ほしぞloveログ

天体観測始めました。

カテゴリ: 調整・改造

最近、望遠鏡関連の機材が増えすぎて困っています。購入した時のままで使う分にはいいのですが、普通はそんなことはなく、部品を交換したり、結構改造したりもします。

特に鏡筒はアダプターの類いが最初からいろいろついていて、取り外したり、他の鏡筒のアダプターを持ってきたりするので、もともとどれがどの鏡筒についていたのか分からなくなってしまいます。しかも各メーカー、それぞれ好みのネジの規格があり、また同一メーカーでも何種類もの規格のネジを使っているため、どれがどこにハマるのかだんだん分からなくなってしまいます。

例えば最近困ったのが、SkyWatcherのEVOSTAR 72EDのレデューサーのアダプターのネジがM56で、タカハシのマルチフラットナー もM56なので、そのままハマるかと思ったら、ピッチが1mmと0.75mmで一見締まるのに途中で止まってしまうなどです。

こんな状況はさすがもう嫌になってきました。なので、テプラを使ってこんなふうにネジの規格を印刷して、かくアダプターに貼ることにしました。

IMG_9754

IMG_9755
TSA-120のアダプターも分からなくならないうちに。

どんなことを書いているかというと、
  • 元々どの機材についていたかの機材名
  • 矢印でどちらからアクセスできるか、ネジはどんなのか
  • 矢印無しは内部のネジ
  • 矢印の後のがネジのサイズ、Mがミリネジ、インチサイズのスリーブ、UN規格など
  • 次のMかFでオスネジかメスネジか
  • 最後の数字はネジの長さ
などです。

これ結構便利です。もう昔の付属品なんかどれがどれやら分からなかったのですが、だいぶ整理できてきました。フィルターをつける時も迷わなくなります。また、どんなネジが使われているのか把握することができてくるので、星まつりのジャンク市でどんなアダプターを手に入れておけばいいのかの指標になりそうです。
 

ところでですが、うちにはなぜかテプラがあります。しかも当時の最上位機種。実はこれ、もう10年近く前のうちの奥さんへの誕生日プレゼントです。なぜかいつもプレゼントを渡すときは「かわいくない」とか言って、結構ムッとするんですが、1年くらいするとしみじみと「あー、あのプレゼントよかったわー」と言ってくれます。テプラは今でも大活躍です。

IMG_9764

ちなみに今年の誕生日プレゼントはテプラのテープ詰め合わせ。例によってあまり喜んでいませんでした。でもまたいつかそのうち...。

久しぶりの晴れ、TSA-120の5th (フィフス) ライトです。トラペジウムE星、F星の撮影時のバローとの比較記事が元で、宮地泉さんからお借りすることができたPower MATEを試すことができました。




TSA-120の環境改善、ロスマンディー規格のアリガタ

メインのバロー比較の前に、TSA-120の改良について少しだけ。下のプレートが少し進化しました。ロスマンディー規格の304mm長のアリガタをMORE BLUEから購入しました。ヤフオクの方のみにある特価品みたいです。届いたものは多少傷がありましたが安かったので不満はありません。

実際にTSA-120に取り付けて、赤道儀に固定してみるとずいぶん安定化しました。どれくらいかというと、数値的には何も比べていないので感覚でしかないです。というより、落下の不安から解放された方が大きいかもしれません。CGEM IIのVixen規格のアリミゾは深さがあまりないので、いつも落下の不安が拭えません。

IMG_9763

鏡筒バンドをどうするか、まだ迷っています。K-ASTECと思っていたのですがMORE BLUEに傾きつつあります。安いのと軽いのと、思ったよりカッコ良さそうなことです。上のプレートとハンドルも色々考えています。


まずはシリウスで本日のシーイングチェック

さて、実際の比較に入る前にもう一つ、今日のシーイングチェックです。シリウスを導入して、この前見ることのできたシリウスBを見ることができるかチェックです。



15分くらいは粘ったでしょうか、この前はあんなに簡単に見えたシリウスBですが、全く同じ設定のPENTAXのXW3.5mmで結局見ることができませんでした。途中フッと「あ、もしかしたらこれ?」というのはありましたが、最後まで確証は持てませんでした。

焦点内像(フォーカサーが短くなる方向、でいいんですよね?)方向からジャスピン位置に迫ると、その間中ずーっと綺麗なリングが見えていて、リングがどんどん小さくなります。最後に点近くに収束して行きジャスピン位置ではディフラクションリングが見えます。この日は多分シーイングがそこまで良くはないのでディフラクションリングは多少揺れています。

ところが、そのまま焦点外像方向に進めると、内蔵で見えていた綺麗なリングとは程遠いグチャグチャな像になり、さらに外像方向に進めると再び綺麗なリングになり、そまま大きくなってます。外像から内像に進めても、外像側の一瞬グチャグチャになる様子は必ず見えるため、再現性もありです。これって正しい振る舞いなのでしょうか?ここら辺もまだまだよくわかっていないので、これから色々考えていこうと思います。

さて、この日のシーイングの確認も終わり、前回ほど良いというわけではないけれど、ディフラクションリングの揺れ具合から見て、そこまで極悪というわけでもないという状態で、トラペジウムに移行します。


トラペジウムでのバローレンズ比較

今回、TSA-120の直焦点撮影を2回とバロー系レンズ4種類の、計6回の撮影を比較しました。基本的に撮影は鏡筒がTSA-120にASI294MC Pro(常温で使用)を取り付け、赤道儀としてCGEM IIをに載せています。

撮影条件と画像処理ですが基本的に露光時間が100msでser形式の動画で撮影。そのうちの上位35%をAutoStakkert!3でスタックしてます。それをPixInsightで一旦オートストレッチして、E星、F星が一番みるように少しいじっています。なので出来上がり画像の明るさなどは多少違いがあります。

バローレンズごとに変わるパラメーターですが、一つはフレーム数。基本500フレーム撮影していますが、一部ファイルはミスで100フレームとか200フレーム程度になっています。ただ、フレーム数の違いは今回の結果にはほとんど影響していないと思いまう。もう一つのパラメーターがSharpCapでのカメラのゲイン設定です。バローを使わない直焦点撮影の時にSharpCap上のゲインを320にしました。バローの倍率によって暗くなるので、その分の補正をゲインを上げることでしています。

どの撮影も露光時間は100msのまま触っていなくて、例えば2倍ならゲインを60上げる、4倍なら120上げる、5倍なら140上げるとかです。Gainの200が20dB=10倍に相当するので、これで同等の明るさになるはずです。

ちなみに、10倍は20dB、2倍は6dB、3倍は10dBくらいまではよく知られていると思いますが、5倍が14dBはすぐに出ますでしょうか?考えればすぐにわかりますが、これきちんと考えて納得しておくと役に立つ時が多いです。答えは最後の方に書いておきます。

試したバローレンズは下の通り。

IMG_9658

  • TeleVue製PowerMATE 4倍: 宮路泉さんにお借りしたものです。言わずと知れた高級機です。
  • Scientific Explorer社製 5倍: ずっと前にKYOEIで買ったもの。あまり使ってません。
  • Celestrons製 3倍: 惑星用にC8と組み合わせてよく使ってます。
  • Vixen製 2倍: 一番最初に買ったバロー。当時のスターショップ(旧誠報社)で買った低価格のもの。
となります。


19時52分: TSA-120直焦点撮影

0.1秒を100フレームほどの撮影です。そのうち35枚をスタックしたことになります。

19_52_29_lapl2_ap1_ST

直焦点撮影のうち、トラペジウムが写っているほぼ中心部を切り出しています。画像が小さいですが、100x85ピクセルしかありません。ブログ上で大きく表示しようとすると解像度を上げる必要があり、解像度を上げるとどうしてもピクセル間が補完されてしまいなめらかになって客観的でなくなります。なので実際に見ている画面上で拡大などしてみてください。

E星ははっきりと、F星もかろうじてですが分離しています。ただし、ASI294MC Proの解像度だとピクセルサイズが4.6umと大きいこともあり、1ピクセルで約1秒角。C星とF星の中心感の距離はわずか4.5秒なので、分解能不足がたたってF星の分離がそこまでうまくいっていないようです。


20時11分: PowerMATE 4倍

次に一番試したかった、宮路泉さんにお借りした4倍のPowerMATEです。こちらの結果は面白いです。0.1秒を100フレーム撮影し、35%使ったので35フレーム分です。

20_11_11_lapl2_ap5_ST

CMOSカメラ側の分解能が足りていなかった直焦点撮影に比べて4倍に拡大しているので、カメラの分解の不足の制限からは解放され、鏡筒本来の性能に迫っています。F星の分解のが明らかに上がっていることがわかります。また、4倍のレンズを入れたことによる弊害もほぼ何も出ていないと思われます。さすがPowerMATEと言ったところでしょうか。

TSA-120の口径が120mmなので、レイリー限界はほぼ1秒角。直焦点撮影の場合のASI294MC Proの1ピクセルが約1秒に相当するので、4倍のPowerMATEで1秒を4ピクセルで表現することになります。スタックしているのと、ピクセルあたりの分解能がレイリー限界より4倍ほどいいので、画像を見る限りレイリー限界以上に分解しているようです。ここらへんの話は、以前ピクセルサイズと光学的分解能の話を検討しています。



一番明るいC星とその隣のF星の距離は約4.5秒。なので、PowerMATEによってこの距離を18ピクセルくらいで表現しているので、かなり余裕が出たということが言えます。結論としては、PowerMATEは分解能向上に明らかに貢献し、変な収差なども追加しない、評判通りの非常に高性能な拡大レンズだということがわかります。


20時23分: Scientificn Explorer 5倍

次はテレセントリック設計のScientificn Explorer 5倍バローレンズになります。こちらは倍率がさらに高いので、期待大です。500フレーム撮影して、175枚使っています。

ところが、期待していたにもかかわらず、撮影時からPowerMATEに比べて明らかに見え具合は悪かったのです。結果です。

20_23_53_lapl2_ap9_ST

E星は分離できていますが、F星の分離が厳しくなっています。星像も明らかに肥大しています。ピントズレの可能性も否定はできませんが、相当気を遣っていたのと、あと少しシンチレーションが悪くなってきている気がしました。それでも先の撮影からわずか12分後くらい、そこまで大きな変化はないと思っていて、それらマイナス要因を差っ引いても星像の悪化は無視できません。


20時31分: Celestron 3倍

前回も試したCelestronの3倍のバローレンズです。惑星で一番使っているものです。500フレーム撮影して、175枚使っています。

20_30_11_lapl2_ap5_ST

E星はOKですが、ほとんどF星が分離できていません。前回と同じような結果なので、ある程度再現性はあるのかと思います。上の5倍の時の見え具合とと同等か、少し悪いくらいでしょうか。


Vixen 2倍バロー

星を始めた最初の頃に、簡易的なバローと言われた上でお試しで買ったものです。値段的にも5-6千円だったと記憶しいて、今回の中では一番安価です。こちらも500フレーム撮影して、175枚使っています。

20_35_11_lapl2_ap1_ST

E星もボケ気味、F星分離できていないですね。

ここまでで「まあ予測された性能とまあ大体一致した結果かな」と思っていたんです。ところが、です。次の結果で色々覆されました。


20時41分: 直焦点再び

どうも、シンチレーションが悪くなってきたようなので、念のために直焦点でバローなしの場合を今一度撮影しておきました。撮影枚数は200枚です。処理後少し考え方を改めました。

