ほしぞloveログ

天体観測始めました。

カテゴリ: 調整・改造

お盆休みの月曜日、昼からずっと空全体にかかっている薄雲が恨めしく、夕方以降何度外に出ても月がボヤーッと朧(おぼろ)状態です。ペルセウス座流星群が最盛期だとしてもこの月の明るさと、さらに雲なので何もやる気が起きず、もう寝ようかと思って22時頃外に出ると、雲がだいぶ無くなっていて月もキリッとしています。ここは気を取り直してVISAC君ことVC200Lのテスト再開です。

アペニン山脈の分解能

最初に試したかったことは、前回のファーストライトの時に撮影したアペニン山脈が、なぜ過去に撮影したC8で撮影した時の分解能にはるか及ばないかを調べることです。

comp_C8_VISAC
左のC8で撮った方がはるかに解像度が良いです。

口径は同じ200mm、C8の焦点距離は2000mmでVISACが1800mmなので高々1割の違い。それで解像度が大きく違うとは全然思えません。ましてやスポットダイアグラムの優れているはずのVISACが大きく劣るとは、なかなか不思議な結果です。一番大きな違いはカメラで、C8はASI178MCで1素子のサイズが2.4um、VISACがASI294MC Proで1素子のサイズが4.6um。2倍近く178の方が細かく撮れるはずですが、それだけで上の比較写真くらいまでの違いが出るものなのでしょうか?他にもピントがどれくらいあっているか、シンチレーションが違うのかなどもあるかと思います。

このナゾを解くため、今回はVISACにASI178MCを取り付けて、同様な画角で写してみます。撮影条件は12.5msec露光で、ゲイン120。1000コマ撮影して25%、上位250コマをスタックしました。その結果が以下になります。

Capture_ 23_34_49_23_34_49_lapl3_ap2661_RS_cut
VISACにASI178MCを載せて撮り直し。きちんと分解能が出ています。

月齢11.5日で満月に近く、陰影はあまりないですが、解像度は相当上がったように見えていて、C8で撮影したものにほぼ差し迫っていると思います。ということは少なくともASI178MCで同条件で撮影したら、以前C8でとったかなりの解像度までは迫ることができるということがわかりました。ただし、(これは最後の解析までしてやっと気付いたのですが)まだ少なくとも同じくらいのものが撮れたというだけで、この時点では他の条件の違いの可能性もあるので、カメラの違いかどうかの確証はありません。

と、ここでふと思いました。VISACでM57をASI178MCで撮ったらもう少し分解能が上がるのではないかと。


M57の中心星を出す

やることは単純です。VISACでカメラをASI178MCにして撮影するだけ。ただしセンサーサイズが1/1.8インチと小さいので見ている範囲がせまく、導入に少し苦労します。露光時間は10秒にして、ゲインは470と高めです。これはASI178MCの感度がいつも使っているASI294MC Proなどに比べて約4分の1と低いため、ある程度の露光時間をかけて、かつゲインも上げてやらなければ、そもそも満足に写りもしないからです。

とりあえず、10秒一枚の撮って出しを見せます。オートストレッチをかけてあるだけです。

Capture 00_59_11_Stack_16bits_7frames_70s
中心星がこんなに点で出るのは初めてです、

一枚なのでノイジーなのは仕方ないとして、驚くべきことにM57の中心星と隣の星がほぼ完全に点になっています。これまでこんなに点になるとは、考えることさえできなかったレベルです。

この時点でも、おむすび型の星像はまだ残っています。でも前回のテストは1秒露光で鏡筒が持っている星像がかなりそのまま出ていたはずですが、今回は10秒露光なので機材の揺れやシンチレーションで積分され、オリジナルな星像は鈍って多少真円に近くなっています。

