ほしぞloveログ

天体観測始めました。

カテゴリ: アイデア、理論など

今回の記事は座学です。太陽撮影でよく見ているプロミネンスですが、ほとんど何も知らないことがよくわかりました。関連する事柄を調べたので、メモがてら書いておきます。

そもそもの疑問は、黒点から出ていた2本の線ですが、Hαからズレたところで見えていて、Hαだと見えないと謎だったのですが、ドップラーシフトで青側に寄ったガスの噴出だということです。


でも、ズレたということは元々はHαのみで見えるということになりますが、太陽内部から出てくるときにHαで吸収されていると思っていたので、なぜHα以外の波長で輝度がないのかが疑問でした。要するに、このガス噴出と思われるものは、Hαの吸収線なのかHαの輝線なのかという疑問です。

このガスの前に、もっと身近で毎回撮影しているプロミネンスも同じ疑問が出てきます。縁(へり、リム)のところに出ているプロミネンスはご存知の通り、PSTなどの太陽望遠鏡でHαからズレると途端に見えなくなり、背景の黒だけが見えるようになります。この現象から推測すると、Hαでよく見え、周りの波長の輝度ははるかに小さい、輝線ということがわかります。

一方、プロミネンスが光球面上に存在すると、今度はダークフィラメントと呼ばれて、周りより温度が低いので暗く見えます。この場合はHαを見たときに、光球面の明るい周りの波長がカットされて残ったHαのみが見えるというわけです。この場合は二通り考えることができ、光球面の特徴的な模様とともにダークフィラメントも見えてくるような吸収線と考えることもできますし、そもそもHαのみに輝度を持っている輝線と考えることもできます。

では、そもそもプロミネンスってなんなのでしょうか?少し調べるとわかりますが、プロミネンスとは低密度で百万度以上の高温プラズマ中に浮かぶ、高密度の1万度程度の低温プラズマとのことです。ここでいう、高温プラズマとはコロナのことです。高度百万キロ程度の希薄なコロナの中に、プロミネンスが雲のように濃く存在しているということです。そしてその低温プラズマは採光面からの水素に照らされて吸収と放射を繰り返し、Hαで輝く輝線となるとのことです。太陽の縁のあたりに見えるプロミネンスの場合、背景は希薄なコロナで何も見えず(Hαやその周りの波長では輝いていない)、Hαで見るとプロミネンスのみが見えるということです。

ダークフィラメントも基本的には同じものですが、背景が光球面ということだけが違います。吸収と放射でHαに明るさを持つことは同じですが、背景が明るいためにHα以外では真っ白になってしまい、Hαのみを見ると温度の低いダークフィラメントが暗く写るということです。

プロミネンスがプラズマだったなんて全然知りませんでした。また、なんでHαのみで見えるのかの理由も深く考えたことはなかったのですが、輝線で輝いているということもはっきりわかりました。

このプロミネンスですが教科書レベルの本で調べると、大きく分けて静穏型プロミネンスと活動型プロミネンスの2種類に分けられるそうです。
  • 静穏型は数週間大体同じ形を保つもので、全体の構造はほぼ静止状態、ただし内部のガスは数km/秒くらいでゆっくり流れ落ちている。
  • 活動型は運動状態にあり数分から数時間で形を変えるもの。
我々が普段撮影するのはほとんどが静穏型なのかと思います。活動型は変化が相当速くて大規模な変化が多く、フレアとも大きく関係するため、その名の通り相当活発なもののようです。活動型はタイムラプスなどでは変化がよく見え、迫力ある映像になるのかと思います。

活動型はさらに以下のようにいくつかの種類に分けられるということです。
  • 噴出型プロミネンス
  • スプレイ
  • サージ(ジェット型プロミネンス)
  • ループプロミネンス(ポストフレアループ)
最初の噴出型プロミネンスは静穏型プロミネンスが突然不安定になり上昇や消失してしまう現象で、上昇速度は数百km/秒でかなり速いです。フレアとも関係があり、噴出型プロミネンスが発生するとフレア現象が起こることも多いそうです。

スプレイはフレアからガスがバラバラに飛び散りながら噴出する現象で、速度がさらに速く500-1200km/秒。噴出型プロミネンスとの違いは、噴出型プロミネンスは元々プロミネンスやフィラメントが存在しているのに対して、スプレイはフレア前にはプロミネンスもフィラメントもなかった(見えなかった)ということなので、明確な違いがあることになります。

さて、今回見た2本の線は、この分類からいくと「サージ」になりそうです。ジェット型プロミネンスとも呼ばれているようです。速度は数十から数百km/秒とのことなので、前ページで見積もった速度とも大方一致します。面白いのはこのサージも、噴出前にプロミネンスもフィラメントも存在しないことです。このことも、今回数分後に撮影したHαには少なくともフィラメントのようなものは見えなかったので、これも一致しているといっていいのかと思います。

さらに、プロミネンスとドップラーシフトで検索してみると、さまざまなページが見つかります。特に、天文台などの大型望遠鏡で撮影したデータから、ドップラーシフトで解析したというような高校の天文部などの記事も見つかります。この場合、Hαからの波長のズレがどれくらいかはっきりと分かっているので、逆に画像からプロミネンスの速度を求めようというような方向が多いです。

今回わかったことをまとめます。
  • 今回見た黒点からの2本の線は、サージもしくはジェット型と呼ばれる活動型プロミネンスの一種。
  • プロミネンスとは高温プラズマであるコロナに浮かぶ低温プラズマで、採光面からの水素に照らされてHαで輝く輝線であること。
  • サージは速度が数10km/sから数100km/sと速く、ドップラーシフトが起こり、地球から見た方向によって波長がHαから短い青側もしくは長い赤側にズレる。
  • PSTなどの太陽望遠鏡ではHαからわざとズラしてやることで観測できる。
これでかなりスッキリしました。

うーん、これまでプロミネンスとか黒点とか写っているだけで喜んでましたが、やはりその背景を知るとさらに楽しくなってきますね。もっと勉強すべきですが、こういった自分で撮影したものがきっかけでさらに調べていくというのは、とてもいい機会になるのかと思います。

今回撮影した不思議な現象の謎もほとんど解けたので、今回でサージ関連の記事は一応終わりです。次回もし書くとしたら、再びHαからズラしてみることを気にかけておいて、何か見えたときに再び記事にしようと思います。その際は、時間変動や波長依存性などを撮影することがきたらと思いますが、一度に両方は無理でしょう。今回のように、ここまであからさまなドップラーシフトしたサージをはっきり見た画像あまり数がないようで、そこそこ珍しい現象のようです。チャンスがあったらその機会を大切に撮影したいと思います。







黒天リフさんがX上でバイアス補正について迷っている投稿がありました。


詳しいことはリンク先を読んでもらうとして、ここで上がっている疑問は大きく2つに収束して、
  1. 元々暗いダークファイルからマスターバイアスを引く際に、引きすぎになって0以下の値になり、真っ暗なピクセルが多数出てくるのではないか?
  2. ダークファイルにバイアスが含まれているなら、ライトファイルをダーク補正するだけで良さそうだが、本当にそれでいのか?それではいったいバイアス補正とはなんなのか?
というものかと思います。フラットおよび、フラットダークについては今回の範疇でないので、ここでは考えないことにします。

今回の記事は、これら2つの疑問が動機です。ちょうど今やっているノイズ解析でバイアスを考えるいい機会となりました。前回の記事のダーク補正をもう少し発展させ、バイアス補正を通して、ライトファイルを補正する場合まで考えます。



バイアス補正とは

ここではバイアスファイルとは、センサーに光が入らないようにして、露光時間を設定できる最小の値にして撮影した画像のこととします。ある意味実現しうる最小の輝度値を記録したファイルとなります。

ただし、実際のバイアスファイルの「輝度値」は注意が必要です。なぜなら、撮影時にSharpCapなどのアプリ側で設定できるオフセットを含んだ輝度値になるので、下駄をはかされた状態で記録されます。例えばASI294MM Proなら、設定したオフセットの値の16倍の値がADCの値となって輝度としてカウントされます。私はSharpCapでもNINAでも、大抵オフセット値を40として撮影いるので、撮影画像には60x16=640の値がオフセットとして記録されています。

「バイアス」の元の意味では、この定数のオフセットの意味が強いですね。

バイアスファイルの輝度値にも当然ばらつきがあります。このばらつきは「読み出しノイズ」と一致すると考えて差し支えないでしょう。極端に短い露光時間で撮影するためにセンサーからの信号は何も出てこないので、読み出し回路などから来る「読み出しノイズ」が支配的になります。また、極端に短い露光時間で撮影するということで、(時間に比例するダークカレント起因の)ダークノイズは無視できます。

バイアス補正によくある誤解で「バイアス補正はオフセットのみを引く」と捉えられがちですが、これはノイズのことを何も考えていないので、十分ではありません。オフセットに加えて、ノイズというばらつきを引く(実際には2乗和で足されるのですが)ことになるので、ばらつきの幅によっては補正した後の値が0以下になる可能性があります。特に極端に暗いファイルを補正する場合、例えばダークフレームからバイアスを引いた場合などです。最初の疑問そのものですね。

バイアスファイルを重ねてマスターバイアスを作ると、そこに含まれる「読み出しノイズ」も小さくなります。ばらつきの幅が小さくなるというイメージです。それでもマスターバイアスファイルにはばらつきが残っています。マスターバイアスに含まれる読み出しノイズはランダムで無相関なので、当然のことながら、バイアス補正をする際にはその読み出しノイズを「増やして」しまいます。一方オフセットは実際に引かれるので、平均輝度は下がります。元々暗いファイルなら、平均輝度は0付近になってしまうでしょう。そこにノイズが増えることになるので、補正後に輝度を0以下にする可能性が残ります。

注意: 今ここで、ノイズが増えるなら0以下にならないのではと思った方いませんか?もしそう思われたかがいるなら、まだノイズのイメージが正しくないです。ノイズが増えるということは、ばらつきが増えるということなので、平均輝度からのズレがより大きくなり、0以下になるピクセルが出てくる可能性がより多くなります。ヒストグラムで表すと、山の幅が大きくなるイメージです。

ちなみに、バイアスファイルの撮影は短時間で済むので、ライトファイルに比べて十分多数枚を容易に撮影することができ、読み出しノイズの増加をほとんど影響がない範囲に抑えることができるでしょう。例えば私の場合、バイアスファイルは512枚とか、1024枚撮影します。ライトファイルに比べてバイアスフレームの枚数が例えば10倍ならば、補正による読み出しノイズの増加は2乗和のルートで効くので、\(\sqrt{1^2+0.1^2} = \sqrt{1.01} \sim 1.005\)倍とほとんど無視できます。3倍の枚数のバイアスファイルでも\(\sqrt{1^2+(1/3)^2} = \sqrt{1.11} \sim 1.05\)倍と、これでも十分無視できます。ライトファイルと同枚数のバイアスファイルだと読み出しノイズは1.41倍となるので、無視できなくなってきます。

でもバイアス補正で読み出しノイズを増やしてしまうのならば、そもそもバイアスファイルを引くことのメリットってなんなのでしょうか?単純には、もし複数枚のバイアスファイルに(ホットピクセルやアンプグローのような固定ノイズ的な)コヒーレントな成分があるならば、それをさっ引くことができるのですが、そもそも本当にコヒーレントな成分なんてあるのでしょうか?