20_41_09_lapl2_ap1_ST

50分前にはきちんと分離できていたF星はおろか、E星さえもほとんど分離できていません。シンチレーションが実際にどれくらい変わったかを、GIFアニメにしてみました。一コマが0.1秒露光に相当します。

まずは19時52分:
19_52_29_cut_F001-102
E星、F星も分離できていますし、そもそも星がほとんど動いていません。

次に20時41分の動画です:

20_41_09_cut_F001-225

トラペジウム全体の揺れ幅も大きくなっていますが、一つ一つの恒星のビヨビヨした歪み具合もすごいです。ピントの影響はないとは言えませんが、これだけみると明らかにピントというよりはシンチレーションが悪化したといえるでしょう。

ついでに、トラペジウム周りの星雲を少しだけ炙り出してみました。

シンチレーションの良かった19時52分:
_19_52_29_lapl2_ap1_ST_Preview01

シンチレーションが悪化した20時52分:
_20_41_09_lapl2_ap1_Preview01

前者と後者を比べると明らかに星雲部分の分解能も落ちていることが分かります。これは今後の撮影において、大きな指標となりそうです。すなわち、星雲の分解能を出そうと思ったらシンチレーションのいい日を選んだ方があきらかに有利だということです。


比較結果の考察

今回の結果は色々と示唆に富んでいます。まず、シンチレーションの影響はものすごく大きく、製品比較の結果を左右するくらいであったこと。なので、安価だからと言って撮影結果から安易に性能が悪いとは言い切れません。また、撮影枚数の影響も避けきれません。ピントの再現性がどこまであるのかも客観的には検証できていません。

ただ、それらを差っ引いても、PowerMATEの性能の素晴らしさが突出しています。TSA-120単体ではもともとある焦点距離と一般的なカメラセンサーの分解能から、その性能を引き出しきれているとは言い難いです。バローレンズは明らかにその性能の引き出しに貢献すると言えるでしょう。その際のPowerMATEの精度は少なくとも実際の撮影において十分に鏡筒の性能を劣化させずに引き出すものであるということは、今回なんとか示せたかと思います。

一方、その直後に見た5倍のバローは時間の経ちかたから言ってそこまでシンチレーションが悪くなっていたとは言えず、PowerMATEに比べて性能に差があったように思えます。

今回自信を持っていえるのはそこらへんまでかと。これ以上は環境の変化の影響が大きかったということで推測になってしまうので、結論は出さないことにします。

画像処理に関しては、撮影してスタックした画像はその時点でもう引き出せる情報はある程度決まっていて、どのようにストレッチ加減をいじっても、分離できているものはすぐに分離できるし、分離できていないものはどういじっても分離できないということが分かりました。Wavelet変換相当のことをすると(今回は適用していません)もう少しエッジを立てたりして見栄えは良くなりますが、撮影した画像の順位を変えるには至りません。例えば今回示した6つの撮影画像の背景の暗さが多少違いますが、一番分離できるところに合わせているため、肥大していると背景が暗くなっていたりします。シンチレーションは順位に関係すると思いますが、そのシンチレーションで撮影された画像は、どう明るくしても暗くしても順位はわかることはありませんでした。

あと気になることとして、どの画像にも右斜め上に青ハロ、左下に赤ハロが出ていますが、これは直焦点撮影にも僅かにですが見えているので、大気収差によるものでしょう。前回セレストロンの3倍バローに青ハロが出ていると言いましたが、もしかしたら大気収差が強調されてしまっているものだった可能性があります。ただし、直焦点撮影に比べて明らかにE星、F星が見にくくなったことは確かなので、青ハロのせいというよりは、やはり分解能を悪化させる原因が少なからずあるものと思われます。時間的に悪くなっていった可能性は否定できません。

一つ面白い小話を。TSA-120のセカンドライトで金星を見た時の話をスターベースでしていたのですが、「せっかく鏡筒を買ったのに収差が見える」と意外に苦情が来るのがTOAとかTSAの高性能鏡筒なんだそうです。性能がいいので大気収差が普通に見えてしまい、それを鏡筒の収差と間違えてしまうそうです。大気収差はいつも方向が同じなので、そこが鏡筒による収差とは違うところですね。


まとめ

多くの機材を一度に比較するのは難しいということを実感しました。同じ環境を用意するのがいかに難しいかということです。シンチレーションは時間とともに自分が思っているより大きく変わっているようです。

シンチレーションがいいか悪いかは、シリウスやトラペジウムを直接見ることである程度把握できるようになってきました。シンチレーションのいい時間帯は貴重だということでしょう。もしいい時間帯があったら無駄にせずに、分解能の必要な撮影をしていけたらと思いました。

また、たかだか口径12cmの鏡筒の性能を引き出すだけでも相当大変だということがわかってきました。機材そのものの性能もそうですし、オプションの機材にも気を使う必要がありそうです。カメラの分解能もよく考えないと、せっかく鏡筒が高性能でももったいないです。あと、シンチレーションという運が一番重要で大変だということもよく分かりました。今回の結果を、今後の撮影に活かせたらと思います。

今回も楽しかったです。単に見るだけでなく色々比較することで、推測だけではわからなかったこともだんだんと見えてきます。こんなテストを自分でできるのも、天文趣味の醍醐味なのかと思います。

宮路泉さん、PowerMATEお貸し頂き、本当にありがとうございました!試すまでに時間がかかってしまって申し訳ありません。とても有意義なテストとなりました。今回の結果で、このクラスのものを手に入れておく必要性を感じました。購入を考えたいと思います。返却に関しては、またダイレクトメッセージの方で連絡します。よろしくお願いいたします。




最後はおまけです。

倍率とゲインとdBの関係

あ、最初の方に書いた5倍が14dBというのの考え方ですが、こんなふうに考えるとすぐに出ます。

5倍は10倍の2分の1です。10倍は20dB、2分の1は-6dBなので、20-6で14dBとなります。

この考え方を身に付けておくと、0.2もすぐにわかりますね。 0.2は5分の1なので、10分の1の2倍ということになります。-20dBと6dBで-14dBですね。他にも理解しておくといいのは
  • 4倍は? 2x2なので6+6=12dB。
  • 6倍は? 2x3なので、6+10=16dB。
  • 8倍は? 2x2x2なので6+6+6=18dB。
  • 7倍は6倍と8倍の間でざっくり17dB。
  • 9倍は8倍と10倍の間なのでざっくり19dBです。 
  • ルート2倍は? 2のルートなので対数の6dBだと半分になって3dB、すなわち約1.4倍が3dBですね。
  • 5dBは10dBの半分なのでルート3、すなわち約1.7倍
これくらいでしょうか。わかりにくい残りは1dB(1.1位)、2dB(1.2位)、4dB(10dB-6dBなので、3/2=1.5位)、7dB、8dB、9dB(1.4の3乗なので2.8というのはレンズを触っている人には馴染みがあるかも)11dB、13dB、15dB(1.73の3乗=3x1.7=5.2です)くらいだと思います。

重要なのはこれらを覚えることではなく、こういった導き方もあるということを理解しておくこと。この考え方を身につけておけば、いざという時に覚えていなくても導き出すことができます。

dBに10をかけたものがZWOシリーズのカメラのゲインになりますので、これは覚えておくといざという時に楽にゲインを合わせるとかできて便利でしょう。 例えばゲイン0は0dBで1倍、ゲイン60は6dBなので2倍、ゲイン400は40dBなので、100倍とかです。
 

今回はEVOSTAR 72EDでのいくつかの失敗などの裏話です。

前回までで、EVOSTAR 72EDのフルサイズの星像とレデューサーをつけた時の星像、追加でタカハシのマルチフラットナーを試した場合の星像を実際に撮影して示しました。





ところがこの試み最初全然うまくいかなかったのです。今回のお話は、何がうまくいかなかったのか、なんでうまくいかなかった、そんな反省の記事です。


フルサイズの撮影にいたるまで

EVOSTAR 72EDを受け取ったのが1月30日、最初のテストでASI178MCで簡易星雲撮影をしたのが2月1日、





2つめの記事の公開が、2月10日になります。主にこの2つめの使用記でのコメントをもとに、フルサイズの星像に挑戦しようと思うとともに、同じくリクエストのあった72ED用の専用レデューサーを借りることができないか、シュミットさんの方に問い合わせてみました。すると、ちょうど一つサンプルでレデューサーがあるというので、送ってもらえることになりました。

やはりアクロマートと言っても2枚玉なので、そのままフルサイズで写すだけだと星像の流れが大きいことが予想されます。でもレデューサーがあれば俄然やる気が出てきます。とりあえずレデューサーが到着するまで、撮影を進めることにしました。


ASI294MC画像の片ズレ

短時間だけ晴れた2月14日(金)の夜中近く、EVOSTAR 72DとASI294MC Proを使って、いきなりフルサイズには行かずに、まずはフォーサーズ相当での画像チェックをしてみました。なぜフルサイズにいかなかったかいうと、3つくらい理由があって、
  1. アメリカンサイズのQBPをCMOSカメラに取り付けての撮影テストを同時に試したかった。
  2. いきなりフルサイズだと、大きすぎる星像の流れが予想された。
  3. 手持ちのEOS 6Dへの接続準備がまだできていなくて、前回と同じCMOSカメラをアイピース口に差し込むだけの方が簡単だった。
ということくらいです。あまりたいした理由でないですね。単にフルサイズの接続が、その時面倒だっただけとも言えます(笑)。

ASI294MCをAZ-GTiをEVOSTAR 72Dとに取り付け、AZ-ZTiに載せ経緯第モードで薔薇星雲を自動導入します。SharpCapで10秒露光をLiveStackで18枚重ねて保存し、それを1枚の画像とします。合計5枚撮影したので15分ぶんの画像があります。他にも4枚の12分ぶんの馬頭星雲と燃える木も撮影しました。

ところがどの画像を見てもなぜか片側がずれるのです。その中の1枚です。撮影したFITS画像をPixInsightでオートストレッチして、JPEGに変換してあります。四隅の切り出し画像も載せておきます。

Stack_00_40_54_16bits_18frames_180s

Stack_00_40_54_16bits_18frames_180s_cut9

レデューサーなどの補正レンズをまだ使っていないので、四隅で流れるのは仕方ないのですが、明らかに左右のズレ方が違います。左側の方がズレが大きく、右側の方がズレが小さいです。他の4枚の画像も、馬頭星雲4枚も比べましたが、全て同様の傾向でした。私は当時この片ズレを鏡筒のせいだと思い込んでいました。


レデューサーでも片ズレ、しかも星像改善みられず

その後、シュミットさんからレデューサーが届いたのが2月15日、次に晴れた2月19日の平日、曇るまでの少しの間レデューサーをつけて、再度ASI294MC Proで同様の撮影をします。この時もAZ-GTiに載せて10秒露光の18枚LiveStackで180秒露光が一枚画像なのは変わりません。この日は10枚のバラ星雲を撮影しました。その中の1枚ですが、他の9枚も同様の映り具合です。

Stack_20_10_37_16bits_18frames_180s

Stack_20_10_37_16bits_18frames_180s_cut9

やはりこの場合も左側の星像の伸びが大きくて、右側が小さいです。右側は前回より少しだけマシかもしれませんが、それでも全然です。問題はこの時きちんとレデューサーつけてるんですよね。レデューサーは星像をかなりマシにするはずです。もしこの結果が本当だとしたらレデューサーでの星像改善が全然なされない!?ことになります。

ここでそうとう悩みました。もしこの片ズレが鏡筒から来ているのなら、カメラ側のスケアリング調整で直る可能性もあります。一旦シュミットさんと電話で相談して、「もしスケアリング調整でも片ボケが直らないのなら一度送り返してもらって調整してみましょうか?」という提案も頂きました。この個体だけなのか、もし他のユーザーにも同様の傾向があるなら販売店として心配だという思いがありありと伝わってきました。「いずれにせよ次の晴れ間に再度確認して、それでもダメなら送り返します。」という約束をして、次の晴れ間を待つことに。結構気合の必要なテストなので、ある程度の時間安定した晴れ間が必要です。


TSA-120での片ズレ!?