これをスタックして画像処理をしてみます。Live Stackで6枚の60秒分の画像をSharpCap上でスタックし1枚の画像としそれを45枚、すなわちトータル45分の露光時間となります。ダーク補正は撮影中にリアルタイムでしてありますが、フラット補正とバイアス補正は今回省略しています。その結果が以下になります。

integration_DBE_PS2
中心星はOK、でも星の形がやはりいびつ。

M57の中心星と隣の星に関してはかなり満足なレベル。M57の12時方向の2つの距離の近い星も、何の苦労もなくはっきり分かれています。

フラット補正をしていないので、背景はグチャグチャで適当にごまかしています。こうなってくると星像のアラがどうしても目立ちます。次はおにぎりさんの改善を目指すことにします。今情報を集めてますが、少なくとも改善の方法はありそうなことがわかってきました。こちらはもう少し実践してからまた記事にします。


考察

さて今回の疑問は、1素子のサイズが高々2分の1もいかないくらいになっただけで、こうもいろいろ変わるのかということです?

いろいろ考えたのですが、なかなかこの差を説明することができなかったので、頭を切り替えて、C8で撮った画像をどれくらい解像度を落とすとVISACで撮ったのと同程度になるのか試してみました。

1素子のサイズ比 = 46./2.4 = 1.93なので、まずはC8の画像の解像度を1.93分の1にしてやってみました。でも結果はまだ全然、あからさまにC8のほうがいいです。やはり高々2倍くらいの素子のサイズ違いでは全く説明できないです。

そこそこ合うなと思ったレベルはC8の画像の画素数を一辺で8分の1にしたとき、すなわち3128 bx 2014 pixelの画像を、Photoshopで一旦391 x 263 pixelにまで落として、それをバイキュービック法で再び3128 x 2014 pixelに戻したくらいの相当荒い画像でやっと一致するということです。以下がその画像になります。

comp_C8_VISAC_x8
最初の画像の左のC8の方の分解能を8分の一くらいに悪くして、
やっと前回とったVISACと同等です。

これくらいまで落として、やっとVISACの画像と同程度か、下手をしたらまだいいかもしれません。流石にこれだけの違いをカメラの解像度だけで説明するのは無理なので、今回はおそらくVISACで最初に撮った画像がピンボケだったと言うくらいしかないです。ただし、VISACの方は視野の端で撮ったからという影響も無いとは言い切れていません。

ピンボケだったとするとまあ間抜けな話なのですが、でもこれはある意味怪我の功名で、少なくともカメラを代えたりしたり手間をかけての検証でしたが、M57の解像度を上げることにはつながったことになります。

じゃあM57の画像もピンボケだったのかと言うと、どうやら多分そうだったみたいです。今回VISACとASI178MCで撮った画像の解像度を半分くらいに落としましたが、まだまだ中心星も全然点像で十分な解像度があります。こちらも解像度を6分の1くらいに落としてやっと前回撮影したM57と同レベルになりました。

comp_camera
こちらも前回のASI294に一致させるためには、
解像度を6分の1くらい悪くする必要があると言う結果です。

こちらもこれだけの違いを、カメラの1素子のサイズの違いだけで説明することはやはり困難かと思います。前回はファーストライトでまだ慣れてなくてピンボケで、今回は気を使ったと言うことになるかと思います。


まとめ

でもまだ本当にピンボケだったのか、100%そうかと言われるとイマイチ自信がありません。今回のASI178MCの点像の出方が良すぎるからです。もしピント問題だったとすると、ピント位置は結構シビアな可能性が出てきます。今一度VISACにASI294MC Proをのせて、M57できちんとピントを合わせて見てみるなどすると、単にピント問題だったのかがより確定すると思います。

また、C8やMEADEでも例えばASI178MCを使えば同じように解像度よく出るのか、それともやはりVISACだけがすごいのか、まだもう少し検証してみたいです。

うーん、でもかなり楽しくなってきました。いままでC8とMEADEで全く無理だったこの点像。少なくともこの点像を出せるだけでもVISAC侮れないです。


原村星まつり直前、なぜこんな時に!?と生えてきたVixenのVISACことVC200L。梅雨の間ずっと我慢していたのですが、最後の最後でポチリヌス菌に感染してしまったようです。原村星まつりであまり買い物が進まなかった理由の一つがこれです。予算が厳しかったのです。