バイアスファイルはよく横縞や縦縞になって見えますが、これらがコヒーレントで決まったパターンになるならば、バイアス補正は有効です。逆にこれらの縞がランダムでどこに現れるかわからないならば、そもそもバイアス補正の意味なんて無くなってしまいます。

さらに、撮影時にディザーを適用すれば、恒星による位置合わせでバイアスのコヒーレントの部分は散らされる可能性もあります。それでも事前に取り除いて、パターンを小さくしておいた方が有利という考えでバイアス補正をしているのかと思われます。今回は試しませんが、いずれバイアスファイルにコヒーレント成分があるかどうかはきちんと検証してみたいと思います。


マスターバイアスファイル

まずは1枚のバイアスファイルを考えてみます。

1枚のバイアスファイルを

Bias:
\[B+\sigma_\text{B}\]
のように表すことができるとします。\(B\)は輝度の平均値、\(\sigma_\text{B}\)は輝度のStandard deviationで読み出しノイズそのものです。

\(N_\text{b}\)枚のバイアスファイルでスタックして、同枚数で割ったマスターバイアスのランダムノイズは、枚数のルート分の1になります。輝度の平均値は足し合わせたバイアスファイルを同じ枚数で割るので、同じ\(B\)のままです。マスターバイアスは以下のように書けます。平均輝度は同じですが、ばらつきは\(\sqrt{N_\text{b}}\)分の1に小さくなっています。

Master bias:
\[B + \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}}\]


バイアスファイルをマスターバイアスファイルで補正してみる

ここで、各バイアスファイルからマスターバイアスを引くこと考えてみるのは面白いでしょう。今後の見通しがよくなるはずです。

Bias - Master bias:
\[\sqrt{\sigma_\text{B}^2+\frac{\sigma_\text{B}^2}{N_\text{b}}} = \sqrt{1+\frac{1}{N_\text{b}}} \sigma_\text{B} \]
で\(N_\text{b}\)が多数の枚数だとすると、元々1だったノイズが\( \sqrt{1+1/N_\text{b}} \)とごく僅か増えて、平均輝度値の\(B\)は消えてしまいます。

これを2枚スタックする場合、バイアスフレームの中の読み出しノイズは無相関ですが、マスターバイアスに含まれる読み出しノイズは正の相関を持つので、
\[ \sqrt{ \left( \sqrt{\sigma_\text{B}^2 + \sigma_\text{B}^2} \right)^2 +\left(\frac{\sigma_\text{B}}{\sqrt{N_\text{b}}} + \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}}\right)^2} = \sqrt{2 + \frac{2^2}{N_\text{b}}} \sigma_\text{B}  \]
となります。前回の記事の、ダーク補正したライトフレームをスタックするときと同じ考え方ですね。大外のルートの中の、1項目が無相関で2乗和のルートで足し合わさるノイズ。2項目が正の相関を持ってそのまま足し合わさるノイズ。それぞれがさらに2乗和となり大外でルートになるというわけです。

3枚スタックしたら、
\[ \sqrt{ \left( \sqrt{\sigma_\text{B}^2 + \sigma_\text{B}^2 + \sigma_\text{B}^2} \right)^2 +\left(\frac{\sigma_\text{B}}{\sqrt{N_\text{b}}} + \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}} + \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}} \right)^2} = \sqrt{3 + \frac{3^2}{N_\text{b}}} \sigma_\text{B}  \]
となります。同じようにして、\( N_\text{a} \)枚スタックしたら
\[ \sqrt{N_\text{a} + \frac{N_\text{a}^2}{N_\text{b}}} \sigma_\text{B}  \]
となります。ここまでは足し合わせを考えていただけなので、輝度をスタックする前の画像に合わせるように\( N_\text{a} \)枚で規格化すると、
\[ \frac{\sqrt{N_\text{a} + \frac{N_\text{a}^2}{N_\text{b}}}\sigma_\text{B}  }{N_\text{a}} =  \sqrt{\frac{1}{N_\text{a}} + \frac{1}{N_\text{b}}} \sigma_\text{B} \]
となります。
 
ここまでわかったので、例えば具体例として\(N_\text{a} = N_\text{b}\)として、マスターバイアスを作った時と同じ枚数の\( N_\text{b} \)枚スタックしたら
\[ \sqrt{N_\text{b} + \frac{N_\text{b}^2}{N_\text{b}}} \sigma_\text{B} =  \sqrt{N_\text{b} + N_\text{b}} \sigma_\text{B} = \sqrt{2 N_\text{b}} \sigma_\text{B} \]
となることがわかり、読み出しノイズは\( \sqrt{2 N_\text{b}} \)倍になります。これも輝度をスタックする前の画像に合わせるように\( N_\text{b} \)枚で規格化すると、 
\[ \frac{\sqrt{2 N_\text{b}}}{N_\text{b}} \sigma_\text{B} = \sqrt{\frac{2}{N_\text{b}}} \sigma_\text{B} \]
となり、読み出しノイズの貢献度は\( \sqrt{2/N_\text{b}} \)倍、すなわち\( \sqrt{N_\text{b}} \)分の1の2回分となることがわかり、直感的かと思います。


0以下の値の存在

さてここで、最初の疑問の1について少し考えてみましょう。1枚の バイアスファイルをマスターバイアスで補正した段階で、すでに輝度の平均値は0になっています。そこに正負に広がりのあるノイズが存在するので、当然0以下の値が存在してしまうことになります。ファイルのフォーマットとしては0以下の値はとることができないので、丸め込んで0となってしまいます。これはまずいです。そのため、通常は計算過程で適当なオフセットを加えて、値を0以上に保ったまま補正などすることが必要となってきます。ここではバイアス補正を見ていますが、ダーク補正の際にもマスターダークファイルの輝度の平均値でさっ引くので、暗いライトファイルを補正する時には同じように輝度が0以下になる可能性が十分にあります。

例えばPixInsightのWBPPでは明示的にPedestal(下駄)という値を設定することができて、ここを適した値に設定することで負の値にならないように0以上にしているため、おかしな結果にはならないです。具体例は以前検証したページをご覧ください。ただし、全ての計算過程で0以上が保たれて以下どうかは不明です。ここも検証ポイントなので、いつか検証したいと思います。

いずれにせよ、補正の際に何も手当をしなければ0以下の値になることは明白で、そもそもバイアスファイルを撮影する際に適したオフセットを設定すること、ダークファイルや極端に暗いライトフファイルを、バイアス補正やダーク補正する際には適当なペデスタルを加算して処理することが必須でしょう。これが最初の疑問1の答えになるかと思います。


バイアス補正は意味があるのか?

ここまではバイアスファイルを補正した話でしたが、次は実際の画像処理に相当するライトファイルの補正を考えてみましょう。

1枚のライトファイルを撮影すると、自動的にバイアス相当とダーク(バイアスを除いたもの)相当が含まれていると考えることができます。そのためライトファイルは
\[L + D + B + \sqrt{\sigma_\text{L}^2+ \sigma_\text{D}^2 +\sigma_\text{B}^2} \]
のように書くことができるとします。ここで、\( L \)、\( D \)、\( B \)はそれぞれ1枚のライト単体、ダーク単体、バイアス単体の平均輝度、\( \sigma_\text{L} \) はスカイノイズを含む、輝度のばらつきからくるショットノイズ、\( \sigma_\text{D} \)はダークノイズ、\( \sigma_\text{B} \)は読み出しノイズとします。各ノイズは無相関と考えられるので、これらは2乗和のルートの貢献となります。

ここで2つのバイアス処理を考えます。黒天リフさんの疑問の2に相当しますが、比較すべきものは
  1. ライトとダークからそれぞれマスターバイアスを引いて、できたライトからマスターダークを引く。
  2. ライトから(バイアスを引いていない)マスターダークを引く -> バイアスはダークに含まれているので、ダーク補正のみでバイアス補正も自動的にされる。
になります。例えば旧来のPixInsightでは1の方法が主にとられていて、バイアスファイルは必須とされてきました。他の画像処理も1を推奨しているのかと思われます。いつの頃からでしょうか、最近のPixInsightではあからさまに1はダメだと言い、2を推奨しています。なぜ2が明らかにいいというのか、ここではそれを検証してみたいと思います。

1と2の共通項目として、個々のバイアスファイルとマスターバイアスは以下のように表されるとします。

Bias:
\[B+\sigma_\text{B}\]

Master bias:
\[B + \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}}\]
\(N_\text{b}\)はバイアスフレームの枚数です。


1のダークファイルのバイアス補正

1. 旧来の方法です。まず、1枚のダークライフからマスターバイアスを引く事を考えます。前回の記事と違い、ダークライフの平均輝度と、ダークノイズをあらわに考えていることに注意です。マスターバイアスの平均輝度分だけライトファイルの平均輝度が下がり、マスターバイアスに含まれる(スタックされ多分の小さな)読み出しノイズが増えます。1枚のダークファイルは以下のように表すことができます。

Dark:
\[(D + B) + \sqrt{\sigma_\text{D}^2 +\sigma_\text{B}^2} \]
これを、マスターバイアス

Master bias:
\[B + \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}}\]
で補正します。

ダークノイズも、ダークファイル中に含まれるバイアスノイズも、マスターバイアスに含まれるノイズも、全て無相関として2乗和のルートになり、

Dark - Master bias:
\[D+\sqrt{ \sigma_\text{D}^2+\sigma_\text{B}^2 + \left( \frac{\sigma_\text{B}}{ \sqrt{N_\text{b}} } \right) ^2 } = D+ \sqrt{\sigma_\text{D}^2+\sigma_\text{B}^2 + \frac{\sigma_\text{B}^2}{N_\text{b}} }\]
となります。