その間、短い晴れ間を利用してTSA-120のテストなどをしていたのですが、ここで重要なことに気づきました。

3月3日のトラペジウム撮影の際のことです。M42をTSA-120をCGEM IIに載せてASI294MC Proで1秒露光で60回LiveStackして、それを14枚重ねました。

integration1

integration1_cut9

20時41分から21時17分となっているので、実際にはスタック失敗のコマ落ちがたくさんあり、36分間かけて14分ぶんの画像を撮影しています。その14枚をスタックしたものをですが、ガイド撮影とか何もしていないため36分で一方向に結構な距離流れてしまい、縞ノイズが見えています。

四隅を気をつけて見てみると、右下の星像の伸びが一番ひどく、左上もまあひどい。一方、右上と左下はそれほどでもありません。このズレは当然、ガイドなしのために30分の撮影の間に赤道儀が左上から右下にかけて流れて知ってしまったために起こったものなのですが、少なくとも右下左上と右上左下でここまで違いが出るのです。

ここで「あ、EVOSTAR、片ズレとか言っていたけど、もしかしたら追尾のせいかも」と思うに至りました。EVOSTARでの撮影、鏡筒が軽いのをいいことに手を抜いてAZ-GTiで撮影していたのです。しかも1枚の画像が180秒露光に相当します。そもそもAZ-GTiの経緯台モードで撮影しているので、画面は1日で360度回転します。

例えAZ-GTiが誤差なしで完全に天体を追尾しても、3分間だと360度 x 3分 / (24時間 x 60分) = 18/24度 = 45分角と結構ズレます。これは0.013radに相当するので、画像の横幅が4144ドットとすると、4144 x 0.013 = 54ドットもずれていることになります。回転ズレはあぷらなーとさんが以前コメントしてくれたように、南天で最大、東と西で最小になりますが、この時はまだ西に沈む前。そこそこの回転速度のはずです。さらに加えてAZ-GTiの追尾誤差が入ってきます。

今回のズレの主な原因が回転だとしたら、効きは当然左右で逆方向になります。片ズレにもなるわけです。また、これだけずれていたらレデューサーの星像補正もへったくれもありません。


赤道儀を使った短時間露光撮影でやっと解決

というわけで、改めて鏡筒の片ボケ(まだこの時は片ボケも仮定はしていました)と視野の回転から来るズレを分離するために、まずは赤道儀に載せます。今回はCGEM IIを使い、極軸もSharpCapの極軸ツールを使い1分角以下のズレまで抑えました。また、露光時間も30秒に抑え、時間によるずれの効果を少なくしました。カメラも当然一気にフルサイズです。

その結果が、前回の



になるわけです。実際に撮影してみると、鏡筒の片ボケなんかは存在せず。純粋にAZ-GTiでの経緯台モードでの撮影から来る回転と、追尾の精度(光学系による星像の悪化を評価するには、露光時間が長すぎたということ)が問題だったということがわかりました。

その上でレデューサーの星像補正の効果も十分に見ることができたというわけです。これでやっと一安心できました。


反省点

今回のことは色々教訓を含んでいます。まず技術的な面。
  • 経緯台での自動追尾は長時間露光だと星像が大きく流れてしまう。
  • 誤差は一番大きなものが出てしまうので、レデューサーの微妙な補正効果などは吹っ飛んでしまう。
  • 赤道儀でも長時間の追尾ズレ(ノータッチガイド、ガイド鏡のたわみなどによるガイドのドリフト)でも星像を壊す可能性が十分にある
  • いくら性能のいい鏡筒を使っても、運用上のずれでその性能は容易に台無しになってしまう可能性がある
といったところでしょうか。普段気を付けているつもりだったのですが、今回軽い鏡筒ということもあり「AZ-GTiでいいや」と完全に油断しました。撮影時は精度が必要と、今後肝に銘じておく必要があります。

もう一つ、こちらは別の意味でもっと重要なのですが、機器をお借りしての評価なので、間違った方法で判断してしまうと、メーカーの信頼を損なう恐れがあることです。もともと勝手に始めた評価だったのですが、自分の発した言葉には必ず責任が伴ってきます。自分のことだけならまだしも、他人を巻き込んでのことなので、安易な結論を出す前に、きちんと考える必要があります。以下が、今回得た教訓と言ってもいいのかもしれませんが、
  • おかしなことがあっても、必ず別の日、別の条件などで再現性があるか試す。
  • 納得がいかなかったら、原因を色々考える。
  • 安い機材だからダメだとか、高級機だからいいとか、先入観を持たない。
以上のことは、お借りした機材だけでなく、自分だけのテストでも心がけるようにしたいと、切に思うようになりました。

実際、今回は鏡筒がおかしいと判断して送り返してしまう一歩手前まで行きました。当然送り返した先の検査では問題ないと出たでしょうし、そうなると泥沼です。このブログを読んでくれている方に間違った情報を伝えてしまいますし、このブログの内容も信頼をなくすことになるでしょう。もしかしたら機材の売り上げにも影響するかもしれません。

もちろん、所詮個人が試しているレベルのことなので、ミスもあるでしょうし、これからも勘違いもあることでしょう。完璧は難しいですが、今回のことを反省材料に、できる限り客観的に、精確に評価できるよう心がけてきたいと思います。


まとめ

正直、実際に撮影しながらレデューサーの性能が出た時、やっとほっとしました。評価終了までずいぶんと時間がかかってしまったので、サイトロンさんには申し訳なく思っています。

今回の反省記事も含めて4回(最初の簡易星雲撮影も入れたら5回 (2020/3/30 追記: ついでにおまけ記事撮影まで試したので計7回の記事になりました。) )にわたりEVOSTAR 72EDについて書いてきました。色々紆余曲折もありましたが、実際に触りながらのレポートで、EVOSTAR 72EDの魅力も十分に伝わってくれていればと思います。

EVOSTAR 72EDですが、電視観望鏡筒として、入門機の次のステップとして、初めての撮影になど、すでに持っている方も、今後実際に購入して試す方もたくさんいらっしゃるかと思います。レデューサーはじめ、いろいろ工夫することで撮影にも十分耐えうる鏡筒だと思います。値段も付属品の充実具合とともに、アポクロマートとしては十分魅力的だと思います。

今回の私のような失敗をしないように、いや例え失敗したとしてもきちんと検証して次に進み、鏡筒が持っている性能をうまく引き出すことができるようになると、さらに楽しさが増すのかと思います。今回のEVOSTAR 72EDは、そんなテストにも十分耐えうるだけの性能を持ち、かつ値段的にもいろんなテストが気軽にできる、ある意味とても使いがいのある鏡筒なのかと思います。鏡筒の性能を十二分に引き出して、もしそこで不満が出たら次のステップに進むのも、さらにまた道が広がっていくのかと思います。

EVOSTAR 72EDシリーズの記事もこれでひと段落になります。また何か面白いことがあったら記事にします。

追記: その後撮影の一例として、レデューサーにASI294MC Proをつけ、バラ星雲を撮影し画像処理まで進めてみました。


おまけ、カメラ落下事件

あ、撮影中にカメラ(EOS 6D)を落下させたこと書くのを忘れてました。これも失敗の一つです。

私の持っているM42から2インチスリーブへの変換のカメラアダプター、長さが1cm位と短いのです。しかもそのアダプターを固定する2インチスリーブの3つあるネジの一つを閉め忘れて赤道儀に鏡筒を取り付けたら、6D君が見事に外れてそのままアスファルトの地面に落下。落下はC8以来、久しぶりにやらかしました。

実はこのカメラL字アルカスイスプレートをつけてあって、後で傷を見たら、ラッキなーことにそのL字プレートのところで地面に激突したみたいです。

IMG_9747


動作も問題ありませんでした。L字アダプターさまさまです。アダプターの選択と、ネジの閉め忘れには十分なご注意を。

前回のEVOSTAR 72EDの記事で、フルサイズ領域での星像を、鏡筒そのものと、SkyWatcher純正の専用レデューサー、実際の星像を撮影して評価してみました。



さて今回の記事はフラットナーを試しています。

「え?フラットナー?EVOSTAR用のフラットナー
なんてありましたっけ?」

と言う方、正しいです。ありません。

今回の記事はEVOSTAR 72EDにタカハシのマルチフラットナーが使えるかどうか試してみたというテスト記事です。SkyWatcherとタカハシの両方から怒られてしまいそうな(笑)記事です。


タカハシマルチフラットナー1.04x

タカハシの「マルチフラットナー1.04x



は別売りの「マルチCAリング」と呼ばれる長さの異なるアダプターリングを取り付けることによって、タカハシ製のFC50からFS152まで対応できるかなり汎用性のあるフラットナーです。私もFS-60CB用とFC-76用のリングを持っていて、フラットナー本体は使い回しが効くので非常にコストパフォーマンスのいいフラットナーになります。

性能も申し分なく、例えば以前比較した記事の中の新旧のフラットナーのところを比較していただければわかりますが、以前の専用品よりもはるかに綺麗な点像を実現します。




今回これを汎用的なフラットナーとして、専用フラットナーのないEVOSTAR 72EDに適用してみたらどうなるかと考えてみました。前回レデューサーでは星像が改善することが分かったのですが、レデューサーなので当然焦点距離が短くなります。鏡筒そのままの焦点距離で撮影したいこともあるはずです。


EVOSTAR 72EDへの接続方法 (その1)

さて、タカハシ製マルチフラットナーのEVOSTAR 72EDへの実際の取り付けですが、少し面倒です。

マルチフラットナーの取り付けネジ径がM56x0.75というものらしいのですが、そのままだとEVOSTAR 72EDに取り付けることができません。今回はレデューサーに付属されていた、アダプターリング(下の写真)を使用することで問題を簡易的(ある意味無理矢理)に回避しました。

まずは鏡筒本体に付属の2インチスリーブを回転して取り外します。そこにレデューサー付属のアダプターリングを取り付けます。この状態でフラットナー本体を取り付けことができるのですが、実は微妙にネジ径は同じなのですが、ピッチが違うようで、途中で止まってしまい最後までねじ込むことができません。この時点ですでに怪しい取り組みになるので、気になる方は真似しないでください。でもこんなことを気にしてると何もできません。今回の記事を最後まで読むとわかりますが、もっと怪しくなります。とにかく、当然ですがメーカーのサポート外のテストになりますので、試してみたい方は決して販売店の方に問い合わせるようなことはしないでください。あくまで自己責任でお願いします。

さてこのレデューサーに付属のリングですが、結局SkyWatcherの独自規格のようで、いろんなところの情報とノギスでの実測でM54オスとM56オス(普通は雄ネジ側の径で測定するのでこちらのネジ径が正しい値となります。ただし誤差は含みます。)という微妙なネジ径の違いを変換するリングということになります。ただし、M56のピッチを測ってみると1mmのようで、タカハシ標準の0.75mmとは違うので、同じ径のようですが直接の互換性は無いようです。便利なので別売りしてくれれば良いのですが、さすがに難しいでしょう(おそらく後述のSkyWatcher製のカメラ回転リングで代用できそうです)。