購入の理由

とにかくやりたいのがDSO(Deep Sky Object)、すなわち系外銀河などの長焦点での撮影です。長焦点でシャープな星像を撮影することができる鏡筒をずっと探していました。ラッキーイメージももう少し試したくて、短時間露光で揺れを排除して星像を絞る時に、シャープでないと意味がないという理由もあります。安価で、ハズレでなさそうなVC200Lが出るのをずっと待っていました。


手持ちのシュミカセはダメなの?

手持ちの機器のうち、長焦点に相当する鏡筒が口径20cmのCelestronのC8と、口径25cmのMEADEのLX200-25のF6.3仕様のもので、いずれもシュミカセ(シュミットカセグレン) です。シュミカセはシュミット補正板を入れた、カセグレン式の、鏡筒の長さを短くしたもので、重量も大したことなくコンパクトで扱いやすく、広く出回っている鏡筒です。

オリジナルのシュミットカメラは、球面収差とコマ収差と非点収差を解決しているいわゆるスチグマート条件を満たしていて性能的に有利である一方、鏡筒が巨大になる、撮像面を湾曲させなければならないなどの扱いにくさもあるおかげで、市販品としてはコンパクトなシュミットカセグレン式の方が圧倒的に数が出ています。一方、そのコンパクトさを実現するために、性能的に必ず妥協をしていて、スポットダイアグラムも星像が肥大していて、比較するとその違いはすぐにわかります。特に四隅に出てくるコマ収差は非常に目立つため、シュミカセの撮影は惑星などの中心像を生かすものが主となっています。

最近ずっと触ってきたLX-200-25ですが、スポットダイアグラムがあまり出回っていないのではっきりとはわからないのですが、F値が6.3と小さいこともあり、コマ収差が大きいです。コマ収差はF値の-2乗で効いてくるので、F10のC8に比べコマ収差は(10/6.8)^2 = 2.5倍にもなります。星像が単純に2.5倍伸びてしまいます。そのため撮影する場合にはコマコレクター が必須なのですが、質の良いものはコマコレクターだけでも高額なので、私はバーダーのMCPP MarkIIIを使っています。これはF値が6までしか対応していないのですが、F6.3のMEADEに入れてもある程度の改善があることがわかっています。

コマはある程度許容範囲に収まるのですが、もう一つの問題が片ボケ。光軸調整をしても、どうしてもいつも同じ側の片ボケが残ってしまいます。主鏡の向きがずれていると考えられるのですが、こちらはいつは直したいと思っていますが、全バラに近い形になるはずなので今は躊躇しています。

あとMEADEのシュミカセは少し重いこと。同サイズ(実際には少し違いますが)のセレストロンと比べると、無視できないくらいの重さの違いがあります。手持ちの赤道儀がCGEM IIなのですが、撮影をしようとすると鏡筒が大きく重いので慣性モーメントが大きくなってしまい、共振周波数が下がり揺れの振幅が大きくなるので、大きさとしてはギリギリか本当はもう少し頑丈な赤道儀が欲しいところなのです。

一方手持ちのC8は軽くて良いのですが、やはりスポットダイアグラムを見ると、シュミカセゆえどうしても星像はボテッとなってしまうのは避けられません。星像を改善するために、接眼側に補正レンズを入れたEdge HD800という同じ口径20cmのものが販売されていて、こちらも購入の候補の一つでした。


VISAC以外の候補

VC200L以外ではHD800が第一候補で、一時は新品で購入しようと思っていた時期もありました。

他の候補として、特に反射にこだわっているわけではなく、屈折でも構いません。スパイダーの光条線があまり好きでないので、屈折か、反射でも副鏡がスパイダーでなく補正板で固定されているものを探していました。でも屈折で大口径で長焦点でスポットダイアグラムが小さいのは、これまた値段的に全く手が出ないので、現実的な候補はなかなかありません。