ここからスタックしていきます。まずバイアス補正したダークファイルを2枚足し合わせて、明るさを合わせるために2で割ると、マスターバイアス起因のノイズは正の相関を持つことに注意して、
\[ D+ \left( \sqrt{ \left( \sqrt{2 \sigma_\text{D}^2 + 2 \sigma_\text{B}^2} \right)^2 + \left( 2 \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}} \right)^2 } \right)/2 \] \[ \begin{eqnarray} &=& D+ \left(\sqrt{ \left(2 \sigma_\text{D}^2 + 2 \sigma_\text{B}^2 \right) + 2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} } \right) /2\\  &=& D+ \left(\sqrt{ \left(\sigma_\text{D}^2 + \sigma_\text{B}^2 \right) + 2 \frac{\sigma_\text{B}^2}{N_\text{b}} } \right) /\sqrt{2} \end{eqnarray}\]

3枚足し合わせて、明るさを合わせるために3で割ると、
\[ D+ \left( \sqrt{ \left( \sqrt{3 \sigma_\text{D}^2 + 3 \sigma_\text{B}^2} \right)^2 + \left( 3 \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}} \right)^2 } \right)/3 \] \[ \begin{eqnarray} &=& D+ \left(\sqrt{ \left(3\sigma_\text{D}^2 + 3 \sigma_\text{B}^2 \right) + 3^2 \frac{\sigma_\text{B}^2}{N_\text{b}} } \right) /3\\  &=& D+ \left(\sqrt{ \left(\sigma_\text{D}^2 + \sigma_\text{B}^2 \right) + 3 \frac{\sigma_\text{B}^2}{N_\text{b}} } \right) /\sqrt{3} \end{eqnarray}\]


\( N_\text{d} \)枚足し合わせて、明るさを合わせるために\( N_\text{d} \)で割ると、
\[ D+ \left(\sqrt{ (\left(\sigma_\text{D}^2 + \sigma_\text{B}^2 \right) + N_\text{d} \frac{\sigma_\text{B}^2}{N_\text{b}} } \right) /\sqrt{N_\text{d}} = D+ \sqrt{ \frac{\sigma_\text{D}^2}{N_\text{d}} + \frac{\sigma_\text{B}^2}{N_\text{d}} + \frac{\sigma_\text{B}^2}{N_\text{b}} } \]
となります。3項目が\(N_\text{d}\)ではなく\(N_\text{b}\)で割られていることに注意です。

ここで、例えば\(N_\text{d} = N_\text{b}\)としてバイアスとダークのスタック枚数を合わせてやると簡単になって、
\[ D+ \sqrt{ \frac{\sigma_\text{D}^2}{N_\text{b}} + \frac{\sigma_\text{B}^2}{N_\text{b}} + \frac{\sigma_\text{B}^2}{N_\text{b}} } = D+ \sqrt{ \frac{\sigma_\text{D}^2}{N_\text{b}} + 2 \frac{\sigma_\text{B}^2}{N_\text{b}} } \]

となり、ダークノイズの2乗と「2倍」のバイアスノイズの2乗の和のルートが、スタック枚数分のルートで小さくなったことわかり、直感的にもわかりやすくなるかと思います。ここで、2倍のバイアスノイズが貢献することは重要です。ダークファイルをバイアス補正した段階で、バイアスノイズが増えてしまっています。

結局、マスターダークはダークのスタック枚数\(N_\text{d}\)とバイアスのスタック枚数\(N_\text{b}\)を用いて

Master dark:
\[D+ \sqrt{ \frac{\sigma_\text{D}^2}{N_\text{d}} + \frac{\sigma_\text{B}^2}{N_\text{d}} + \frac{\sigma_\text{B}^2}{N_\text{b}} } \]
のように書けることがわかりました。


1のライトファイルのバイアス補正

次に1枚のライトファイルからマスターバイアスを引く事を考えます。マスターバイアスの平均輝度分だけライトファイルの平均輝度が下がり、マスターバイアスに含まれる(スタックされた分の小さな)読み出しノイズが増えます。上と同様の計算をして

Light - Master dark:
\[L+ D+ \sqrt{\sigma_\text{L}^2+\sigma_\text{D}^2+\sigma_\text{B}^2 + \frac{\sigma_\text{B}^2}{N_\text{b}} }\]
となります。


1のバイアス補正したライトファイルを、バイアス補正したダークファイルで補正する

次に、ここからバイアス補正済みのダークを引きます。ここでダークの平均輝度Dは無くなります。

(Light - Master bias) - bias compensated Master Dark:
\[ L+\sqrt{ \left( \sqrt{ \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 + \frac{\sigma_\text{D}^2}{ N_\text{d}} + \frac{\sigma_\text{B}^2}{ N_\text{b}} }\right)^2 + \left( 2 \frac{\sigma_\text{B}}{ \sqrt{N_\text{b}} } \right) ^2 }\]
\[= L+\sqrt{ \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 + \frac{\sigma_\text{D}^2}{ N_\text{d}} + \frac{\sigma_\text{B}^2}{ N_\text{b}} + 2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} }\]

これを2枚スタックして2で割ると
\[ L+\left( \sqrt{ \left( \sqrt{ 2 \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right) } \right) ^2  + \left( 2 \frac{\sigma_\text{D}}{ \sqrt{N_\text{d}}} \right)^2 + \left( 2 \frac{\sigma_\text{B}}{ \sqrt{N_\text{b}}} \right)^2 + \left( 2 \left( 2 \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}} \right) \right)^2} \right) /2 \]
\[ = L+\left( \sqrt{ 2 \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + 2^2 \frac{\sigma_\text{D}^2}{ N_\text{d}} + 2^2 \frac{\sigma_\text{B}^2}{ N_\text{b}} + 2^2 \left( 2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} \right)} \right) /2 \]
\[ = L+\left( \sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + 2\frac{\sigma_\text{D}^2}{ N_\text{d}} + 2 \frac{\sigma_\text{B}^2}{ N_\text{b}} + 2 \left( 2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} \right)} \right) /\sqrt{2} \]

3枚スタックして3で割ると
\[ L+\left( \sqrt{ \left( \sqrt{ 3 \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right) } \right) ^2  + \left( 3 \frac{\sigma_\text{D}}{ \sqrt{N_\text{d}}} \right)^2 + \left( 3 \frac{\sigma_\text{B}}{ \sqrt{N_\text{b}}} \right)^2 + \left( 3 \left( 2 \frac{\sigma_\text{B}}{\sqrt{N_\text{b}}} \right) \right)^2} \right) /3 \]
\[ = L+\left( \sqrt{ 3 \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + 3^2 \frac{\sigma_\text{D}^2}{ N_\text{d}} + 3^2 \frac{\sigma_\text{B}^2}{ N_\text{b}} + 3^2 \left( 2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} \right)} \right) /3 \]
\[ = L+\left( \sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + 3\frac{\sigma_\text{D}^2}{ N_\text{d}} + 3 \frac{\sigma_\text{B}^2}{ N_\text{b}} + 3 \left( 2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} \right)} \right) /\sqrt{3} \]

\(N_\text{l}\)枚スタックして同数枚で割るとマスターライトとなり、

Master light:
\[ L+\left( \sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + N_\text{l} \frac{\sigma_\text{D}^2}{ N_\text{d}} + N_\text{l} \frac{\sigma_\text{B}^2}{ N_\text{b}} + N_\text{l} \left( 2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} \right)} \right) /\sqrt{N_\text{l}} \]
となります。

2項目分母の\(\sqrt{N_\text{l}}\)を分子のルートの中に入れたほうがわかりやすいでしょうか、

\[ L+\sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right) /N_\text{l}  + \frac{\sigma_\text{D}^2}{ N_\text{d}} + \frac{\sigma_\text{B}^2}{ N_\text{b}} + 2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} } \]

簡単のため、\(N_\text{l}=N_\text{d}=N_\text{b}\)としてライトとバイアスとダークのスタック枚数を合わせてやると少し見やすくなって

\[ L+\sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right) /N_\text{l}  + \frac{\sigma_\text{D}^2}{ N_\text{l}} + \frac{\sigma_\text{B}^2}{ N_\text{l}} + 2^2 \frac{\sigma_\text{B}^2}{N_\text{l}} } \] \[ \begin{eqnarray} &=& L+\sqrt{ \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 + \sigma_\text{D}^2 + \sigma_\text{B}^2 + 2^2 \sigma_\text{B}^2  \right) /N_\text{l} }\\ &=& L+\sqrt{ \left( \sigma_\text{L}^2 + 2 \sigma_\text{D}^2 + 6 \sigma_\text{B}^2 \right) /N_\text{l} }\end{eqnarray} \]

となります。6倍の\(\sigma_\text{B}\)と2倍の\(\sigma_\text{D}\)の貢献あることがわかります。6倍の\(\sigma_\text{B}\)はマスターダークを作る際のバイアス補正で2倍、マスターライトを作る際のバイアス補正で2倍、ダークにもとからあるバイアスノイズが1倍、ライトに元からあるバイアスノイズが1倍で、計6倍となるわけです。\(\sigma_\text{D}\)はマスターライトを作る際の、ダークに元からあるものとライトに元からあるもので、2倍となります。


2の最近の手法の場合

こちらは1の計算に比べ、ずいぶんシンプルになります。ダークはバイアスを含んだままなので、マスターダークは、ダークとバイアスの輝度とダークノイズとバイアスノイズがダークの枚数のルート分小さくなった項が加わり、

Master Dark:
\[ D+B+ \sqrt{ \frac{\sigma_\text{D}^2}{N_\text{d}} + \frac{\sigma_\text{B}^2}{N_\text{d}} }\]
となり、これを1枚のライト
\[L + D + B + \sqrt{\sigma_\text{L}^2+ \sigma_\text{D}^2 +\sigma_\text{B}^2} \]
から引くと

Light - Master dark:
\[ L+ \sqrt{\sigma_\text{L}^2+\sigma_\text{D}^2+\sigma_\text{B}^2 + \frac{\sigma_\text{D}^2}{N_\text{d}} + \frac{\sigma_\text{B}^2}{N_\text{d}}}\]
となります。これを2枚スタックして、2枚で割ると
\[ L+\left( \sqrt{ \left( \sqrt{ 2 \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right) } \right) ^2  + \left( 2 \frac{\sigma_\text{D}}{ \sqrt{N_\text{d}}} \right)^2 + \left( 2 \frac{\sigma_\text{B}}{ \sqrt{N_\text{d}}} \right)^2} \right) /2 \]
\[ = L+\left( \sqrt{ 2 \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + 2^2 \frac{\sigma_\text{D}^2}{ N_\text{d}} + 2^2 \frac{\sigma_\text{B}^2}{ N_\text{d}}} \right) /2 \]
\[ = L+\left( \sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + 2\frac{\sigma_\text{D}^2}{ N_\text{d}} + 2 \frac{\sigma_\text{B}^2}{ N_\text{d}}} \right) /\sqrt{2} \]