IMG_9739
ED72レデューサーに付属の、アダプターリング

さらに写野の回転を考える場合は、回転装置などを取り付けた方が良いかと思います。レデューサー付属のアダプターリングを使うことで、タカハシの「カメラ回転装置(SKY90用) [KA21200]」を(フラットナー接続時と同様に)無理矢理にですが取り付けることはできます。取り付け場所はアダプターリングとマルチフラットナーの間になります。実際やってみるとネジ径が違うはずなのにカメラ回転装置の場合は結構すんなり最後の方までネジ込めます。その後はマルチフラットーをそのまま取り付けることができるので、この方が素直かもしれません。

IMG_9740
左から順に、鏡筒本体、レデューサー付属のアダプターリング、
タカハシ製カメラ回転装置、マルチフラットナー、タカハシ純正カメラアダプター


EVOSTAR 72EDへの接続方法 (その2)

もう一つのマルチフラットナーのEVOSTAR 72EDへの接続方法です。こちらは実際には試していなくて、推測になりますのでご了承ください。レデューサーを持っていなくて、変換アダプターリングがない場合の話です。EVOSTAR 72ED専用のカメラ回転リングというのがあります。



このページを見るとレデューサー付属のアダプターリングの代わりに使っているので、これがそのまま使えるかもしれません。二千円と安価ですし、カメラ回転装置も兼ねるので便利かと思います。上の(その1)で紹介したタカハシ製のカメラ回転装置を使わなくてよくなるので、かなり節約できます。

それでもタカハシのマルチフラットナーを取り付ける際のネジ径は(その1)で示した通り、ピッチが1mm
と0.75mmで微妙に違うのできちんとははまらないはずです。あくまで、自己責任で納得しながら試すことになります。繰り返しになりますが、私は自身は今回この回転リングを試していないので、アイデアのみのお話です。試す場合は人柱になることを覚悟して、自己責任でお願いいたします。

さて、ここでふと気づいたのですが、私がお借りしているのはEVOSTAR 72ED(だと思います)で、現在シュミットさんのページに載っているのがEVOSTAR 72ED IIになります。ホームページには「※初期型との外観の違いは鏡筒長がわずかに短くなっています。レンズ性能等は従来のモデルと同等です。またロゴ等も変更はありません。」と書いてあるので、外観以外にもしかしたら違いがあるのかもしれませんし、そもそも外観も新旧見比べないと分からないです。ので、イマイチ変更点が不明で、もしかしたら自分のところにあるのもすでに新型のIIなのかもしれません。(追記:  シュミットさんに電話で聞いてみました。現在手持ちのものはIIで確定。初期型のものとIIとの違いは本当に鏡筒長以外、ロゴなどからはほとんど分からないそうです。)

問題はカメラ回転リングがホームページの説明によると「※初期型EVOSTAR72EDにはお使いいただけません。」となっていることです。もし手持ちで初期型のEVOSTAR 72EDをお持ちの方は(どこがダメなのかはわかりませんが)おそらくうまくいかないと思いますので、注意してください。


マルチフラットナー以降の接続

さて、やっとマルチフラットナーまで接続できましたので、さらにその後ろの接続に行きます。

フラットナーの後ろにはタカハシが販売している、それぞれの鏡筒に適合したマルチCAリングと呼ばれるアダプターリングをつけるのですが、これが今回色々試してみるところです。今回は手持ちのマルチCAリング 60CとマルチCAリング 70を試します。

アダプターリングの後ろには、タカハシ純正の「カメラマウントDX-60W(EOS) [KA20245]」を使っています。EOS用とNikon用があるのに注意してください。私はCanonなのでEOS用、Nikonの場合は同ページで購入できますが、型番が違います。ポイントは、この部分をタカハシ純正以外の代替品に変えてしまうとバックフォーカス長が変わってしまい、きちんとした比較ができなくなるので注意が必要です。自分で何種類もマルチCAリングを試す場合は、この限りではなく、サードパーティ製でも構わないと思います。

ここまでできたらあとは、手持ちの一眼レフカメラを取り付けるだけですね。

IMG_9660


やっと準備が整いました。それでは実際の撮像を見てみましょう。


マルチCAリング 60C

まずはFS-60CBに使っているマルチCAリング 60Cを試します。FS-60CBが焦点距離355mmなので、今回のEVOSTAR 72EDの焦点距離420mmに一番近いからです。

IMG_5431

IMG_5431_cut

お、結構うまく補正されています。フルサイズではまだ少し流れていますが、APS-Cでは十分許容範囲でしょう。いやいや、素の鏡筒の星像から見たらすでに相当な改善で、マルチフラットナーとりあえず十分使えそうです。


マルチCAリング 76

次に、FC-76に使っているマルチCAリング 76を試します。FC-76が焦点距離600mmなので、今回のEVOSTAR 72EDの焦点距離420mmより多少長いです。

IMG_5433

IMG_5433_cut

CAリング60Cの時に比べると、同程度か若干CAリング76の方が星像の流れが大きいくらいでしょうか?

むしろ、CAリングの長さが1cm以上短くなっているのに、星像がそこまで変わらないのはなぜなのでしょう?答えは次でわかります。


マルチCAリング無し

リング長で星像が多少なりとも変わることが分かったので、今度はマルチCAリングを外してしまいました。その時の星像です。

IMG_5434

IMG_5434_cut

これはAPS-Cでさえも全然ダメですね。

マルチCAリングのラインナップを見てみると、焦点距離の長い鏡筒用のものほど、マルチCAリングの長さが短いです。ということは、リング無しだと全然補正できなくて、CA76でもまだ補正が足りない、EVOSTAR 72EDがFC-76とFS60CBの間の焦点距離なので、CA60Cだと過補正になっているのではという推測ができます。


最後の無理矢理、マルチCAリングゆるゆる撮影

CA76だと短すぎ、CA60Cだと長すぎということのようです。それではここでCA76を緩めて少しだけですが長さを伸ばしてみましょう。ネジの箇所はマルチフラットナーとCAリングの間、CAリングとカメラアダプターの間の2箇所あります。それぞれネジ山に2回転くらい引っ掛けただけなので、ガタガタしていますが、1箇所で2.5mmくらい伸ばすことができました。合計5mm程度伸びていることになります。この状態で撮影してみました。

下がその時の星像です。ただし、ガタガタしているために少しカメラ側が下がって、光軸がずれている可能性があります。

IMG_5435

IMG_5435_cut

いや、これは今までで一番良いんではないですか!!

ガタつきのために上下で少しだけ差が出ていますが、ほとんど誤差の範囲くらいです。これだけうまく補正できるのなら、マルチフラットナーでの補正を真剣に考えても良さそうです。

ここから考えると、マルチCAリング 76よりも少し長い、マルチCAリング 60 (60Cとは違うことに注意、60Cは相当長いです。) が一番適していそうだということが分かります。実際にはCA60だと1-2mm足りないかもしれないので、ガタつかないようにプラスチックシートなどでリング状のスペーサーを作って、微調整しながら少し伸ばして使うといいかもしれません。


少し考察

この記事を書いている途中で気づいたのですが、実は同様のことは天リフさんでもすでにFOT104で試されていました。



というか、天リフさんの記事のことすっかり忘れていて、最初は自分で考えたいいアイデアだと思って喜んでいました。改めて天リフさんの記事を読み直してみると、今回のテストやらなくても良かったのではというくらいのかなり詳細なレポートでした。ちょっと悔しいです。でも、よく内容を見比べてみると今回の結果に驚くほど一致しています。今回の記事もマルチフラットナーの汎用性の実証の一つくらいにはなったと思いますので、まあ、やってよかったかなと。

ところで、今回の結果を考えてみると、バックフォーカス長が相当重要だということが分かります。これはタカハシというメーカーが一眼レフカメラの接続まで純正オプションを揃えることで初めて成り立つ状況です。

では、CCDやCMOSカメラでの撮影はどうなのでしょうか?この場合は純正オプションはないので、結局自らテストしながら最適バックフォーカス長を調整していかなければいけません。これまでバックフォーカス長を気にしたことがあまりなかったので、少なくともレデューサーやフラットナーをつけるときは、これから気をつけなければということに気づかされました。

といったこともあり、前回のレデューサーの記事はカメラまでの部品をSkyWatcher推奨の純正品で揃えてバックフォーカス長をあわせた方が良いのでは、というような書き方にしています。でも実際にそこまで色々試したわけではないので、多少の許容範囲はあるでしょうし、それぞれの場合でテストしながらやっていくのが正しい道なのかと思います。


まとめ

今回は、メーカーを跨いだフォーカサーの試用テストをしてみました。タカハシ製のマルチフラットナーは汎用フラットナーとしての可能性を大きく秘めています。これは天リフさんと同じ結論かと思います。バックフォーカス長が調整できるような可変のリングが存在すれば、さらに応用範囲が広がると思います。

新しい可能性がある一方、メーカーの指定条件からは外れてしまうので、規格の違いなどもあり試行錯誤が必要となります。タカハシさんのほうがこのような使い方を喜ばない可能性も十分にあり得ます。

ユーザーとしては、こういったことを面白いと楽しめるなら、色々試してみるといいでしょう。もしくは、こういったやり方は不安だという方もいらっしゃると思いますので、やはりその場合はメーカー推奨のやり方で進めながら撮影に臨まれる方がいいかと思います。

個人的には、光学という誰でも自由に試すことのできる物理現象の範囲の話なので、手に入る設計のレンズなどを好き勝手に使いながらやるというので正しいのかと思います。うまくいかない時も当然あるので、それは自己責任でということを納得しながらやれば、いろんな応用範囲が広がっていくのかと思います。メーカー指定の範囲外でうまくいかないことを、メーカーに文句を言ったり問い合わせたりするのは、この場合筋違いです。

いや、何より楽しいのが一番で、こういった自由なテストをできること自体が天文趣味の醍醐味だと思っています。とりあえず楽しくて仕方ありません。


最後、おまけの裏話に続きます。

 



先日テストした、シュミットさんからお借りしているEVOSTAR 72EDですが、簡易星雲撮影ということで、カメラに1/1.8インチというセンサー面積の小さいASI178MCを使い、星像が綺麗な中心像を主に使った例を示しました。




コメントの中で、APS-Cやフルサイズ面積の星像もみたいというリクエストがありました。天気もあまりチャンスがなく、トラブルなどもありなかなか進展していませんでしたが、やっとまともに検証できたので結果を示したいと思います。


一眼レフカメラの取り付け

72EDには2インチアイピース口が標準となります。基本的には他のアダプターなどは付属していないので、一眼レフカメラを取り付けために、いくつかのアダプターをあらかじめ準備しておく必要があります。

まずは、EVOSTAR 72EDの販売ページに行ってみます。



そこに色々なオプションパーツへのリンクが張ってあります。この中で必要なものを挙げていきます。

とりあえずはカメラ接続だけなら2インチの延長等を兼ねたM42への変換アダプター



が必要になります。これがあればあとはカメラメーカーごとに対応したT2マウントアダプターがあれば、手持ちの一眼レフカメラに直接接続できます。




撮影だけの場合は上記のものでいいのですが、普通は31.7mmサイズのアイピースも使うと思いますので、上記の代わりに別のM42ネジになっていないタイプの2インチ延長筒と、2インチから1.25インチの変換アダプターにしておいた方がいいかもしれません。