他の反射では、ミューロンのCRC化されたものもかなり魅力なのですが、こちらも予算がグッとあがります。究極的にはCCA-250とかなんでしょうが、こちらは冗談でなく金額の桁があがり、今の財政では全く手が出ません。

安価に、自分の納得する範囲で満足できる鏡筒をずっと探していました。その一つの候補がVISACだったというわけです。


VISACにした理由

VISACを選んだ理由は、ひとえにものすごく鋭いスポットダイアグラムに期待したからです。Vixen独自の6次非球面の主鏡を採用したカタディオプトリック鏡筒で、バッフル内に3枚のフィールド補正レンズを内蔵、写野全域にわたってコマ収差・球面収差・像面湾曲を極限まで補正、写野周辺で星像15µmを達成しているそうです。このように宣伝文句だけ読んでいたらものすごく魅力的なのですが、悪い噂も多少聞きます。
  • 設計はものすごく良いのに、主鏡の精度が出ていなかったり、メカ的に弱かったり精度が出ていなかったりで、その設計思想を活かしきれていない。
  • 個体差で性能にばらつきがある。
などです。設計からも各種精度が必要そうなことは想像できるので、なかなか大変そうな機器なのかと思います。メーカーの方でもサポートは大変なのでしょう。

また、星像が悪かったとしても調整機構が隠されていて、ユーザーは基本的に調整することはしない方針のようです。その扱いにくさのせいか、中古で比較的安価で出回ることも多いです。今回のものは、ベルトバンドがついている古いものでしたが、専用アルミケースもついていたため収納や持ち運びにも便利で、適当な業者に回ったものではなく、天文が好きな人が昔の機材を手放したと判断。オークションで少し値が上がっても落とそうと狙っていました。

試したいのは、
  1. 設計の鋭いスポットダイアグラムは、シュミカセのボテっとした(と私は少なくとも思い込んでいる)星像と比較して本当にシャープな星像を結ぶのか?
  2. 調整機構がないが、もし星像がダメなら調整できるのか試してみたい。
といったところです。特に調整は全バラでも構わないと思っています。


いよいよファーストライト

さて、実際のフーストライトです。梅雨が明けてもなかなか晴れなかったのですが、昨晩22時過ぎは夕方に一面を覆っていた雲もすっかり消えました。上限過ぎの月も残っているので、撮影もあまりする気にならなく、むしろ絶好のテスト日和です。今回のファーストライトは自宅の庭で試します。架台はCGEM II。MEADEと比べてかなり軽いので、赤道儀としての強度は十分です。

IMG_7751

最初にアイピースで月を見てみました。アイピースはCelestronの8-24mmのズーム式で簡易なもの。雲間からの月ですが、像は非常にシャープという印象です。月と空のエッジを見ても色収差もほとんどありません。これはもしかしたら結構期待できるのかもしれません。

ピントの範囲もそれほどシビアではありません。減速機はあった方がいいですが、なくてもなんとかなりそうです。

テストがてらASI294MC Pro(冷却はしていない)で月の動画撮影をしてみました。テストなので極軸もきちんととっていないし、カメラの向きも適当です。1000枚をスタックしたものが以下になります。

Capture_ 22_42_33_22_42_33_lapl3_ap7557_RS2

画像を見ている限り、非常にシャープで特に問題になりそうなところはありません。以前撮ったFS-60CBの画像と比べても十分な解像度が出ています。

と思っていたのですが、以前C8で撮ったアペニン山脈付近を何気に見直してみましたら、こちらの方がはるかに高解像です。

comp_C8_VISAC

理由はいくつか考えられます。C8とVISACの焦点距離は2000mmと1800mmとそれほど変わらないはずですが、まずC8の時の撮影に使ったASI178MCの一素子のサイズが小さい(2.4um)ので、解像度は上がるはずです。しかもセンサーの大きさそのもが小さいため、C8の視野の中心部だけを撮っています。今回VISACで撮ったアペニン山脈はASI294MC Proが素子サイズの大きい(4.6um)センサーで、かなり視野の端を撮ったので、不利な点があるのは理解できます。でもそれだけでは説明できないくらい、C8の方が高解像度です。まあ、結論としては今回の撮影はピントが出ていなかったのではないかと。もしかしたらピントの範囲がもっと狭いのかもしれません。ここは一度カメラなども同条件にしてもう少し検証します。