3枚の場合
\[ L+\left( \sqrt{ \left( \sqrt{ 3 \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right) } \right) ^2  + \left( 3 \frac{\sigma_\text{D}}{ \sqrt{N_\text{d}}} \right)^2 + \left( 3 \frac{\sigma_\text{B}}{ \sqrt{N_\text{d}}} \right)^2} \right) /3 \]
\[ = L+\left( \sqrt{ 3 \left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + 3^2 \frac{\sigma_\text{D}^2}{ N_\text{d}} + 3^2 \frac{\sigma_\text{B}^2}{ N_\text{d}}} \right) /3 \]
\[ = L+\left( \sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + 3 \frac{\sigma_\text{D}^2}{ N_\text{d}} + 3 \frac{\sigma_\text{B}^2}{ N_\text{d}}} \right) /\sqrt{3} \]

\(N_\text{l}\)枚の場合

Master light:
\[L+\left( \sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right)  + N_\text{l} \frac{\sigma_\text{D}^2}{ N_\text{d}} + N_\text{l} \frac{\sigma_\text{B}^2}{ N_\text{d}}} \right) /\sqrt{N_\text{l}} \]
\[=L+\left( \sqrt{\left( \sigma_\text{L}^2 + \sigma_\text{D}^2+\sigma_\text{B}^2 \right) /N_\text{l} + \frac{\sigma_\text{D}^2}{ N_\text{d}} + \frac{\sigma_\text{B}^2}{ N_\text{d}}} \right) \]
となります。

やっと全ての計算が終わりました。最後の式は直接1の結果と比較することができます。


何が違うのか?

ここで振り返って、1と2の違いを比べてみましょう。

バイアス補正を個別にした1の方式ではルートの中に
\[2^2 \frac{\sigma_\text{B}^2}{N_\text{b}} = 4 \frac{\sigma_\text{B}^2}{N_\text{b}}\]
が余分に加わっています。バイアス補正の回数が1の方が2回多いので、最初にルート2倍、次にルート2倍でルート4倍損をしてしまっているというわけです。

ここで、黒天リフさんの疑問への回答をあらわに書くとすると、
  1. 個別のバイアス補正をすると、4つ分の読み出しノイズ\(\sigma_\text{B}/\sqrt{N_\text{b}}\) のだけの「余分な」ノイズが加わる。バイアス補正なしのライトフレームとダークフレームで補正した方が、バイアス補正の回数が少ないため、明らかに得をすることがわかる。
  2. それに加え、ダークファイルにバイアス補正を加える際に、元々暗い可能性があるダークファイルなので、補正によって輝度の値が0以下になる可能性がある。
以上の2つの理由から、単体のバイアス補正は原理的に不利で、ダークフレームに含まれるバイアスで自動的にライトフレームを補正する方が得するという結論です。

PixInsightでは以前は単体のバイアス補正が必須に近かったのですが、現在はDark frameに含まれるバイアスを考慮し、Dark補正のみで処理をするのが標準となっていますが、その根拠も今回の計算ではっきりしたことになります。

また、ライトフレームの補正まで考えているのでかなり実用的になり、今後の計算に具体的に使えそうです。ただし、フラットに関しては十分明るいと考えたので、無視できるとしています。

かなり長い記事と長い計算になってしまいましたが、そうはいってもこれも他のノイズとの比較で決定すべきで、例えば明るい空の撮影でスカイノイズが大きいなら、読み出しノイズの補正などはしてもしなくても誤差の範囲となるはずです。


まとめと、今後したいこと

今回のバイアス補正の計算はかなり大変でした。計算ミスが繰り返しみつかって、何度記事を書き直したことか。前回のダーク補正はまだまだ布石で、今回の計算でやっと、スタックを含めたノイズ評価ができるようになったのかと思います。式もTeX化したので、見やすくなったかと思います。前回の記事も余裕があったらTeX化しておきます。

今回の計算でやっとスタックを含めていろいろ計算できる準備ができたと言っていいので、今後スタック済みの画像のノイズと信号を、色々パラメータをいじることで、どんな状況が有利になるのかなど、具体的に考えていきたいと思います。

それとは別に、前回と今回の考察から、いくつか検証したいことが出てきました。そもそもバイアス補正というものが本当に意味があるかということです。ダーク補正はいずれにせよするので、バイアス補正必ずはされるのですが、バイアスにコヒーレント成分がなければ、補正そのものが意味がない気がします。なので、以下のようなことで検証したいと思っています。
  1. 100枚のバイアスファイルで作ったマスターバイアスを複数作る。複数のマスターバイアスで、模様が一緒になるかを見る。
  2. 下駄を履かせるか、履かせないかで差が出るかを見てみる。具体的にはバイアスファイルをマスターバイアスファイルで補正する過程を細かく見てみる。
などです。











ここしばらくは別の記事でしたが、再び実画像のノイズ解析です。前回の記事はこちらになります。


ここまでで、画像1枚の中にある各ノイズの貢献度が定量的にわかるようになりました。


また天体部分の信号にあたる大きさも定量的に評価でき、S/Nが評価できるようになりました。


S/Nは1枚画像では評価しきれなかったので、スタック画像で評価しましたが、あくまで簡易的な評価にすぎません。簡易的という意味は、ダーク補正はフラット補正でノイズの貢献度がどうなるかをまだ評価できていないということです。

今回の記事では、ダーク補正やフラット補正で画像の中にあるノイズがどうなるかを評価し、他数枚をインテグレートしたときに信号やノイズがどうなるのかを議論してみたいと思います。


スタック(インテグレーション)

そもそも、天体写真の画像処理で言うスタック(PixInsightではインテグレーションですね)とはどういったことなのでしょうか?

基本的には以下のように、重ね合わせる枚数に応じて、信号SとノイズNで、それぞれ個別に考えることができます。
  1. 画像の天体などの「信号部分」Sに関しては、多数枚の画像同士で相関がある(コヒーレントである)ので、そのまま足し合わされるために、信号Sは枚数に比例して増えます。
  2. 画像の天体以外の「ノイズ部分」Nに関しては多数枚の画像同士で相関がない(インコヒーレントである、コヒーレンスが無い)ので、統計的には2乗和のルートで重なっていきます。例えば5枚のノイズNがあるなら、sqrt(N^2 + N^2 + N^2 + N^2 + N^2) = sqrt(5) x Nとなるので、√5倍となるわけです。
そのSとNの比(S/N、SN比、SNR (Signal to Noise ratio))を取ることで、スタックされた画像がどれくらいの質かを評価することができます。S/N等は技術用語ですが、ある特殊分野の技術単語というわけではなく、かなり一般的な単語と言っていいかと思います。

n枚の画像をスタックすると、1の信号Sのn倍と、2のノイズNの√n倍の比を取ると、
  • S/N = n/sqrt(n) = sqrt(n)
と√n倍改善されるということです。

よくある誤解で、スタックすることでノイズが小さくなるという記述を見かけることがあります。ですが上の議論からもわかるように、ノイズが小さくなっているわけではなく、実際には大きくなっています。ノイズの増加以上に信号が増えるのでS/Nがよくなるということです。また、スタックするという言葉の中には、足し合わせた輝度をスタックした枚数で割るという意味も含まれていることが多いです。S/Nが良くなった画像をスタックした枚数で割ることで1枚画像と同じ輝度にした結果、1枚画像と比較してノイズが小さい画像が得られたということです。

もちろん、こういったことをきちんと理解して「スタックすることでノイズが小さくなる」と略して言うことは全く構わないと思います。ただ、定性的にでもいいので、どういった過程でスタックが効いてくるのかは、理解していた方が得することが多いと思います。


ダーク補正

天体写真の画像処理でも一般的な「ダーク補正」。一番の目的はホットピクセルやアンプグローなど固定ノイズの除去です。ホットピクセルは、センサーがある温度の時に撮影すると、いつも決まった位置に飽和状態に近い輝度のピクセルが現れることです。ホットピクセルの数は温度とともに多くなると思われます。アンプグローはセンサーの回路の配置に依存するようです。これが温度とどう関係があるかはほとんど記述がなく、よくわかっていません。ホットピクセルやアンプグローなどは、どのような過程、どのような頻度で出るのかなど、カメラに依存するところも多くあり、私自身あまりよくわかっていないので、今回は詳しくは扱いません。いつか温度とホットピクセルの関係は実測してみたいと思います。

ダーク補正でダークノイズは「増える」:
これまたよくある誤解が、ダーク補正をするとダークノイズが小さくなると思われていることです。ここで言うダークノイズとは、ダークカレント(暗電流)がばらつくことが起因で出てくるノイズのことです。ダークカレントとは、センサーに蓋をするなどしていくら真っ暗にしても出てくる一定の電流からの信号のことで、センサーの温度によって単位時間あたりの大きさが決まります。この信号のバラツキがダークノイズとなります。最近はメーカのカメラのところにデータが掲載されているので、そこからダークカレントを読み取ることができ、これまでもその値からダークノイズを計算し、実測のダークノイズと比較して正しいかどうか検証してきました。

何が言いたいかというと、ダーク補正をするとホットピクセルは除去できるが、ダーク補正ではどうやってもダークフレームが持っているダークノイズ(ホットピクセルでないラインダムなノイズの方)は消すことができなくてむしろ必ず増えるということです。

さらにいうと、個々のダークファイルには当然読み出しノイズ(Read noise)も含まれているので、ダーク補正時に読み出しノイズも増やしてしまうことにも注意です。読み出しノイズの増加については、次回以降「バイアスノイズ」という記事で、独立して説明します。

コヒーレンス(相関)があるかないか:
ホットピクセルは、個々のダークファイルに全て(ほぼ)同じ位置、(ほぼ)同じ明るさで出てくる、輝度が飽和しかけているピクセルのことです。アンプグローもカメラが決まれば同じ位置が光ます。どのファイルにも同じように明るく出てくるので、ばらつき具合は(中間輝度を基準とすると)全て正の方向で、互いに正の相関があり ( =「相関がある」、「コヒーレンスがある」、「コヒーレント」などとも言う)、全て足し合わされます。

