フレームをつけたカメラや、上下にアルカスイス互換プレートをつけた軽い鏡筒なら、十分な強度で取り付けることができます。それだけでなく、このアダプターはかさ上げも兼ねていて、鏡筒が三脚に当たることをある程度防いでくれます。
さらに、この変換アダプターに使っているアルカスイス互換クランプのつまみのところには水準器が付いているので、AZ-GTiの経緯台モードの最初の設置の時に、鏡筒の水平出しに便利で、これがあるとないとで初期アラインメントの一発目の導入精度が全く違ってきます。
ハーフピラーの活用
AZ-GTiを使ったときに実感したのですが、上のかさ上げ用のアダプターでも不十分なときにはハーフピラーが便利です。AZ-GTi三脚セットに付属のものもそこそこの強度があfり悪くないです。特に天頂近くを見るときに、鏡筒が三脚に当たるのを防ぐことができます。
できるだけシンプルにすることを心がける
トラブルを避けるためには、あらゆるところをシンプルにした方がいいです。例えば、一つの箇所でトラブルが起きる確率が10%とすると、もしそれが10箇所あるとトラブルが起きる確率は1-0.9^10=0.65と、何と60%以上の確率で毎回何かトラブルが起きることになります。一つトラブルが起きると撮影としては大抵全て失敗してしまいます。意外なほどこの法則は当てはまったりするので、トラブルが起こる箇所の数を減らすことは、撮影の成功に直結します。
- 機材組み上げの構造はシンプルにする。
- ケーブルの本数は減らす。
- 複雑な操作を避ける。
- ソフトを多用しすぎない。
- Wi-Fiに便りきらない。何もつながらなくても動かせる手段を持っておく。
2. 特にケーブルはコネクタ部や内部で接触不良になったり、引っ掛けたり、可動部で挟んだり、何かとトラブルが多いです。持ってくるのを忘れることもよくありますね。
3.、4. 複雑なソフトの多用も考えものです。確かに全部連動してがうまく動くとカッコ良くて満足できたりするのですが、一つ動かないと全部動かなくなるとかの、互いのソフトの動作状況に依存するような組み合わせは最小限にすべきです。私は撮影時はPHD2と撮影ソフトのディザーのみの関係に抑えてます。各機器間を繋ぐASCOM関連の安定度は重要で、必ず事前にきちんと動くかチェックするようにしてます。
5. トラブったときに接続できなくて画面で何も見ることができない状況とかは、できれば避けたいです。PCをモニターがわりに使えるようなこんなアダプターを用意しておくと、別途モニターとかを用意する必要がなくなるのでいいかもしれません。
ケーブルの取り回し
ケーブルは回転の中心で固定したほうがいいです。例えば、鏡筒につけてあるカメラやガイド鏡に行くケーブルは、鏡筒と赤道儀の接合付近で一回ベルトでまとめてとめています。こうしておくと赤道儀が回転しても、ケーブルが変に引っ張られたりする危険が減ります。このことは、APTなどを使った子午線自動反転でのトラブルを少なくすることにつながります。
マジックテープは便利
三脚、ハーフピラーなど随所に裏がシールになっているマジックテープをつけてます。そこにもう一方のマジックテープを貼ったバッテリー、Stick PCなどをペタペタくっつけてます。こうすることでケーブルの長さを短くすることに貢献しています。
ハーフピラーにマジックテープをつけてバッテリーとStick PCを親子亀方式でつけてます。
バッテリーとStick PCの間もマジックテープです。
バッテリーとStick PCの間もマジックテープです。
ライトは暗いものがいい
庭撮りや遠征時に使うライトです。これの前のモデルを持っています。
電球分が取り外して懐中電灯のように使えるし、題において上から押すとスイッチが入ります。電球色で、暗いモードと明るいモードがあって、暗いほうのモードは天体観測には適度な明るさで、かつ1000時間以上持つので便利です。新しいモデルの高級バージョンは、6段回に明るさを調整できるみたいです。
テーブルと椅子
特に電視観望の時など、ノートPCを使う場合には、折りたたみ式のアウトドア用の机を使います。椅子もあると楽です。
椅子は写真に写っているような高さ調整のできるものがいいです。私はルネセイコウのプロワークチェアを使っています。
これだと眼視の時にも相当低い位置から(高い位置よりも低い位置で安定して見えるほうが重要、腰が痛くなるのを避けることができます)見ることができて便利です。特に観望会などで足腰の弱いお年寄りの方がいる時には威力を発揮します。
小型のStick PCの利用
撮影時にはStick PCを使っています。小さく軽いのでマジックテープで三脚などに固定できるのと、Windowsのリモートデスクトップ機能を使うと、離れたところからでも他のPCから様子がわかるので、遠征時には車の中から、庭撮りでは自宅の中から、特に冬はヌクヌク状態で撮影しています。夜中じゅう放っておいて寝てしまっても、ベッドのところにiPadとかのタブレットを置いておけば、目が覚めた時にチラッと確認してまた眠ることができます。
最近はASIAir Proとか流行っているので、同様のことができますね。私はWindowsのソフトを使いたいのでStick PCですが、ASIAir Proは手軽さという面では上かと思います。
極軸をどう取るか?