気づいたこと

最初の操作でいくつか気づいたことがあります。
  • まず、とにかく軽い。MEADE 25cmよりははるかに軽いです。C8より軽く感じたくらいですが、実際にはC8が5.6kg、VC200Lが6.9kgとVISACの方が重いです。ベルトがついていたから持ちやすいのかもしれません。
  • 上にL字の小さな架台が付いていて、1/4インチのタップが切ってあるので、極望用のCMOSカメラなども載せることができます。
  • フォーカサーが結構ゆるいので、天頂付近に向けるとカメラの重みでずり落ちてきてピントがずれてしまいます。フォーカス固定ネジもあるのでいいのですが、もう少し固くてもいいかと思います。
全体的にちょっとヤワな気がします。値段から言ったら仕方ないでしょうか。その他は今の所不満などありません。


星像はどうか?

では肝心な星像はどうでしょうか?試しに、M57周りを撮影してみました。こちらも極軸もカメラの向きも適当で、ガイドも何もしていないので、露光時間を少し伸ばすと流れてしまいます。とりあえずASI294MC Proで常温、露光1秒、ゲイン470でRAW16をtifファイルに落とし、PixInsightでオートストレッチしてjpegに落としてあります。

Capture_00002_23_10_13_23_09_11_RGB_VNG


四隅の画像も載せておきます。これまで4隅250ピクセルを切り出していましたが、スターベース のタカハシ鏡筒の実写画像に準拠し、300ピクセル切り出しにし、枠線を少し細くしました。

Capture_00002_23_10_13_23_09_11_RGB_VNG_8cut

露光時間わずか1秒なのでノイジーなのは仕方ないとして、これを見る限り、コマ収差はほとんど出ていないし、四隅の星像も悪くありません。真ん中はM57の中心星と、その隣の星も普通に写っています。これは結構すごい。シンチレーションの具合もあるとは思いますが、やはりVISACのスポットダイアグラムはダテではないかもしれません。

この画像スタックすればもっとはっきりするはずです。同じ1秒露光をser形式のRAW動画で1000枚撮影し、上位600枚の計10分をAutoStakkert!3でスタックしてみました。画像処理は簡易なものです。

Capture_00_19_48_00_19_48_lapl5_ap3050_DBE

中心星もそこそこシャープに写っていて、四隅の崩れもありません。まあまあかなと思っっていたのですが、星を拡大するとどうもきれいな円になっていないことに気づきました。

Capture_00_19_48_00_19_48_lapl5_ap3050_DBE_cut

どの星も三角形に近い形をしています。星像としてはダメですね。一枚取りに戻ってよく見ると、星はやはり同様の形をしていることに気づきました。

ただし、この画像は1秒露光をスタックしたものでかなり鏡筒本来が持っている星像をそのままの形で表しています。これが10秒とかもっと長い時間露光した場合には機材の揺れやシンチレーションによるブレのためにこの三角の形は目立ちにくくなります。ただし、ラッキーイメジングを想定もしているので、短時間露光で星像が丸になるに越したことはありません。

また、これまで撮影したMEADEのコマ収差や片ボケよりはすでにはるかにましです。このことも考慮して、どこまで突き詰めるかを検討する必要があります。


まとめ

というわけで、星像に関して残念ながらはラッキーイメージングを考えた場合は許容範囲外と言っていいと思います。四隅まで鋭くて、途中結構期待していたのですが、最終的にはちょっとショックでした。気を取り直して調整の方法を探ることにします。少しだけ調べてみると、VC200Lではこのおにぎり型の星像が出ることが結構あるようです。どうも原因はネジの締めすぎ。また、コメントからの情報でスパイダーの影響が結構合って、星像が四角くなることもあるそうです。