一方、ダークカレンと起因のダークノイズはランダムなノイズです。個々のダークファイルのある一つのピクセルに注目して、全てのファイルの同じ位置のピクセルの値を見てみると、全ファイルのそのピクセルの輝度の平均値を基準として、個々のファイルの輝度の値は正負がバラバラになります。このことを相関がない ( =「無相関」、「コヒーレンスがない」、「インコヒーレント」などとも言う)といい、それらの値を全て足し合わせると正負なのである程度打ち消しすことになります。

ノイズの数学的な定義:
個々のダークファイルの画像のある面積を考えてみましょう。その面積の中の輝度も、平均値を中心に正負がバラバラで、その大きさも「ばらつき」があります。この「ばらつき具合」がノイズそのものです。数学的には面積内の各ピクセルの値から平均値を引いて、2乗して足し合わせたものを統計用語として「分散」と呼び、そのルートを「標準偏差」と呼びます。この標準偏差をここではノイズと呼ぶことにしましょう。

ここで注意ですが、ある面積を選ぶ時にはホットピクセルやアンプグローを含めてはいけません。ホットピクセルやアンプグローは背景のダークに比べて格段に明るく、特にホットピクセルは飽和気味の場合も多いのでで、そもそもここで考えている統計に従いません。ホットピクセルやアンプグローなどの明るい固定ノイズを除いた領域でダークノイズを測定する必要があります。ちなみに、飽和気味のホットピクセルを含んで測定してしまうと、とんでもなくばらついているようなものなので、結果はノイズがとんでもなく大きく出てしまうということは、言うまでもありませんね。

ノイズの重ね合わせの直感的なイメージ:
あるダーク画像1枚のある面積のノイズがNだったとします。他のダーク画像も同様にノイズNがあるとします。このダーク画像を例えば2枚足し合わせると、個々のピクセルは正負バラバラなのである程度打ち消します。その打ち消し具合は統計的には無相関の場合は「2乗和のルート」で合わさることになります。この場合2枚なので、
  • sqrt(N^2+N^2) = √2 x N
とルート2倍になります。正負で打ち消すということで、2倍にはならずに、元から減ることもなく1倍以下にもならなくて、結局その中間くらいということは直感的にイメージできるかと思います。

負の相関について:
あと、負の相関も考えておきましょう。ある画像で特徴的な形で明るい部分があるとします。もう一枚の画像では同じ形ですが、1枚目の明るさを打ち消すようにちょうど逆の暗い輝度を持っているとします。2枚の画像を足し合わせると、正負で、しかも明るさの絶対値は同じなので、ちょうど打ち消すことができます。このようなことを互いに「負の相関がある」と言います。でも天体写真の画像処理の範疇ではあまりない現象なのかと思います。


ダーク補正の定量的な扱い:
実際の画像処理では、ダーク補正というのはライト画像からマスターダーク画像引くことです。マスターダークファイルとは、個々のダークファイルを複数枚重ねて、輝度を元と同じになるように枚数で割ったものですから、 個々のダークノイズをNとして、n枚重ねて、輝度を枚数nで割ったとすると、マスターダークファイルのダークノイズ
  • N_ masterはsqrt(n x N^2) / n = 1/√n x N
となり、元のノイズのルートn分の1になります。

各ライトフレームにも当然ダークノイズは含まれています。ダーク補正をする際に、各ライトフレームのダークノイズと、マスターダークファイルに含まれるダークノイズは、ここまでの議論から2乗和のルートで「増える」ことになります。

1枚のライトフレームのダーク補正:
個々のライトフレームがマスターダークファイルで補正されると、補正後のダークノイズは
  • sqrt(N^2+N_ master^2) = sqrt(N^2+(1/√n x N)^2) = N x sqrt(1+1/n)
となり、sqrt(1+1/n) 倍にごく僅か増えます。

ダーク補正されたライトフレームのスタック:
これらのダーク補正されたライトフレームをスタックします。スタックの際、ライトフレームに元々あったダークノイズは個々の補正されたライトフレームでランダムに(無相関に)存在するので2乗和のルートで合わさり、輝度を揃えるために最後にライトフレームの枚数で割るとします。

マスターダークファイルで足された(ルートn分の1の小さい)ダークノイズは、スタックされる際に「(同じマスターダークファイルを使い続けるために)正の相関を持っている」ことに注意です。

2枚のスタック:
  • sqrt([sqrt(N^2+N^2)]^2 + [N/sqrt(n)+N/sqrt(n)]^2) = N sqrt(sqrt(2)^2 + [(2/sqrt(n)]^2) = N sqrt(2 + (2^2)/n) 
大外のsqrtの中の、1項目が無相関で2乗和のルートで足し合わさるノイズ。2項目が正の相関を持ってそのまま足し合わさるノイズ。それぞれがさらに2乗和となり大外のsqrtでルートになるというわけです。

3枚のスタック:
  • sqrt([sqrt(N^2+N^2+N^2)]^2 + [N/sqrt(n)+N/sqrt(n)+N/sqrt(n)]^2) = N sqrt([sqrt(3)^2 + (3/sqrt(n)]^2) = N sqrt(3 + (3^2)/n)

ライトフレームの枚数をnl枚として、
nl枚をスタックすると:
  • N sqrt([sqrt(nl)^2 + (3/sqrt(nl)]^2) = N sqrt(nl + (nl ^2)/n)

スタックされたライトフレームの輝度を、1枚の時の輝度と合わせるためにnlで割ると、上の式は少し簡単になって:
  • N sqrt(nl + (nl ^2)/n) /nl = N sqrt(1/nl + 1/n)
と ライトフレームの枚数nl分の1とダークフレームの枚数n分の1の和のルートで書ける、直感的にもわかりやすい形となります。

簡単のため、個々のライトフレームの枚数と、個々のダークフレームの枚数は同じnとしてみましょう。
n枚のスタックは:
  • N sqrt([sqrt(n)^2 + (n/sqrt(n)]^2) = N sqrt(n + (n^2)/n) = N sqrt(n + n) = N sqrt(2n)

となり、結局は「1枚当たりのライトフレームのダークノイズNがn枚」と「1枚当たりのダークフレームのダークノイズNがn枚」合わさったものと同じで、√2n倍のノイズとなります。

マスターダークを考えずに、ダーク補正をまとめて考える:
これは直接「n枚のライトフレーム」と「n枚のダークフレーム」のダークノイズを全て足し合わせたものを考えることと同等で、実際に計算してみると
  • sqrt(n x N^2 + n x N^2) =  N sqrt(2n)
と、1枚1枚処理した場合と同じなります。数学的には
  1. 事前にマスターダークを作ってから個々のライトフレームに適用しても、
  2. 全てのダークノイズをライトフレーム分とダークフレーム分を一度に足しても
同じ結果になるということです。これは直感的にわかりやすい結果ですね。

重要なことは、たとえ頑張ってライトフレームと同じ枚数のダークフレームを撮影して補正しても、補正しない場合に比べてノイズは1.4倍くらい増えてしまっているということです。もっと言うと、補正しない半分の数のライトフレームで処理したものと同等のダークノイズになってしまういうことです。ホットピクセルを減らすためだけに、かなりの犠牲を伴っていますね。

枚数が違うダークフレームでの補正:
例えばある枚数のライトフレームを枚数が違うダークフレームで補正する場合を具体的に考えてみます。

例えば10枚のライトフレームと、同じ露光時間とゲインのダークフレームが10倍の100枚あるとするとします。ダークノイズ起因のS/Nはライトフレームは1/√10=0.316となり、ダークフレームでは1/√100 =1/10となります。ダーク補正したライトフレームは
  • sqrt(1/10+1/100)=sqrt(11/100)=√10/10=0.332
となり、ダーク補正する前の0.316よりほんの少し悪くなる程度に抑えることができます。同様の計算で、2倍のダークフレームだと約4分の1のノイズ増加、3倍のダークフレームがあれば約10分の1のノイズ増加に抑えられます。

では闇雲にダークフレームの数を増やせばいいかというと、それだけでは意味がなくて、他のノイズとの兼ね合いになります。画面のノイズがダークノイズで制限されていいればどの通りなのですが、例えば明るい空で撮影した場合にはノイズ全体がスカイノイズに支配されていることも多く、こんな場合にはダークフレームの枚数は少なくても、それによるノイズの増加は無視できるということです。


フラット補正

フラットフレームは一般的にライトフレームと同じゲインですが、露光時間は異なることが普通です。そのためフラット補正を真面目に計算すると、ダーク補正よりもさらに複雑になります。

ただし、ライトフレームの輝度はライトフレームの背景よりもはるかに明るいことが条件として挙げられるので、補正の際にフラットフレームの輝度を、ライトフレームの背景の輝度に合わせるように規格化する(割る)ので、ノイズに関してもその分割られて効きが小さくなると考えられます。

その比はざっくりフラットフレームの露光時間とライトフレームの露光時間の比くらいになると考えていいでしょう。最近の私の撮影ではライトフレームが300秒露光、フラットフレームが最も長くても10秒露光程度で、通常は1秒以下です。ノイズ比が30分の1以下の場合、2乗和のルートとなると1000分の1以下となるので、実際にはほとんど効いてきません。さらにフラットファイルも多数枚をスタックするので、スタックされたライトフレームと比べても、効きは十分小さく、無視できると考えてしまっていいでしょう。

ただし、暗い中でフラットフレームを作る場合はその限りではなく、ノイジーなフラットフレームで補正をすることと同義になるので、注意が必要です。ここでは、フラットフレームは十分明るい状態で撮影し、フラット補正で加わるノイズは無視できるとします。


まとめ

スタックとダーク補正でノイズがどうなるか計算してみました。理屈に特に目新しいところはないですが、式で確かめておくと後から楽になるはずです。

今回は計算だけの記事で、しかもスタックを1枚づつ追って計算しているので、無駄に長く見えるような記事になってしまいました。でもこの計算が次のバイアス補正のところで効いてきます。ちょっと前にX上で黒天リフさんがバイスについて疑問を呈していましたが、そこらへんに答えることができればと思っています。










今回は1ヶ月ほど前に書いたビニングの話の続きです。


ソフトウェアビニングが役に立つのかどうか...、そんな検証です。


ダイオウイカさんが釣れない...