この場合、カメラを取り付けるにはさらに2インチスリーブとM42ネジへの変換アダプターが必要になります。



実はカメラを鏡筒に取り付けるだけなら、2インチスリーブとM42ネジへの変換アダプターだけでもいいのですが、フォーカサーの伸びに限界があるためピントが出ません。そのため実際には延長筒は必須になります。

私は今回は後者のタイプでカメラを接続しています。後者の場合もT2マウントアダプターが必要なのは、前者と同様です。

実際に接続した場合、下の写真のようになります。

IMG_9649

惜しむらくは、鏡筒バンドを取り付けることのできる位置が限られているので、一眼レフカメラを取り付けるとどうしても後ろが重くなりがちになってしまうことです。赤道儀などに取り付ける際はバランスに注意が必要です。


72ED用、専用レデューサー

前回の評価記事のコメントの一つに「レデューサーの性能も見たい」と言うようなコメントがありました。でも今回お借りしたのは鏡筒だけで、レデューサーは無いんですよね。

と・こ・ろ・が、前回の記事を見てシュミットさんが、な、なんと、レデューサーも評価用のサンプルがたまたまあるとのことで、貸してくれることになりました。これで俄然撮影の方もやる気になってきます。

ジャンジャカジャーン!とうとう専用レデューサー到着でーす。

IMG_9499




「焦点距離を0.85倍に縮小し(焦点距離357mm 口径比4.9)、視野周辺の星像を改善する」とのことなので期待大です。定価は40,975円(税込)ですが、今ホームページを見ると20%オフになっていて税込 32,780円になっていました。鏡筒の値段が税込 47,300円なので、決して安いものではありませんが、価値があるかどうかは後の実際の画像を見て判断してみてください。


専用レデューサーの実際の取り付け

レデューサーの取り付けは、中にマニュアルが入っているので迷うことはないかと思います。ただ、日本語になっていないので少しわかりにくいかもしれません。簡単にですがここで解説しておきます。

まず、付属の2インチスリーブを回して取り外し、代わりにレデューサーに付属のアダプターリングを取り付けます。レデューサー本体の前後のキャップを回して外し、そのアダプターリングに直接取り付けるだけです。

IMG_9505


(お詫び: 初出記事にレデューサーのネジ径に間違いがありました。レデューサーのカメラ側の接続ネジはM48径が正しいです。ご迷惑をおかけしました。)

次にカメラ用アダプターの接続ですが、ここで問題が発生しました。レデューサーのカメラ側のネジがM48ではないようで、普通のT2アダプターだとM42が標準のようでねじ込むことができません。

ホームページ
にはきちんとM48と書いてあります。しかもよく見ると「同社」専用アダプターを使って下さいと書いています。

EOS用、NIKON用があるようです。





さらに専用の回転装置もあるようです。



回転装置は鏡筒とレデューサーの間に挟むものなので、レデューサーとカメラ間の距離はカメラアダプターのみで決まるようです。

さて、レデューサーについているカメラ側のネジを実測するとM53のやはりM48のようです。私の場合はたまたま持っていたタカハシのカメラマウントDX-S EOS:KA01250がM53の一段下がった内側についているネジがM48だったので、接続だけはできました。

下の写真の左がレデューサー、右側のアダプターが一般的なT2アダプターでM42(自宅にあるのは3つともM42でした)、真ん中がタカハシのM53ので外側がM53、内側にM48が切ってあります。径の違いが写真でもわかるかと思います。カメラ接続アダプターを購入するときはT2(M42)でなく、間違えずにM48のものを選んでください。バックフォーカスも考えると、上記の専用品を買うのが良いのかもしれません(すみません、今回は検証できていません)。


IMG_9738


今回このタカハシのM53のアダプターの内側のM48を使って固定することで撮影しましたが、専用品と違ってカメラセンサーまでの距離が変わりますし、ねじ込みも数回転しかねじ山が引っかからずに少し不安だったので、あり合わせのものを使わずに、専用品を購入した方がいいでしょう。

さて、とりあえず撮影の準備ができました!実際に撮影して星像を見てみましょう。


撮影環境

今回はセットアップしたEVOSTAR 72EDを手持ちの赤道儀CGEM IIに鏡筒を載せて撮影しています。
  • 露光時間30秒でM42付近を撮影しています。
  • テスト撮影で星像を見るだけなので、1ショットの30秒短時間撮影の撮って出しとしています。
  • スタックなどの画像処理は一切していません。
  • QBPなどのフィルター類も入れていません。
  • カメラはEOS 6D。天体用に赤外線フィルターを外したものです。

赤道儀への取り付けですが、先に書いた通り、前後バランスはやはりカメラがついているせいもあり、後ろ側が重いです。赤道儀に取り付ける際、できるだけ前の方に取り付けるようにします。


フルサイズ星像

撮影結果です。まずは鏡筒単体です。露光時間30秒は全部共通、ここでのISOは3200です。JPEGの撮って出し画像になります。

IMG_5427

やはり、アポクロマート鏡筒と言っても2枚玉の限界、さすがに四隅の星像は大きく歪んでしまっています。さらに気になるのが周辺減光です。撮って出しなのでなんの加工もしていません。思った周りが暗くなるようです。

四隅を拡大して見てみます。300ピクセル四方を切り出しています。最周辺の8マスがフルサイズ換算、中の周囲8マスがAPS-C相当になります。

IMG_5427_cut

中心像はいいのですが、やはり素のままの鏡筒ではフルサイズでもAPS-Cでも星像の流れは大きいです。


専用レデューサーでの星像

次に、専用レデューサーでの星像です。0.72倍で明るくなるので、ISOを1600に落としてあります。あとは露光時間30秒も含めて全て同じ条件です。あ、回転角は取り付け時にサボって合わせなかったために(合わせるためにはイモネジを緩めて調整する必要があります)適当です。こんなことを回避するためにも専用回転装置はあったほうがいいのかと思います。

IMG_5429

レデューサーのおかげで鏡筒単体に比べて、圧倒的に星像が改善されています。あと、特筆すべきが周辺減光の改善です。普通は周辺減光厳しくなるのかと思いましたが、JPEG撮って出しで特に何もしていないので、実際に改善されているものと思われます。

四隅も拡大して見てみます。

IMG_5429_cut

相当いいです。フルサイズだと、よく見るとまだ少し歪んでいるところもありますが、APS-Cだとほぼ点像になっています。しかも今回使ったカメラ接続アダプターが専用のものではないので、レデューサーとカメラセンサー間の距離がメーカー推奨値と違うため、最適化されたものとはまだ違う可能性があることも考慮に入れておく必要があります。それでも十分な星像です。

手持ちのものに例えるなら、フルサイズだとFS-60CBにレデューサーをつけたものとそう変わりはないくらいでしょうか。この値段でこれだけの星像を得られるのは、ある意味驚きです。撮影にも余裕で耐えることのできる十分な性能だと思います。


まとめ

今回の記事で、フルサイズまでの星像を見てみました。素のままでは2枚玉の限界もあり、四隅の星像は乱されてしまいますが、レデューサーをつけることで相当改善することがわかりました。APS-Cサイズならほぼ点像、フルサイズでも十分許容範囲の星像です。

初めてのアポクロマートとしては相当魅力的な値段がつけられているEVOSTAR 72ED。前回の記事で電視観望用として最適ではと書きましたが、レデューサーを取り付ければ撮影用鏡筒としても十分な性能を発揮しそうです。


EVOSTAR 72ED関連の記事、まだ続きます。あと2つくらいネタがあります。乞うご期待。

2020/3/15 追記: 次の記事でレデューサーに引き続き、フラットナー?を試しています。




トラペジウムでさらに楽しんでいます。

何回か前の記事でトラペジウムのE星、F星が見えたことを書きました。 



その後、気を良くしてシリウスBに挑戦したのですが、



シンチレーションが良かったせいか、シリウスBもあっさり見えたので、同じ日にトラペジウムを今一度撮影してみました。

もう少し見えるのでは?

シリウス撮影終了後、バローを試すかどうか一旦悩んだのですが、どうせバローを試すならトラペジウムで同じ条件にしてから試そうと考えたのが、トラペジウムに移ったそもそもの動機です。

そもそもこの日はシンチレーションが良かったので、前回トラペジウムを見た時よりももう少し見えるはず。前回のE星、F星はある意味ラッキーイメージングに近いもので、動画で撮影し、揺れている映像の中からいい画像を一枚抜き出したものになります。シンチレーションがいい場合は、いいところだけを選ぶ必要もなくスタックとかもできるはずで、ノイズを劇的に減らすことができるはずです。

鏡筒は同じくTSA-120、カメラはASI294MC Proを常温(冬場なので8℃程度になっていた)です。いつものようにSharpCapで撮影し、露光時間は前回一番よく見えた1秒、ゲインは高めの285です。ゲインを高くした理由ですが、この日は月が近くにあり、背景の星雲の様子もあわよくば一緒写ればと思い、アメリカンサイズのQBPをカメラ手前に入れたからです。全体的には少し暗くなるのでその分ゲインをあげてあります。ただ、QBPは恒星からの明かりも暗くするはずなので、トラペジウムをより細かく見ると言う目的で得策だったかどうかは不明です。

画面で見たものをとりあえず一枚見てみます。これはLiveStack上で炙り出した画面をそのままPNGで保存して、Photoshopで少し炙り出し、拡大してトラペジウム周りを切り取った画像です。

20_41_06_Stack_5frames_5s_WithDisplayStretch_cut_arrow

前回と同じくE星とF星は見えているのですが、さらに矢印の先に恒星らしきものが見えている気がします。位置的にはG星のようです。これが見えたのが今回の記事の始まりです。


シンチレーションが悪くなっていく

なんか見えそうなことは分かったので、パラメーターを詰めていきます。いろいろ探った結果、撮影はLiveStackを使い、1秒露光を60枚重ねて、それを1枚の画像とすることにしました。ダークフレームはSharpCapのダーク撮影機能で64枚撮影したものを使っていて、撮影中にリアルタイムで補正してあります。ガイドは無しなので、星像の流れは極軸合わせの精度のみで決まってしまいますが、1秒の短時間露光の重ね合わせなので、それほど問題ないはずです。結局14枚の合計14分の画像を撮影しました。

ところがこの方針、あまり良くなかったようです。14枚をPixInsight (PI)でスタックしたのですが、いくつかの落とし穴にハマってしまいました。

1. まずはトラペジウム周りにミミズのはったような跡が残ってしまったこと。

integration1_HT_cut

これはPI上でCosmeticCorrection (CC)をしたことによる弊害でした。画面全体を見ると目立たないのでわからないですが、一部を強拡大してみると明らかに偽の跡が残るのがわかりました。探っていくと、CCを欠けた直後から、一枚一枚にミミズが走っていました。これまでCosmeticCorrectionを気にせず使っていましたが、闇雲に補正するのではなく、今後注意して使用したいと思います。

2. 次の問題が、スタックです。スタック後の画像のトラペジウム回りを見ても、どう炙り出しても解像度が上がってこないのです。

integration1_cut

これは少し悩みました。少なくともこれまでの経験ではスタックすることではるかに暗い星まで見えてくるはずです。

でも「あ、そういえばこの後シリウスに戻ったときにシンチレーションがボロボロだった」と思い出し、改めて画像を一枚一枚見てみると、時間が経つにつれ分解能が悪くなっていることがわかりました。かなり暗い状態で撮っているので、LiveStackでもドロップしている画像が結構あって、60秒分の露光を一枚撮るのに実際3分くらいかかっていることが原因でした。結局まともそうに見える最初の4枚だけを使い、スタックすることにしました。