極軸を合わせるのは極軸望遠鏡でもいいですが、最近では精度的には何らかのPCを使ったツールを使った方がいいでしょう。特に長時間撮影では精度の違いが重要になってきます。極軸精度が不十分だと一方向にずっとずれ続ける(「ドリフト」とか「DC的な変動」とかいいます)のでガイドに負担がかかってしまいます。
具体的には、私はSharpCapのPolar Align機能を使っています。Plate solveでリアルタイムで極軸を合わせることができる、非常に優秀で簡単に使える極軸調整ツールです。残念ながら有料版でしか使えない機能ですが、年間10ポンド(千数百円)とお小遣い程度なので、この機能のためだけでも有料版にしてもいいくらいです。ガイド鏡のカメラがそのまま使えるので、経済的にも、機材を簡略化する観点からもメリットが大きいです。
ちなみに、極軸を合わせるためのカメラは回転中心に置く必要はありません。しょせん星という無限遠を見ていることになるので、当たり前といえば当たり前ですね。さらに、カメラは極軸の方向にピッタリ合わせることも不要です。画面内のどこかくらいに入っていれば十分です。これもカメラの映像のピッタリ中心で回転することが必ずしも必要ないことから、当然といえば当然ですね。というわけで、適当に置いたガイドカメラを使っても十分に極軸調整のためのカメラとして使うことができるということです。
初期アラインメントはワンスターで十分!
極軸がきちんと取れてれば、初期アラインメントはワンスターアラインメントで十分です。無闇にツースターアラインメントや、スリースターアラインメントに時間をかける必要はありません。極端に言えば、高度なオートアラインメント機能などを使わずに、手動で導入しても構いません。だって、極軸があっていれば、どの星を見てもあとは自動で十分な精度で追尾してくれてくれるからです。
逆に、極軸が取れていない場合は複数の星を使った初期アラインメントが必要になります。それでも特に長時間露光の撮影時には、原理的にきちんと極軸を取ったものに勝てません。なので、極軸の精度はかなり重要になります。どれくらいの精度で合わせればいいかは
を見てください。ざっくり言うと、極軸を1分角の精度で合わせておけば、もう十分な精度と言えるでしょう。極軸望遠鏡でこの精度を出すにはなかなか難しいと思いますが、SharpCapなどのツールを使えばかなり簡単にこのレベルの精度を出すことができます。
初期アラインメント時に一発で視野に入れるには?
極軸をきちんと合わせているのに、初期アラインメント時に視野に入らない場合は、赤道儀の水平出しに気を使ってみてください。その際、水準器があると簡単ですが、水準器がついていない場合はホームセンターなどで買ってきて、赤道儀の平な面を見つけてそこに水準器を置き、一度水平を出してから赤道儀に直接接着してしまうと、毎回合わせることができるようになります。
ピントをどうやって合わせるか?
バーティノフマスクもいいですが、他にも精度良くピントを合わせる方法はたくさんあります。例えば、恒星のFWHM(半値全幅)を自動で測定してくれる機能が撮像ソフトには付いていることが多いです。BackYardEOSやSharpCapでは私も FWHMを常用しています。このFWHMが最小になるようにピントを調節します。このピントを調節するのも、やり方一つでかなり精度が変わってきます。ここら辺も経験が効いてきますが、コツを知っているか知っていないかでかなり違います。例えば、
- ダイヤルを回していって、一旦最適位置を通り越して、そのときに見た最小値を覚えておく。その最小値になるように戻す。
- 戻すだけだとバックラッシュで像の位置が変わることもあるので、一旦大きく戻して、最初に最初うちを見たときと同じ方向で、再び同じ最小値になるように合わせる。
- 手で触っていると揺れるので、どれくらい動かすかの最小単位を決めておき、毎回その単位で動かして毎回必ず手を離す。
さらに、ネジの精度が良すぎて変化がわかりにくい時の方法です。
- 一方向にあるステップ(幅)で動かしながら、何ステップ動かしたかを常に数えておく。
- 最初になんらかの変化が見えた位置から、最適値を通り越して、次に変化が見えなくなるまでのステップ数まで数える。
- 数えたステップの半分だけ戻す。
その他
合わせてこちらもお読み下さい。
とまあ、今回はこんな所ですが、また何かありましたら随時追加してきます。