最近ずっと自宅でダイオウイカ釣りをしています。いつまで経ってもダイオウイカさんは出てきてくれません。もうかれこれOIIIだけで10時間になりますが、全部インテグレートして、普通にオートストレッチしただけだとこんなもんで、かなり淡いです。これでもABEの4次をかけてかなり平坦化してるんですよ。

OIII_stacked_normal

今回の画像は、ε130DにASI6200MM Proでbin2で撮影しています。ゲインはHCGが作動する100、露光時間は1枚あたり5分で125枚、トータル10時間25分です。

これだけ時間をかけても高々上に出てくるくらいです。やはり自宅でのダイオウイカ釣りは難しいのでしょうか?


ビニングの効果

これ以上露光時間を伸ばすのはだんだん現実的ではなくなってきました。遠征してもっと暗いところに行けばいいのかもしれませんが、自宅でどこまで淡いところを出せるかの検証なので、限界近くを責めるのはかなり楽しいものです。

さて、こんな淡い時にはビニングです!

そもそもCMOSカメラのビニングはASI294MMなど特殊な機種でない限り、一般的にソフトウェアビニングと同等で、
  • ハードウェアビニングでは信号は4倍になる一方読み出しノイズのを一回だけ受け取ればよく、S/Nで4倍得する。
  • ソフトウェアビニングでは信号が4倍になっても読み出しノイズを4回受け取らなければならないので、4のルートの2倍ソフトウェアビニングが不利になり、S/Nとしては2倍しか得しない。逆に言えば2倍は得をする。
というものです。それでも前回議論したように、スカイノイズなど、読み出しノイズが支配的でない状況ではハードウェアビニングの有利さは活きないので、
  • 実効的には ハードウェアビニングでもソフトウェアビニングでも効果は同等で、両方ともS/Nが2倍得するだけ。
というのが重要な結論になります。

と、ここで天リフ編集長から重要な指摘がありました。
  • 「もしソフトウェアビニングで同等の効果というなら、撮影後にPC上で本当にソフトでビニングしてもいいのでは?」
というものです。理屈の上ではその通りです。でも本当にそんなに都合がいいのか?というのが疑問に残るところでしょうか。


DrizzleとBXTの組み合わせ効果

もう一つ、Drizzleをかけて分解能を2倍にして、それだけだと解像度はそこまで大きくは上がらないのですが、さらにBXTをかけると本来の2倍の解像度程度まで戻すことができるという検証を以前しました。




ここまでのことを合わせます。
  1. 2倍のビニング
  2. Drizzleのx2
  3. BXT
を使うことで、
  • S/Nを2倍得して
  • かつ分解能の犠牲を戻す
ということができるのではというのが今回考えてみたいことです。


検証

さて、上で述べたことは本当なのか?実際に検証してみましょう。ダイオウイカ星雲はものすごく淡いので、格好の検証材料です。

まずはPC上でのソフトウェアビンングの準備です。今回は、PixInsightのIntegerResampleを使います。「Resample factor」を2として、「Downsample」を選び、「Average」を選びます。Dimemsionsはいじる必要はないです。左下の三角マークをPIの画面上に落として、このインスタンスを作っておきます。あとはImageContainerで、ビニングしたい画像を全て選び、出力ディレクトリを選択したら、これも同様にインスタンスを作成します。IntegerResampleのインスタンスをImageContainerに放り込むと処理が始まり、しばらく待つとさらにbin2相当、元から見るとbin4相当の画像が出来上がります。

と、最初は結構簡単に考えていたのですが、ここから実際にWBPPで処理を進めようとすると、ダークフレーム、フラットフレーム、フラットダークフレーム全てを同様にbin2相当にしておかないとダメだということに気づきました。

さらに注意は、WBPPのReferene frameです。bin2処理をしたOIIIと何もしないHαを最後に合わせようとする場合、Referene frameに同じライトフレームを選んでおく方が楽です。その際に、bin2処理をする場合のReferene frameのみ、あらかじめbin2でダウンサンプリングしておかないと、結果が変になってしまいます。考えてみればあたりまえなのですが、気づくまでなぜか結果がおかしいと悩んでしまいました。

さて、結果を比較します。左が普通にOIIIをWBPPで処理した結果、右がダウンサンプリングでbin2(元からだとbin4)相当でさらにWBPPでDrizzle x2を適用した結果です。両方ともABEの4次をかけ、強度のオートストレッチをかけています。イカの明るい所を拡大しています

preview_s

違いがわかりますでしょうか?
  • まず恒星ですが、やはり右のビニング画像した方が大きく見えます。
  • 背景のノイズの散らばり具合は、左はトゲトゲしいですが右は丸くなっています。でもこれは単純にダウンサンプリングのせいでしょう。S/Nが良くなったかというと、うーん、見た目だけだとどうでしょうか?心持ち右が良くなったように見えなくもないですが、あまりわからないです。

背景についてはっきりさせるために、S/Nを数値で定量的に評価しましょう。比較すべきは、
  1. ノイズN: 背景と思われる何も天体が写っていない暗い部分と、
  2. 信号S: 天体と思われる、ダイオウイカの明るい部分
です。具体的には上の画像のプレビューのところを比較しました。元々の画像で位置合わせがきちんとできていることと、プレビューの位置もタグを放り込んできちんと合わせているので、公平な評価になっている思います。

測定ですが、ノイズNはPixInsightのImageInspectionのStatistics結果は「Standard deviation」で直接比較できます。問題は天体の信号Sです。同じくStatisticsの「Mean」を使いますが、そのままだと値が大きすぎてよくわかりません。ここでは、ノイズ解析でS/Nを求めた時と同じように、天体部分の輝度から背景部分の輝度を引いたものをSとします。

結果は
  • 元画像: 天体部分の輝度 411.3、背景部分の輝度: 404.6、背景部分のノイズ:1.21
  • ビニング画像: 天体部分の輝度 308.1、背景部分の輝度: 301.3、背景部分のノイズ:0.73
でした。この結果からS/Nを計算すると
  • 元画像のS/N: (411.3-404.6) / 1.21 = 5.54
  • ビニング画像のS/N: (308.1-301.3) / 0.73 = 9.32
となり、S見事に予想通り、2倍のソフトウェアビニングで2倍程度のS/Nの改善になっています。このことは、PC上のソフトウェアビニングが実際に十分な効果があるということを示しています。もちろんその分、分解能は犠牲になっています。

さて、S/Nは向上しましたが、実際に画像処理で本当に効いてくるのかどうかは興味深いところで、次の課題と言えるでしょう。


さらにBXT

ソフトウェアビニングが理屈通りに効果があることがわかってきたので、次にBXTでの分解能が改善するかを見てみましょう。これまでの議論から、Drizzle x2を欠けていることが前提です。パラメータはデフォルトの、
  • Sharpen Stars: 0.5, Adjust Star Halos: 0.0, Automatic PSF: on, Sharpen Nonsteller: 0.50
としています。左が元の画像、右がソフトウェアビンニングしたものです。
BXT_s

恒星については、どちらも小さくなっていて、結構近い大きさになっています。微恒星に関しても、ビニングした方もほとんど取りこぼしなどもなさそうです。これはすごいですね。

その一方、背景の細部出しについては、元画像もビニング画像も、BXTの効果は共にほとんど見られず、差は縮まったりしなくて、依然としてビニングした方は細部が出ていないように見えます。BXT2はBXT1に比べて背景が出にくくなっているので、そのせいかとも思い、この後両方ともにBXT2を背景のみに複数回かけましたが、はっきり言ってほとんど変化が見られませんでした。さらに、AI4からAI2に戻してBXT1相当にしてかけてみても、効果がほぼ何もみられませんでした。

どうも天体部分がまだ淡すぎる、もしくは天体と背景のS/Nが低すぎるのかと思っています。ブログで示した画像は目で見えるようにストレッチしたものを掲載していますが、ストレッチ処理前の画像は真っ暗です。S/Nを見ても最も明るいところでわずかわずか5とか10で、背景との輝度差にするとわずが7 [ADU]程度で暗すぎるのです。少しストレッチしてコントラストを上げて、背景との輝度差を付けてからBXTをかけるとかの対策が必要かもしれません。

とりあえずOIIIに加えて、Hα、恒星のためのRGBの撮影も完了しているので、次は画像処理です。BXTの効果についても、仕上げまで持っていく際にもう少し検証できればと思います。


まとめ

今回の検証で2倍のソフトウェアビニングで実際にS/Nが2倍得することはわかりました。これは撮影時間にしたら4倍長くしたことに相当し、今回10時間撮影しているので、実行的に40時間撮影していることと同等です。もしCMOSカメラのbin2をそのままのbin1で撮影した時と比べるとさらに4倍で、160時間撮影したことと同等になります。分解能は当然犠牲になります。

さらにDrizzle2倍 x BXTで、恒星に関しては分解能をかなりのレベルで回復できることは分かりましたが、背景に関してはほとんど効果がないことが判明しました。ある程度広域で見た天体であること、かなり淡いので詳細はあまり見えないことなどもあり、分解能はそこまで必要ないと考えることもできますが
少し悔しいところです。淡すぎて背景との輝度差がほとんどないことが原因かと思われます。


日記

正月に能登半島で最大震度7という大きな地震がありました。その時私は実家の名古屋にいたのですが、名古屋でも大きく揺れました。すぐに富山に残っていた家族に電話をしたのですが、これまでに体験したことがないような揺れだったそうで、立っていることもできなかったそうです。

元々、元日夜に車で富山に戻ろうとしていたのですが、安全を考えて2日の明るいうちの移動としました。自宅に着いて部屋とかを見てみましたが、自宅は富山市内でも山川に近い比較的南の方で、幸いなことに何かが倒れるとかいう被害もほとんどありませんでした。天体機材もほぼ無事で、棚の上の方に置いてあった空箱が一つ落ちたくらいでした。

自宅周りは地盤的にも比較的頑丈なのか、近所の人に聞いてもほとんど大きな被害を聞くことはなかったです。その一方、少し離れた川に近いところや、富山の少し中心街に近いところは、自宅から大した距離でなくても、そこそこ被害があったと聞いています。さらに富山駅より北側、富山県の西部、金沢などはかなりひどいところもあったのことで大変だったようです。震源地に近い能登半島は、日が経つにつれ被害の状況が伝わってきて、想像をはるかに超える被害でとても心が痛みます。石川の星仲間もいるので、無事を祈るばかりです。

今週末は気温が下がり、場所によっては雪も降るとのことです。被害のひどいところでは平時の生活に戻るまではまだかかるかと思いますが、一刻も早い復旧を願って止みません。