それでもLiveStackを使わずに、枚数は多くなってしまいますが、個別に画像を残しておいた方がさらにラッキーイメージング的に選別できるのでよかったのかもしれません。これは次の課題です。

あと、今回結局お借りしたPowerMATEは使いませんでしたが、やはりCMOSカメラのピクセル解像度で制限されつつあるので、使っておいた方が良かったのかもしれません。でももし使っていたら、設置やピント出しなどで時間を食ってしまい、いいシンチレーションを逃していた可能性が高いので、まあとりあえずは結果オーライとして、こちらも次回以降の課題です。


今回の記事のテーマとは違うので蛇足になりますが、14枚全部スタックした画像を一応出しておきます。

integration1
縞ノイズ、四隅の星像など課題も。

ガイド無しということもありものの見事に1方向に流れてしまっていて、縞ノイズがひどいです。さらに、フラットナーとかつけずに撮影しているので、さすがにTSA-120といえども四隅は星像が崩れてしまっています。フラットナーの評価も次回の課題にします。

それでも向きを揃えて、DeNoiseとかかけるとそこそこ見えてしまいます。

integration2

フラット補正を何もしていないので、炙り出しは控えています。それでもHDRとかマスクとか全く無してここまでトラペジウム(E、F星は拡大するときちんとわかります)が出るので、今後もう少し煮詰めて完成度を高めていきたいと思います。


トラペジウムのG、H、I星

ちょっと寄り道に逸れてしまいましたが元に戻って、先に4枚だけスタックした画像をPixInsightのMutiscaleLineaTransformでシャープ化しPhotoshopでもう少し見やすくしたのが下の画像です。

integration_cut

E星、F星に加え、さらに星が炙り出されています。わかりやすいように矢印を入れてみました。

integration_cut_arrows

G、H、I星までなんとか見えていると言っていいでしょうか。H星は実際にはさらにH1とH2に分離しているはずで、画面を見ると確かに横に伸びているような気もしますが、さすがに分離している様子までははっきりとはわかりませんでした。

また、H星のすぐ左にも恒星がありますが、最初フェイクかとも思ったのですがハッブルやMUSEの画像を見ると、確かに存在するようです。





G、H、I星の他に写っている恒星もまだあり、ハッブルの画像と比べてどこまで写っているかとか比べていると、時間が経つのを忘れてしまいます。たかだか12cmの口径でここまで迫ることができれば、もう十分満足です。


まとめ

そもそもG星、H星まで述べているページや、実際にG星、H星が写っている画像があまりなく、I星に至ってはMUSEなどの研究用を除いてはアマチュアでは画像としては1例しか見つけることができませんでした。なので今回のものがどこまで正しいのかは良くわかりません。また、星像がくっきりではないので、これで写っていると言っていいのかどうかも不明です。ですが、自分のTSA-120で撮れた解像度としては明らかに前回の撮影を上回っています。

今回のがシンチレーションが良かった故の奇跡なのか、またこのレベルのものを再び撮影することができるのか。PowerMATEを試したいこともあるので、今しばらくトラペジウムを楽しめそうです。

これまでTSA-120を4回使ったことになりますが、なんとか性能を引き出せつつあるようです。妻に「この間の高かった望遠鏡、やっぱり無理してでも買ってよかった」と報告したら「よかったねぇ」と言ってもらえました。やっと納得してくれたようです。


前々回の記事でトラペジウムのE星、F星が見えたことを書きました。



その後のコメントと、Twitter上で、シリウスBの話で盛り上がりました。


TSA-120でシリウスBを見ることは可能か?


その中で、多分すばる関連の方だと思いますが、沖田さんという方が口径とシーイングとシリウスBの関係をグラフ化してくれました。



この計算によると12cmでもシーイングによっては十分に見えるようです。Lambdaさんによると、反射だと20cmギリギリで、計算結果も感覚とあっているとのこと。コントラストの良い屈折ならばもう少しいけるはずではないかとのことです。

そんなこともあり、できればTSA-120でシリウスBを見てみたいと思い挑戦してみることにしました。


3月2日、シリウスB初挑戦

さて、一昨晩のことです。21時過ぎでしょうか、雲もありましたが、一部で星が見えているので早速TSA-120のセットアップ。前回の経験から、極軸は出来る限り正確に合わせておいた方が導入も正確だし、ずれていかないので落ち着いてみることができるため、SharpCapで極軸を1分角程度の範囲には合わせておきます。

まずはオリオン座のトラペジウムを導入し、前々回の記事の再現です。カメラは分解能的にまだ余裕はありそうなので、ASI178MCからASI294MC Proに変更しました。294の方が感度がいいので暗い星が見えるだろうことと、センサー面積が広く広角で撮ることができるので、M42の全体像と一緒に撮影とかできるかと思ったからです。

とりあえずカメラの映像を見てみると、まあ、揺れていますがE星はPCの画面上でも確認できます。F星は見えるような見えないような。ラッキーイメージ的にたまに見える時があるので、以前の状態をある程度再現することができていると判断。そのままシリウスに向けます。

ところが画面上でいくら露光時間やゲインを変えようが、ヒストグラムで炙り出そうが、伴星があるようにはかけらも見えません。埒があかないので、その後アイピースに変えてみました。アイピースは3.5mmまで試したので、約250倍と倍率程にはそれほど悪くないはずです。そもそもディフラクションリングがほとんど見えません。シリウス自身もピンピンチカチカ弾け飛んでいるように見えます。

前回のトラペジウムの時に、セレストロンの3倍バローを使ったら収差のせいで逆に見えにくくなったと書いたのですが、Twitter上で宮路泉さんが「それなら」と貸してくれたTeleVueのPowerMATEの4倍をダメ元で使ってみることに。TeleVeu製は初めてで、これまでこんな高級機使ったことありません。このPowerMATEは位置出しが大変で、結局2インチの延長筒を3つ鏡筒側に取り付けて、その先にPowerMATEを取り付けることでやっと焦点を出すことができました。

延長筒3つとPowerMATEで結構な長さと重さですが、さすが2インチ。各固定もしっかりしているのでほとんどブレることはありません。目で見ている限り収差は分かりませんが、倍率を上げているので多少暗くなることもあり、結局シリウスBが見えることはありませんでした。

本当はカメラも試したかったのですが、23時頃には雲がかなり広がってきてしまい、結局この日は諦めることに。シリウスB結構難敵です。


見えなかった原因は?

その後、少し計算してみました。TSA-120にASI294MCを取り付けたときのCMOSセンサーの1素子のピッチが0.96秒角と判明。画面上でざっくり1ドットが1秒ということになります。シリウスの伴星の離角が2020年頃は11秒くらいとのこと。ということは、画面で見えているシリウスの中心から11ドット離れたくらいのところにシリウスBがあることになります。撮影した画像を見てみると贔屓目に見ても中心から10ドットくらいまではシリウスの明るさで完全に支配されているような状態。ちなみにシリウスAは-1.09等級、シリウスBは8.44等級。さすがに10等近く差がある伴星を見るのは、今の状態では厳しでしょう。

やはり、シンチレーションがひどいようです。目で見てもチカチカゆらゆらしているので、この状態では程遠いです。やはり口径の大きいのが必要なのでしょうか?


3月3日、ついに!

次の日の19時過ぎ、子供を迎えにいかなければならなかったのですが、外を見たら快晴。星の瞬きもパッと見、ほとんどありません。これはチャンスと思い、子供の迎えを「ごめん!」と言って妻に頼んで、早速TSA-120をセットアップです。極軸も同じようにきちんと取ります。連夜同じことをすると、前のセットアップが残っているので楽なもんです。極軸合わせも、ものの5分とかからず。

今日のポイントは、下の写真のように、むかーし、最初に行った原村の星まつりで買った2インチのフリッパーミラーを入れたこと。

IMG_9634

そもそも延長筒を一つつけて、フォーカサーを相当伸ばしたところでピントが出ているので、多少の物をつないでも全然焦点内に入りそうです。鏡筒からの長さが必要なPowerMATEもこれで多少使いやすくなるはずです。これまでほとんどこのフリッパーミラー使っていなかったのですが、やはりアイピースとカメラの切り替えが楽ですごく便利です。惑星撮影にでも使えば良かったですが、そもそも多分アイピースをほとんど使ってこなかったので、フリッパーミラーの必要性も感じてこなかったのだと思います。

リゲルで初期アラインメントを終え、とりあえずはリゲルBを確認。一番倍率の高い3.5mmで見ますが、こちらはファーストライトで見た通り、余裕で見ることができました。次にシリウスを導入して、まずはやはり基本のアイピースでの観察。愛機CGEM IIの導入精度もまあまあで、西の空のリゲルから東の空のシリウスに赤道儀が反転しましたが、それでも3.5mmで視野内に入るくらいの一発導入です。

その途中ですでに分かったのが「あれ?今日はディフラクションリングがはっきり見えるぞ!」ということ。そもそもピントを合わせていく最中に、何重ものリングが小さくなっていく様子がはっきり見えます。これまでこんなことはありませんでした。ピントを合わせ切ると、随分とシリウスが小さい印象です。

しばらく見ていると、多分2、30秒でしょうか、

明らかに小さな星があります!シリウスBです。
しかも一発で確証が持てるくらいはっきり見えます。

「え?こんなにあっさり見えていいの?」というような状態です。何度見直しても同じ位置にいます。これはさすがに見間違いのレベルではありません。


シリウスBを撮影してみる

次にCMOSカメラで撮影を試みます。カメラは昨日と同じASI294MC Proですが、冷却はしていないです。温度を見たら8℃くらいだったので、冬場のこともありそれほど熱くはなっていないようです。

SharpCap上の設定は、最初は露光時間もゲインも適当でしたが、それでもすぐにシリウスBらしきものが見え始めました。結局一番良かった設定が、露光時間100ミリ秒、ゲイン140とかでした。その時の画像です。ROIで640x480ピクセルに制限して、ヒストグラムで炙り出して、画面に見えたものをそのまま画像に落としています。一枚画像で、スタックとかもしていません。

Capture_00005 19_57_55_WithDisplayStretch

ちょっと分かりにくいので、シリウス周りをトリミングして、画像を拡大してみます。

Capture_00005 19_57_55_cut

下の方にはっきりと写っています。


シリウスBの離角

でも上の画像、拡大してサイズ変更した時に補完されてしまって滑らかになっているので、ピクセルのドットが消えてしまっています。なので、拡大前の画像も載せておきます。

Capture_00005 19_57_55_cut


ちっちゃいですが、この画像を今見ているPC上で拡大してみてください。写っているピクセルの数を数えることができます。(と思ったけどダメでした。ブログにアップする時点でドット間が補完されてしまうようです。)オリジナルの画像で実際に数えてみるとシリウスAの中心からちょうど11ドット目にシリウスBが写っています。最初の方に書いた通り、1ドットが1秒角なので、やはりちょうど11秒角くらい離れたところにいることがわかります。これはシリウスBであることの確実な証拠の一つですね。

追記: PC画面で拡大した画像の画面をiPhoneで撮影してみました。PC画面の直接撮影なので少し色が変になってしまっていてシリウスBが緑色に見えてしまっています。そででもこれでドットの数を数えることができると思います。