めだかと暮らすひとさんが、SharpCapでのライブスタック撮影で、縞ノイズに悩まされているようです。



ここではできる限り簡単な解決策の一つとして、ガイド無しのディザー撮影のやり方を示したいと思います。


縞ノイズの原因

 最近電視観望というと、リアルで見ると言うより、ライブスタックを使った簡単な撮影を指すことも多いようです。めだかと暮らすひとさんも、最近やっとAZ-GTiを赤道儀モードにして、視野回転のない追尾を実現したとのことです。でもまだガイド鏡もなく、ノータッチガイド(死語?)での撮影で、電視観望的にライブスタックを利用して、最後にスタックされた画像を処理しているとのことです。問題は、赤道儀の極軸が合っていないとライブスタックをの間に画面が流れていって、縞ノイズができてしまうことです。これは例え極軸が合っていたとしても、またガイド撮影をして画面が流れないように頑張っても、機材のたわみなどがごく普通に存在するので、1時間オーダーの長時間の撮影では縞ノイズが出ることがよくあります。

縞ノイズの原因は、ホットピクセルやクールピクセルなどの、センサーのある点にいつも存在する異常ピクセルが、画面の流れとともに全て同じ方向に動き、縞のようになることです。


縞ノイズの解決策

縞ノイズ軽減する方法の一つは、ダーク補正することです。SharpCapには簡単なダーク補正方法が搭載されていて、右側パネルの「ダーク補正」の「Hot and Cold Pixel Remove」を選び、簡易補正で済ませます。これはホットピクセルとコールドピクセルを簡易的に取り除く機能ですが、つい最近搭載されたもので、これまでは「Hot Pixel Removal Only」とホットピクセルのみの除去しかできませんでした。以前示したSharpCap上でダークファイルを撮影してリアルタイムダーク補正することもできますが、

ダークファイルでの補正だと基本的にコールドピクセルの補正はできないはずなので、簡易的ですが「Hot and Cold Pixel Remove」の方が有利な可能性が高いです。このオプションががある場合とない場合では数のような違いがあります。
comp
左がオプションなし、右がオプションありです。左の画像を見ると、赤とか緑の輝点が下向きに伸びているのがわかります、右もすごくよく見るとまだ輝点が残っているのがわかりますが、ほとんど目立っていないのがわかります。

それでもダーク補正では縞ノイズを軽減するだけで、完全に消すことはできません。一番確実な方法は、ディザー撮影をすること。ディザーというのは、長時間撮影の途中でわざと画面を数ピクセルとかずらして、異常ピクセルの影響を散らしてやることでかなり軽減できます。今回の問題はこのディザー、一般的にはガイド撮影と込で実現されるので、ガイド撮影をしていない限りディザーはできないと認識されているだろうことです。めだかと暮らすひとさんみたいに、ガイドをしていなくても縞ノイズを解決したいという要求はきっとあることでしょう。


ガイド無しディザーの方法

その方法ですが、前提としてSharpCapで経緯台、赤道儀などが接続されていて、SharpCapからコントロールできることです。赤道儀でなくてもコントロールできるなら経緯台でも構いません。今回はトラバースで試しました。トラバースはAZ-GTiのミニチュア版とも言える、自動導入、自動追尾機能がある経緯台です。

設定方法です。まずメニューの「ファイル」の「SharpCapの設定」の中の「ガイディング」タブで、下の画面のように「ガイディングアプリケーション」を3つ目の「ASCOMマウントパルス...」を選びます。

07_guide_setting
「ディザリング」の中の「最大ディザステップ」はある程度大きくしておいた方が効果が大きいです。私は「40」まで増やしました。値が小さいと効いているかどうかもわかりにくいので、最初多少大きめの値をとっておいて効果を確認し、大きすぎたら減らしていくがいいのかと思います。

その後、ライブスタックの下部設定画面の「Guiding」のところで、最初のチェック「Monitor Guideng Application...」をオンにします。「Automatically DIther」をオンにし、「Dither every:」でどの頻度ディザーするのか選びます。撮影の場合は「Frames」を選んで、何枚撮影することにディザーをするかを選んだ方がいいでしょう。実際には数分に1回くらい散らせば十分なので、今回の1回の露光時間が20秒とすると、10枚に1枚、3分ちょっとに1回ずらすことにしました。
05_dither

するとライブスタックで10枚スタックするごとに、下の画面のように上部にの緑色のバーが現れて、ディザーが実行されます。
06_dither

実際にディザーの効果があるか確認してみましょう。30フレーム分を動画にしてみました。輝点が右下に進んでいきますが、その途中で一度カクッと下に降りて、またカクッと上に上がるのがわかると思います。でもまだずれが少ないので、もっと大きな値でも良かったかもしれません。
Blink

実際のSharpCap上のライブスタック画面では、ディーザーが何度が進むと、最初に見えていたミミズが散らされてどんどん薄くなっていきます(すみません、画像を保存するのを忘れてしまいました)。

ただし、今回は雲がすぐに出てきてしまい、実際の長時間で縞ノイズが見えたわけではないので、ディざーなしで縞ノイズが出て、ディザーをオンにして縞ノイズが消えることを確認すべきなのですが、今回はとりあえず手法を書くだけにしました。後日確認ができたら、また結果を追加したいと思います。


ついでの画像処理

最後に、今回撮影した画像2種を仕上げてみました。FMA135にCBPを付け、Uranus-Cで撮ってます。課題はトラバースなので小さくて楽なものです。ただし経緯台なので星が回転もしくは流れてしまうので長時間露光はできず、1フレーム当たり20秒露光の露光で、ゲインは高めの300としています。共に、かなり淡いところまであぶ出していますが、上の動画でもわかりますが、少なくとも経緯台でガイド無しなので、撮影時にかなり流れてはいるのですが、これくらいの露光時間ではかなり炙り出しても縞ノイズは出ていないことがわかるかと思います。


M42: オリオン大星雲
オリオン大星雲はライブスタックで30フレームの計600秒、ちょうど10分経った時に保存したfitsファイルから画像処理しました。SharpCapの時点でスタックまで終わっているので、かなり楽です。星雲本体周りの分子雲も少し写っています。
Stack_16bits_30frames_600s_21_35_52_crop_SPCC_ABE4_BXT_MS2

向きを変えて星雲部分を切り取り。
Stack_16bits_30frames_600s_21_35_52_crop_SPCC_ABE4_BXT_MS_cut2

口径3cmの高々10分でこれならまずまずではないでしょうか。


M31: アンドロメダ銀河
2枚目はM31、アンドロメダ銀河です。こちらは途中雲がかかり、ライブスタック画像ではかすみがかってしまったので、別途1枚1枚保存してあったRAWファイルから、PixInisightでスタックして処理しました。トータル露光時間はM42よりさらに短く、14枚でわずか4分40秒です。
3856x2180_EXPOSURE_20_00s_ABE4_SPCC_BXT_GHT_HT_bg_rot
こんな短い時間でも、情報としてはある程度残っているものです。さすがにかなりギリギリ出しているので、どうしてもノイジーなのは否めません。


まとめ

今回は、ガイド無しでディザーする方法を示しました。まだ実際の長時間撮影はできていないので、またいつか試したいと思います。

曇りがちで十分な撮影時間をかけることができませんでしたが、それでも口径3cmでもそこそこ情報は残っていて、ある程度画像処理すれば十分見えるくらいにはなることがわかりました。途中で気づいたのですが、ライブスタック時にBrightnessフィルターを入れると、雲が入った時の画像のスタックを回避できるので、そういったことも今後試していきたいと思います。

こうやって見ると、小さなトラバースでも撮影に耐え得るくらい、十分に安定していることがわかります。



画像からのノイズ解析の一環でいろいろ考えているのですが、ビニングについて考えていたら1回分くらいの記事の分量になってしまいました。番外編として独立記事とします。

一般的にCMOSカメラでの撮影でbin1以外を選択すると、通常はソフトウェアビニングとなり、本来のハードウェアビニングに比べて不利であると言われています。でもこのことについて真面目に議論している記述をあまりみたことがないので、少し考えてみます。

ちなみに、ハードウェアビニングは以前主流だったCCDカメラには搭載されていた機能ですが、最近主流のCMOSカメラではハードウェアビニング は原理的に搭載するのが難しく、ソフトウェアビニングとなります。それでも例えばASI294MM Proなどは、4つのピクセルを合わせて1ピクセルとしたものが標準で、オプションで1ピクセルごとの画素のデータも読み取ることができ、実施的にハードウェアビニングと同じような機能を搭載しているものもあります。




ビニングでのS/N向上

そもそも、ビニングとはどんなものなのでしょうか?撮影ソフトの機能だけでみたら、bin2は縦横2つで計4つのピクセルを1つのピクセルとして扱い、4倍の明るさを得る手法です。明るさが4倍なのでショットノイズは√4=2倍になり、そのため、ショットノイズに対してのS/Nは4/2=2倍よくなります。

これだけのS/N増加をbin1で得ようとしたら4倍の時間をかける必要があります。例えば、bin2で1時間撮影することとbin1で4時間撮影することが同じ、bin2で4時間撮影することとbin1で16時間撮影することが同じ、bin2で10時間撮影することとbin1で40時間撮影することが同じです。10時間撮影は頑張れば可能ですが、40時間撮影はそれこそ長期にわたって安定した天気と、相当な根気が必要になってきます。撮影日数は1週間オーダーになるでしょう。私が住んでいる富山ではこんなに連続で晴れることはほぼあり得ないので、今の私の環境ではトータルで10時間くらいが限界です。例え10時間でも、実際には設置やトラブル回避などにも時間をとられるので、数日にわたります。

bin3なら3x3=9個のピクセルを一つとして扱うので、9倍の明るさ、√9=3倍のショットノイズで、S/Nの向上は9/3=3倍となり、同じS/Nをbin1で得ようとしたら、9倍の時間をかける必要があります。

このように、S/Nの向上という観点からはビニングは効果があることはあきらかです。その代わりに空間分解能(解像度)を犠牲にしています。


ハードウェアビニング

ハードウェアビニングの特徴は、カメラのセンサー部の段階でピクセルを足し合わせてから、情報として読み出すことです。例えばbin2の場合、輝度は4倍になり、読み出しノイズは1倍のままなので、読み出しノイズに関してはS/Nで4倍も得することになります。その代わりに、分解能が一辺あたり半分、面積では4分の1になります。

また、ハードウェアビニングではダイナミックレンジが、例えばbin2では2ビット分減る可能性があぷらなーとさんによって指摘されています。というか、ASI1600ってCMOSカメラなのにハードウェアビニングできるんですね。本家ZWOのページを見ると、確かにできると書いてます。

 

このように、ハードウェアビニングも少なからず不利な点があることに注意する必要があります。

まとめると、ハードウェアビニングでは、例えばbin2はbin1に比べて
  1. 空間分解能が一辺半分になって(不利)
  2. 4倍明るくなり(有利)
  3. ショットノイズに対してS/Nが2倍良くなり(有利)
  4. 読み出しノイズに対してS/Nが4倍良くなり(有利)
  5. ダイナミックレンジが2ビット減る(不利)
ということになります。


ソフトウェアビニング

次に、ソフトウェアビニングについて考えてみます。一般に、ソフトウェアビニングはハードウェアビニングより不利と言われていますが、どうなのでしょうか?

まず、ビニングで輝度が上がることによるショットノイズについてはハードウェアビニングもソフトウェアビニングも効果に違いはありません。

ではソフトウェアビニングの何が不利なのかというと、読み出しノイズの部分です。ハードウェアビニングではセンサー部でピクセルを足し合わせているので、足し合わせた輝度について1回読み出すだけでいいのですが、ソフトウェアビニングでは輝度の値を読み出した後に「ソフト的に」輝度を足し合わせるので、読み出し回数は足し合わせるピクセルの数の分だけ必要となります。読み出しノイズはその回数分増えるので、bin1に比べて不利になります。

ソフトウェビニングをすることで、ハードウェアビニングに対してどれくらい読み出しノイズが増えるか、計算してみましょう。例えばbin2の場合、bin1の一つのピクセルの読み出しノイズをN_rとすると、ノイズは2乗和のルートで効いてくるので、4ピクセル分で4回読み出すとすると

sqrt(N_r^2+N_r^2+N_r^2+N_r^2) = sqrt(4xN_r^2) = 2N_r

となり、2倍の読み出しノイズとなります。このことがハードウェアビニングに対して、ソフトウェアビニングは不利になるという根拠になります。でもこれはあくまでハードウェアビニングに対して2倍不利になるというだけで、bin2のソフトウェアビニングでも輝度は4倍となるので、S/Nをとると4/2 = 2倍有利になるので、読み出しノイズに関して得します。ハードウェアビニングに対して得する度合いが小さいというだけです。

まとめると、ソフトウェアビニングでは、例えばbin2はbin1に比べて
  1. 空間分解能が一辺半分になっていて(不利)
  2. 4倍明るくなり(有利)
  3. ショットノイズに対してS/Nが2倍良くなり(有利)
  4. 読み出しノイズに対してS/Nが2倍良くなり(有利)
  5. ダイナミックレンジも変化無し(同じ)
ということになります。

あ、ダイナミクレンジに関しては、16ビットセンサーだと勿体無いかもしれません。元々16ビットの情報を持っているとすると、ソフトウェアビニングで計算機内部では18ビット相当まで行きますが、ファイルフォーマットが16ビットだとすると、ファイルに保存するときに2ビット分はいずれ捨てられることになります。あくまで勿体無いというだけで、少なくとも16ビットのままで悪くはならないのですが、ファイルフォーマットのダイナミックレンジを撮影ソフトから書き出す時に大きくできれば、さらに2ビット稼げる可能性があります。

ダイナミックレンジに関しては、私自身はきちんと検証しているわけではないので、あくまで理論的な話です。例えば14ビットセンサーのbin2のソフトウェアビニングが、14ビットで保存されるのか、(ファイルのフォーマット的には余裕があるので)16ビットで保存されるのかちょっと興味があります。


本当にソフトウェアビニングは不利なの?

ここまでの記事なら、よくあるハードウェアビニングとソフトウェアビニングの説明になります。よくある記事と言っても、実際には定性的に説明してあるページがほとんどで、実際に数値できちんと書いてあるところは探すのが大変なくらい少ないです。

で、ここからが「ほしぞloveログ」ならではの本番の記事となります。多分どこも議論しているところはないと思います。それは、ソフトウェアビニングはハードウェアビニングに比べて本当に不利かという疑問です。

ここまでの上記の検証で、ソフトウェアビニングがハードウェアビニングに比べて不利な点は、読み出しノイズについてのみです。しかもダイナミックレンジに関しては、むしろソフトウェアビニングの方が有利な可能性が高いです。

読み出しノイズについてもう少し考えてみます。これまでの実画像からのノイズの検証で、撮影画像のノイズ成分についてずっと議論してきました。その結果、開田高原や海外チリなどのかなり暗い環境においてさえも、実際のトータルのノイズはスカイノイズに制限されていることが多く、読み出しノイズがほとんど効いていないことがわかります。特に自宅のような光害地ではその傾向が顕著で、圧倒的にスカイノイズが支配的で、読み出しノイズやダークノイズはほぼ完全に無視できることがわかります。

このように、本格天体撮影のほとんどの場合において、読み出しノイズが支配的な状況になるとはあまり考えられず、その場合は唯一の違いであるハードウェアビニングとソフトウェアビニングでの読み出しノイズでの有利不利はなくなると考えられます。ダイナミックレンジの観点からは、むしろソフトウェアビニングの方が有利になる可能性さえあります。

ただし、
  • 環境のいい暗い空において
  • 暗い鏡筒使っている
  • 一枚あたりの露光時間が短い
  • ナローバンド撮影で明るさを制限して撮影している
などの場合には、読み出しノイズが支配的な状況になることもあるはずです。その場合、ハードウェアビニングのほうがソフトウェアビニングに対して有利になることは当然あり得ますが、これまでの検討からかなり稀な状況であると思われます。

そもそもハードウェアビニングとソフトウェアビニングの違いを気にするような方は、かなり撮影にも凝った方なのかと思います。明るいF値の鏡筒を使うことも多く、長時間露光で、読み出しノイズよりもダークノイズやスカイノイズに支配的な状況になりがちかと思います。もし今回の私の検討が正しいとするならば、ハードウェアビニングとソフトウェアビニングの違いについては気にする必要はなく、(分解能を気にする状況でなければですが)遠慮なく現在のCMOSカメラのソフトウェアビニング使っていいのかと思います。

どうしても心配な方は、自分で撮影した画像で一度ノイズを実測してみるといいかと思います。最近のこのブログの記事を見返すと、ノイズの原理と測定方法など書いておいてあるので、どなたも簡単に測定と評価までできるのかと思います。




特に淡いSh4-240のOIII成分

というわけで、つい最近淡いSh2-240を、上記のような考えの元でソフトウェアビニングのbin2で、明るい自宅の庭で撮影してみました。

光害地であるため、ナローバンド撮影といえどもスカイノイズが完全に支配的です。これまでの議論から、このような状況での撮影ではハードウェアビニングとソフトウェアビニングの読み出しノイズの差なんて完全に無視できます。それよりも淡い天体に対して輝度を高くでき、S/Nを稼ぐことができるほうがはるかに有利になります。例えば、ショットノイズ(=スカイノイズ)に関しては露光時間4倍で撮影することと同等なので圧倒的に有利で、現実的な撮影時間で淡い部分を出すことにかなり貢献してくれます。

masterLight_BIN_2_300_00s_FILTER_O_integration_ABE

結果を見る限り、光害地からの撮影でも、特に淡いOIII成分も情報と十分に残っていることがわかります。今回は6時間半の撮影ですが、これをもしbin1で撮影していたら、(空間分解能は無視するとして)同等のS/Nを得るためには28時間の撮影時間となっていたはずです。


まとめ

今回の記事ではビニングについてまとめてみました。特にハードウェアビニングとソフトウェアビニングの違いついて、少し定量的に議論してみました。ちょうどこの満月期で、しかも天気も悪いので昼間に太陽を見ることもなく、時間をかけてじっくり考えることができました。

読み出しノイズに支配されないような状況下では、ハードウェアビニングとソフトウェアビニングについて大きな差はないので、必要ならば分解能を犠牲にして輝度を上げS/Nを上げることができる、現在のCMOSカメラで使えるソフトウェアビニングを遠慮なく使っていいという結論になります。ただし、自分で考えたことなので大きく勘違いして間違っている可能性もあります。何か気づいた際にはコメントでも残していただけるとありがたいです。


参考記事

この記事をほぼ書き終えて、改めて検証のために、ある程度の理屈と感度向上を数値まで含めてで日本語で記述しているあるページを探してみましたが、ほとんど見つけることができませんでした。これまでビニングに関しては神話的に色々囁かれていたような状況だったことが想像できます。
  • 画像のビニングについて、定性的な説明だけをしているページはたくさんあります。感度が4倍になるとだけ書いているページもある程度見つかります。でもきちんと理由とともに説明していあるページは、調べた限りWikipediaだけでした。

 

  • 実画像で検証してあるページがありました。ひろしさんという方が書いている「ヒロシの天体観測」というブログの中に書いてあり、2011年とかなり古い、CCD時代の記事です。いろんなケースを比較していて、とても好感が持てます。ハードウェアビニングとソフトウェアビニングで結果があまり変わらないとか、レンジもハードビニングのほうが狭いなど、理由がはっきりとせずかなり疑問もあったようです。画像の比較結果は、今回の私の記事での説明と矛盾するようなことはないように思いますし、疑問に対しても今回の記事の内容でかなり程度説明できるように思えます。コメント欄を見ても、当時活発に議論していることがわかります。


  • シベットさんのブログ「浮気なぼくら」でも検証記事があります。bin1からbin4まで4つ比較していて、それぞれで違いはないと結論づけられていますが、ヒストグラムを見てもbinの数が増えるごとに明らかに山の幅が短くなっていること(=ノイズが小さくなっているということ)、画像を見ても背景のノイズが明らかに減っているので、S/Nという観点からは十分な効果が出ていると思われます。



きまぐれ日記

これまで書いてきたノイズ検証の関連で、だいこもんさんとNiwaさんから画像を提供して比較検討してきました。その過程でお二方からDMで質問や議論があり、直接話しますかということになりました。

ちょうど昨晩、星沼会の定例のミーティングといういうことで、そこで話せばいいのではと、私もゲスト参加させていただきました。メンバーはだいこもんさん、Niwaさん、hinokirさん、ぐらすのすちさんでした。

ミーティング自体は21時から始まっていたのですが、私は途中21時から参加して、結局0時近くまで話し込んでいました。ノイズの話で盛り上がること自体がそもそも濃いのですが、さすが星沼会、他に話している内容もとても濃かったです。私自身もかなり楽しい時間を過ごすことができました。ゲスト参加を認めていただき、どうもありがとうございました。

ブログ記事と関係ないのですが、天文関連でちょっとしたことがあったら、こんなふうに記事にに混ぜて日記がてら書いて行けたらと思っています。

このページのトップヘ