IMG_9640



その後

拡大してみてみると、シリウスBが写っているのが1ピクセル少々なので、本当はここでPowerMATEを試して解像度を稼ぐべきだったのですが結局できませんでした。

実は見ている間に、時間と共にシンチレーションが悪くなってきたのか、多分10分くらいの単位でしょうか、明らかに見え味が落ち始めました。そのせいもあって、その後確認のために、もう一度トラペジウムに戻って色々試したのですが、これは次回の記事で書くことにします。なのでお借りしたPowerMATE、結局まだ試すことができていません。宮路泉さん、今しばらくお待ちください。手持ちのバローと合わせて比較してみたいと思っています。

ちなみに、トラペジウムから帰ってきて今一度シリウスBを見てみたのですが、もう揺れ揺れで全くみることができなくなっていました。どうやら冬場の一瞬の奇跡の時間だったのかもしれません。


まとめ

とにかく、シリウスBをやっと初めてこの目で見ることができました!いやあ、うれしかったです。

普通は数十cmの口径の鏡筒で見るのがほとんどで、本当に12cmという小口径で見えるのかと疑問で、Twitterで教えてもらったVixenの10cmで見ることができたという情報が頼りでした。その画像を見るとディフラクションリングが余裕で見えているので、やはりシンチレーションに依存するのかと予測はしていましたが、実際に試してみると本当にその通りでした。しかも時間とともにシンチレーションが悪化していく様子も体感することができ、こんなに状況は早く変わるんだという感想です。冬で環境が悪いはずでしたが、本当にわずかの貴重な揺れの少ない時間だったようです。

TSA-120の性能も改めて信頼できると言うことがよくわかりました。コントラスト良く見えるのも屈折ならではなのかと思います。トラペジウムの時にも同じことを言いましたが、本当にこの鏡筒手に入れて良かったです。

さて、ここから少しずつTSA-120と使った撮影に入っていこうと思います。乞うご期待。

TSA-120でやってみたかったことが一つ実現しました。トラペジウムでの分解能ベンチマークです。

ファーストライトで月とリゲルB、ディフラクションリングを見て、セカンドライトで金星。今回はTSA-120でのサードライトになります。


TSA-120でオリオン座を見てみる

連休の最終日、新月期で晴れていたのですが、空を見るとけっこう霞がかっています。さすがにこれだと撮影しても仕方がなさそうなのですが、せっかく星は見えているのでTSA-120を出していろいろ試してみることにしました。

まずはオリオン大星雲M42を眼視。星祭りでジャンクで手に入れた北軽40mmアイピースで見てみます。もちろん星雲の淡いモヤモヤは見えます。でもこれは結構ふーんという感じです。さすがに120mmの口径でも、淡い星雲はそこまでインパクトはありません。おそらくもっと大口径の方がよりはっきり見えます。そもそも今日の目的は星雲ではありません。

少し倍率を上げ、PENTAXの5mmで観察。まずは眼視でトラペジウムがはっきり見えることを確認。台形の形をしています。これも順調です。


トラペジウムでのテスト

さてトラペジウムがどこまで認識できるのか、CMOSカメラで試してみます。カメラは解像度重視で、手持ちの中ではピクセルサイズが一番小さいASI178MC。ソフトはいつものSharpCap。

分解能を真剣に探るのはある意味初めての試みなので、動画、静止画色々試してみました。まず、この日はシンチレーションが結構ひどい。トラペジウムの台形の長い方の辺の1-2割は常に動いているような状態です。それでもSharpCapのヒストグラムであぶり出しをすればA星横のE星は比較的簡単に(!)見えそうです。

露光時間は0.1秒から1秒くらいまでをいくつか試し、ゲインはダイナミックレンジ重視でできるだけ低め。ホットピクセルが邪魔なのでリアルタイムでダーク補正をします。ダークファイルはSharpCapのダークキャプチャーで64枚とったものを使いましたが、そのまま使うと背景が暗くなりすぎるので、まずBrightnessを300でダーク撮影し、その後ダーク補正を適用してからBrightnessを400にあげています。

撮影したのは
  • 動画: 0.1秒露光、ゲイン310を500枚
  • 動画: 1秒露光、ゲイン190を50枚
  • 動画: 1秒露光、ゲイン260を50枚
  • 静止画: 同じような露光時間とゲインを調整しながら24枚
などです。

シンチレーションがひどいので、ラッキーイメージ状態で良いものを選ぶことになります。シンチレーションでくずれてるとダメなものは全くダメ。たまたま星像のいい画像を選ぶことで、分解能が出ます。静止画は枚数が少なすぎて、なかなかいいのがありません。この中で一番うまくいったのが1秒露光、ゲイン190の動画の50枚の中の数枚でした。その中で一番きれいに見えたものを炙り出したのが下の一枚です。

trapezium_ok2

結構拡大してトリミングしているので画像サイズが小さくなってしまっていますが、

E星どころか、F星まではっきりと写っています!

もう、この画像が撮れただけでもTSA-120を手に入れた甲斐があったというものです。さすがにさらに5等(100倍)以上暗いG星とかH星までは写っていませんでしたが、かなり満足な結果です。今回は1枚画像ですが、スタックするとまだまだ見える可能性がありそうです。今後の楽しな課題の一つです。

ちなみに台形の明るい4つのうち、右下がA星、右上がB星、左上がD星で、左下の一番明るいはずのが(なぜか?)C星です。A星の右隣の小さいのがE星で、C星の左隣の小さいのがF星になります。E星はPCの画面上でも比較的簡単に見えました。でもF星はC星の明るさに負けてしまってPC画面上ではなかなかうまく捉えられません。画像処理を何もしない段階だとF星あるかな?というくらいです。

これまでCelestron C8MEADE 25mシュミカセVixenのVISACでトラペジウムを撮影してきましたが、ここまで出たのは全く初めてです。







TSA-120が分解能に関して相当の信頼性がおける鏡筒だということがよくわかりました。今回それでも見にくかったのはあくまでシンチレーションのせいで、確実にそれ以上のポテンシャルを持っている鏡筒だということがわかる結果です。

一方、結局カメラの解像度は十分だったので、感度重視でASI224MCとか、もしくはモノクロのASI290MMでも良かったかもしれません。こちらは今後の課題です。


じゃあ、バローレンズで見てみたら

実は途中で少し面白いことを試しています。ちょっと蛇足になってしまいますが、セレストロンの3倍のバローレンズを使った場合のトラペジウムの見え方です。ちなみのこのバローレンズ、惑星撮影の時にもよく使っているもので、C8にこのバローを使った時の土星とか火星の撮影結果を見ても、特に不満はありません。



バローをCMOSカメラの手前に入れてみます。するとPCの画面で見た時にすぐに明らかに変化がありました。当然画面上でのトラペジウムは3倍大きくなるのですが、バローなしの時に比べて、バローを入れた方がE星が見えにくいのです。3倍大きく見えているので、カメラの分解能に対しては余裕が出るはずです。でも、ものすごく調整すればなんとかE星まで見えるのですが、バローなしの時にE星までは比較的簡単に見えたのに比べると全然見えません。

いろいろ探ってやっとわかりました。下の画像を見てもらえると一発です。

Capture_21_23_07_00018_22_01_01_21_23_07_00018_22_01_01

これでも一番見えているものを選んでいます。なのでE星はなんとか見えていますが、F星は全くダメです。原因は明らかに収差が出ていることです。上の方に青っぽいのが広がっています。画像処理までしてやっとわかりました。

ほんのこれだけですが、PC上での見え味でもはっきり差が出るくらいバローを入れた時の収差の影響がわかりました。惑星撮影だけではこれまで全然気にならなかったことです。

(追記: その後、今回のCelestronの3倍も含め、バロー 4種を比較した記事を書いています。)


ついでに

トラペジウムのE星、F星が見えたことに味をしめ、ついでにシリウスBに挑戦してみました。バローは当然外しています。でも今回もあえなく撃沈。霞のせいでしょうか?それともまだ何か足りないのか?

最後に今一度眼視でトラペジウムを見てみましたが、霞が酷くて暗く、E星も全く見ることができませんでした。こちらはまた次回、シンチレーションの良い日を選んで試していたいと思います。

ここで、少し雲も出てきたのでこの日は退散です。

(追記: 後日、今回のE星、F星に加えて、G、H、I星まで見えた記事を書いています。)


まとめ

この日はとにかく、TSA-120の実力をまざまざと見せつけられた日でした。すごい。トラペジウムがここまで分解して撮影できるとは。私の中で参照鏡筒としての地位が確立されてきています。まだまだ試したいことがたくさんあります。この鏡筒をきっかけに、少し別の世界が広がりつつあります。


あ、そういえばなぜかこんなものが...。

IMG_9555

さて、次回は撮影になるのでしょうか。

手持ちでまだ試していないレンズが2本あって、少しの晴れ間にその2本の星像チェックをしてみました。

これまでも主にPENTAXレンズでの星像を試していますが、例えば前回の2本は期待の135mm F4がいまいち、300mm F4が意外に良かったなど、なかなか予想し難くて、これまでの成績は1勝、2敗、2分け(自己評価)といったところです。

 

 





機材と撮影条件

今回試すのは
  • PENTAX 6x7 165mm F2.8
  • Nikkon 135mm F2.8
です。実は先週末に両レンズとも一度試したのですが、赤道儀に載せるのをサボってしまい、カメラ三脚と自由雲台で撮影して見たら5秒露光でも星像が流れてしまってうまく評価できなかったので、今回はきちんと赤道儀に乗せて少なくとも30秒くらいまでの露光では星像が流れていかないようにしてのテストです。

撮影した領域はオリオン座のM42と三つ星が入るくらい。リゲルもギリギリ入っています。それぞれのレンズにCANON EF用の変換マウントを取り付け、EOS 6Dで撮影します。カメラはCGEM IIにアルカスイス互換マウントを取り付け、カメラに取り付けたL字プレートに固定します。撮影条件は
  • ISO1600
  • 露光時間5秒
が基本です。


Nikon 135mm F2.8

まずは、昨年10月前半に手に入れていたNikkonの135mm F2.8です。

IMG_8392

このレンズを買った直後の、同じ10月の後半からPENATXレンズに走り始めてしまって、いまいちNikonレンズに対する盛り上がりに欠けてしまっていて、ずっとほっぽらかしでした。いや、元々の動機はFS-60CB+レデューサの焦点距離255mmを下回るレンズを探していたことにあります。以前撮影したアンタレス周辺をもう少し広角で撮影したいというのが最初の動機です。このレンズはちょうど255mmの半分くらいの焦点距離で良かったのですが、なにしろPENTAXの方が面白くなってしまったのが原因で今になってしまったというわけです。

カメラのモニターで見る限りは拡大してもそれほど悪くありません。ピントは回し切って少し戻すくらいが星像の最小点になります。中心像ではピント最小点で赤ハロ、青ハロ共に消えてくれます。

ISO1600、5秒の撮って出しJPGです。取っているときに気づいたのですが、薄ーい雲がかかってき始めていたようで、星いっぱいというわけにはいきませんでした。

IMG_5418

それでも四隅の像を比較することはできます。いつもの300ピクセルを切り出して見てみます。

IMG_5418_4

右上と右中にに少しコマ収差が出てしまっていますが、それ以外はそれほどひどくはなく、一応使えるレベルでしょうか。コマ収差も一部のみの方向ですし、大きさそのものも105mmの時よりはマシです。

少しわかりやすいように、上の画面をPixInsightでオートストレッチをかけてみました。

IMG_5418_STF_4_8cut

細かく見ると、右側以外にも四隅ともコマ収差は確認できます。そのために星像の外側が角ばっているような印象を受けます。それでもひどいものではないので、拡大して見ない限りはそれほど気にならないくらいだと思います。



PENTAX 6x7 165mm F2.8

次は先月、中古TSA-120をスターベースで見る前に、同じ秋葉原のキタムラで見つけてしまったPENTAX 6x7 165mm F2.8です。

IMG_9107



ISO1600、5秒の撮って出しJPGです。この頃には結構雲がかかってしまい、続行するか迷いましたが、同じ日で比べたいので、とりあえず撮影だけはしておきました。

IMG_5412


四隅です。
IMG_5412_4

そもそも雲であまり星の数が写っていませんが、それを差っ引いてもかなりいいです。間違いなく当たりクラスです。75mmのときも悪くないと思っていましたが、それでも強拡大すると周辺で十字になっていたりします。今回の165mmはそれと同等か、それよりもいいくらいです。

念のため、これもオートストレッチをかけたものを載せておきます。
IMG_5412_STF_4_8cut

多少の崩れは見えてきますが、それでも全然悪くありません。比較しやすいように75mmの星像も再掲載しておきます。

IMG_4305

これも当時はかなり良く思えましたが、今回の165mmの方がやはりいいと思います。


まとめ

今回は2本とも悪くないです。特にPENTAXの方は大当たりで、しかもF2.8と、そこそこ明るいので使いがいがありそうです。今年の春から初夏にかけてこれでアンタレス付近を攻めることになると思います。

さて、今回のものを含めて順位で言うと、
  1. PENTAX 165mm F2.8 >
  2. PENTAX 75mm F4.5 >>
  3. PENTAX 300mm(全面に青ハロによるわずかの星像肥大) =
  4. NIKKON135mm F2.8(右側コマ小) >
  5. PENTAX 105mm F2.4(全体にコマ中) >>
  6. PENTAX 135mm F4(全体にコマ中大) >>
  7. PENTAX 200mm F4(全体にコマ大、赤ハロ大)
 と言ったところでしょうか。勝敗で言うと上から、2勝、3分け、2敗と言う自己評価です。

ちなみに値段は

3.5諭吉 > PENTAX 105mm F2.4 >> PENTAX 165mm F2.8 > 2諭吉 > NIKKON135mm F2.8 > 1諭吉 > PENTAX 75mm F4.5  > PENTAX 135mm F4 > PENTAX 200mm F4 >> PENTAX 300mm > 1漱石

と言ったところです。値段はあまり当てにならないようです。

今回ダメだったらもうPENTAXは諦めようと思っていたのですが、こんなふうに当たってしまうときがあると思うと、ますますレンズあさりはやめられないです。安いからまだいいですが、これもまた沼ですね。
 

今回の記事は、ここ何回かの過去記事の裏話的なことから始まります。前回の記事を見て、「あれ?SkyWatcherの鏡筒がなぜあるの?」と思った方もいらっしゃることでしょう。

AZ-GTiのレビュー依頼

実は今回、QBPを送って頂いた際に、普段から使っているAZ-GTiのレビューをお願いできないかをサイトロンさんに頼まれました。AZ-GTiは稼働率断然No.1。本当によく動いてくれるのですぐに快諾しました。

最初のやりとりで「電視観望によく使っているので、そのことを書きましょうか?」と提案すると、「それは面白い!」と。電視観望の時の様子や、画面に出ている様子の写真もあるといいとのこと。

ところがその際に「AZ-GTiで何か作例がないのでしょうか?」との相談を受けたのです。電視観望はあくまでリアルタイムで見ることを目的としているので、普段PCの画面を撮っていますが、あれはむしろ記録として撮っているに近くて、作品として人様に見せるようなものではありません。

それでパッと思いついたのが、以前AZ-GTiを赤道儀化して2軸ガイドでテスト撮影したものです。「それでもいい」と言ってくれたのですが、よくよく考えるとAZ-GTiの赤道儀化って、メーカの正式の使い方ではないんですよね。それなら「新たに経緯台モードで撮影してみようかと思っている」と相談したら、「せっかくなので同じSkyWatcherのEVOSTAR 72EDを使ってみてくれないか?」とトントン拍子に話が進みました。その時の結果が前回の記事の「AZ-GTi経緯台モードを使っての簡単星雲撮影」につながっています。




SkyWatcher EVOSTAR 72ED

EVOSTAR 72EDが到着したのがTSA-120が到着した週の木曜日。TSA-120が到着したばかりで、1週間も空けずにさらに大きな箱が届くので、怖いことにならないように妻にはあらかじめ「評価用のサンプルだからね!買ったんじゃないからね!」と強く念を押しておきました。

EVOSTAR 72EDはコンパクトなEDレンズを使った2枚玉アポクロマート鏡筒です。焦点距離が420mmと短いので、電視観望にもってこいです。電視観望で使えるなら、今回の目的の簡単撮影でも十分に使えるのではとの考えです。

実売で税込5万円を切っているので、手の出しやすい価格だと思います。この値段で、まずアルミ専用ケースがついてきます。専用ケースは持ち運びや保管にはやはり便利なので、素直にいいと思いました。

IMG_9164

蓋を開けてみると、鏡筒バンド、アリガタまでついているのでもう至れり尽くせりです。

IMG_9163

さらにフォーカサーには減速器もついていて、そのまま撮影にも使えそうです。

その一方、アイピースは付属していません。アポクロマートクラスを選択肢にするような人だと、アイピースは好みがあるので付属されていなくても問題ないと思います。一方、ファインダーも標準ではついていないとのことです。オプションで純正のファインダーが用意されているので困ることはないのですが、初心者にはわかりにくいので、購入時はショップなどでサポートが必要かもしれません。

シュミットのEVOSTAR 72EDの販売ページからオプションを選ぶことができます。惜しむらくは専用ファインダーが載っていないことでしょうか。

私の場合は電子ファインダーを使ってしまうか、420mmと焦点距離が短いのでそのまま鏡筒を使って、強引に自動導入の初期アラインメントに持っていってしまうと思います。このようにファインダーが必要のない人もいるので、その分オプションにして値段を下げるというのは、選択肢が増えるという意味で正しい方向なのかと思います。


実際にEVOSTAR ED72を使ってみて

2月1日、本当に久しぶりの晴れの週末の土曜日、もうこの日しかないと思い、TSA-120のファーストライト、広角リアルタイム電視観望、さらに今回のEVOSTAR ED72を使ったAZ-GTiの経緯台モードでの簡単星雲撮影の、3つを同時並行で進めることになってしまいました。

IMG_9317

簡単星雲撮影の話は前回の記事を読んでもらうとして、ここではEVOSTAR ED72の使い勝手について書きます。
  • サイズ的にはAZ-GTiにも余裕で載るくらいの軽量でセッティングも楽です。
  • 焦点距離420mmと短いので、比較的広角で見ることができます。
  • 口径72mmなので、F5.8。実際に使ってみてもそこそこの明るさがあります。
  • CMOSカメラを鏡筒にそのままつけると、フォーカサーの稼働範囲内では短すぎて焦点が出ないので、予めアイピース口にはめる延長筒を用意しておくといいでしょう。
  • 光学性能は少なくとも電視観望にはもったいないくらい十分。撮影レベルでも前回の結果を見ていたければ分かる通り、星像はほぼ点像。組み立て精度も悪くなく、十分な性能を持っていることが分かります。
integration2_cut2

  • ただ一点、撮影時にSharpCapのPCの画面を見て気付いたのですが、恒星周りに少しだけ青ハロが出るようです。
スタックしただけの未処理に近い写真を見てもらうとわかりますが、恒星の周りが少し青くなっているのが分かると思います。
integration

と言ってもひどいものではなく、電視観望では逆にこれが画面にカラフルな印象を与えてくれて悪くないのですが、やはり画像として仕上げるときには気になる人もいるかと思います。

シュミットの店長さんにも電話でこの件を話しましたが「いえ、正直に書いていただいて結構です。」とのこと。欠点を隠したりしない姿勢はとても好感が持てます。やはりアポクロマートと言っても、ここらへんは2枚玉の限界のようです。

SkyWatcherの屈折鏡筒を調べてみると、アポクロマートだけでも3クラスあるようです。
  • 一番上のクラスはEspirit apoシリーズ。3枚玉の高級機です。日本では正式には未発売のようで、アマゾンで一部取り扱っているだけです。
  • 真ん中がBK EDシリーズ。値段的にはEVOSTARの倍くらいでしょうか。
  • そして今回の72EDを含むEVOSTARシリーズ。アポクロマートの入門機の位置づけで、値段的にも手頃です。
  • さらにEVOLUXというシリーズもできるそうです。これもEDレンズを使っているようなので、これを合わせるとアポクロマートは4クラスになるのでしょうか。

青ハロの簡単な改善方法

さて、わずかの青ハロですが、せっかくなので簡単に改善する方法を考えてみましょう。

きちんと処理しようとすると、RGBの各チャンネルに分けて、B画像の星像を縮小するような加工をかけたりするので、結構な手間となります。でもここで提案するのは、Photoshopの「色相・彩度」をいじる簡単な方法です。

Photoshopの「イメージ」メニューの「色調補正」「色相・彩度」と進みます。出てきたダイアログで「マスター」と出ている選択肢を「ブルー系」に変えます。その後、「彩度」もしくは「明度」を弄ります。通常は明度を下げるだけで十分でしょう。今回は-30ほどにまで下げてみましたが、それだけで以下のようになります。

integration_bluecut

これだけの操作ですが、青ハロがほとんど目立たなくなっていることが分かると思います。このテクニックは画面の中に青い部分がそれほどない画像に使えます。プレアデス星団など、青い部分が多い画像では一番出したい部分を目立たなくしてしまうので、先に挙げたRGBに分離するなどして丁寧に処理流必要がありますが、今回のようなHαがメインの画像には簡単に使える有効なテクニックです。


まとめ

今回、ひょんなことからEVOSTAR ED72を使うことになりました。最初に書いた通り元々はAZ-GTiのレビューの依頼でした。でもAZ-GTiに関してはこれまでこのブログでも散々書いているので、今回は頼まれてもいないEVOSTAR 72EDの方を、勝手にレビューしてしまいました。あ、一応ブログに書くと言うことは伝えてあります。「正直に書いてください」と言うことなので、忌憚なく書かせていただきました。

2枚玉のアポクロマートということで、星像に関しては思っていたより全然鋭く、形もきれいに点像になります。青ハロが少しでますが、人によっては気になる方もいるかもしれません。それでも画像処理で簡単にどうこうなるレベルです。それよりも、最初からアルミケースがついている、減速機付きのフォーカサーもついていると、遠征や撮影まで考えて、この値段でこれだけ付属品をつけてくるのはすごいです。特にケースは、後から適したサイズのケースを探す苦労を考えると、純正品でついてくるのは大きな利点です。

個人的には「電視観望に最適なのではないでしょうか」と、お勧めしたいです。値段的にも手頃で、かつ星像もしっかりしているので、前回の簡単星雲撮影なんかを試すのにも十分適した鏡筒だと思います。電視観望に気軽に使えるアポクロマートという位置づけで考えたら、現実的に周りを見渡しても、値段と性能のバランスから、多分ベストの選択肢に近いのではないかと思えました。これでもし不満が出てきたなら、撮影用に次にステップアップするのもいいのかと思います。

さてこの鏡筒、まだしばらく使っててもいいということなので、もう少し楽しんでみます。また何か面白いことがあったら報告します。

2020/3/15 追記: その後、フルサイズ域での星像を、素のままの鏡筒とレデューサーをつけた場合で撮影比較してみました。

このページのトップヘ