原因がわかっていればとりあえずなんと取り除くては考えることができそうなので、まずは一安心です。先人の方達の知恵がありそうなので、一度中を見てみて調整がうまくできるかどうか探りたいと思います。



ある日の届け物


原村星まつりから帰った次の日、仕事から帰ったら玄関にこんなものが届いていました。

IMG_7762

機材関連を整理するための大型の棚です。ちょうどM家がAZ-GTiとMAK127を取りに来たときに届いたらしく、搬入を手伝ってくれたとか。でも重くて週末までずっと玄関に置いたまま。そろそろ怒られそうなので、週末の土曜日朝から組み立てはじめました。


自宅の機材のひどい現状

とその前に、今の自宅の状態はこんな感じ。まず玄関、普段使いの機材で溢れかえっています。金魚の水槽の下の木箱の中身も20cmのニュートン反射。ちなみにこの木箱自作です。その木箱の上に口径10cmのアクロマートとPSTが転がっています。

IMG_7753


その横の廊下です。新入荷のVISACのケースも見えます。玄関にほっぽっておいたものは妻がここに移動して、たまに私が「ものがなくなったー!」と言って騒ぎます。いつもごめんなさい。
IMG_7759

2階に移って、三脚の林。
IMG_7765

カメラ三脚も無造作に転がっています。
IMG_7767

押入れとそこからあふれ出したもの
IMG_7766

さらに普段から溢れ出ているもの。
IMG_7764

車のトランクも機材でいっぱいです。

IMG_7784

とにかく荷物が多すぎ。星を始めてわずか3年の間にたまったものです。


大型棚の組み立て

さすがにこれではダメだと一念発起して頼んだのが、今回届いた大型の棚です。サイズは幅151cm、高さ210cm、奥行き61cmと相当大きくて、プラスチックの収納ケースが縦向きで入るのと、1m越えの鏡筒が余裕を持って置けるという観点からこの大きさになりました。この横幅だと、すぐに棚板がたわんだりするのですが、今回は軽量鉄骨で対荷重150kgのかなり頑丈なものです。

さて組み立てです。大きいので少し大変ですが、二人いれば特に難しいところはないです。まず天板と底板を4本の支柱に固定。ネジを使うのはここだけです。
IMG_7770

立ち上げて所定の位置に入れてみたら本当にいっぱいいっぱいでした。あと3cm幅が大きかったらこのスペースに入っていないです。その後、中板を入れたいものの高さに合わせながら置いていきます。中棚の固定はネジを使うわけではないので気楽に高さを変えることができます。

IMG_7774

完成です。所要時間1時間半くらいでしょうか。

IMG_7780


棚の完成と、荷物をいれてみた

わーい、これでやっと片付くぞと思いながら荷物を入れていったら、一瞬で棚は埋まってしまいました。なんででしょう?かなり大型の棚だと思ったのにたいして収納できません。まあ、機材が多すぎるというだけことなのですが、まだ車のトランクはいっぱい、玄関の普段使いは半分以上出っ放し、三脚の林も手付かずです。

IMG_7782

それでも一部は片付きました。

IMG_7787

IMG_7786

IMG_7789

IMG_7790


まとめ

今回購入した棚、幅がこれだけ広いのに、十分な強度があり、値段もかなり安価です。とりあえず、大満足。組み立ても簡単ですし、機材置き場に困っている人にはかなりオススメの棚です。

でもやはり手持ちの機材が多すぎです。棚は一個で全然足りないので、もう一本か二本くらい買うかもしれません。しかも他にも様々なサイズがあり、特に奥行きの短いものもあるので本棚がわりにもなりそうです。

梅雨の合間にも関わらず珍しく晴れたので、久しぶりの撮影です。といっても平日なので宅撮り。

今日の課題は白濁したレンズのFC-76で撮影を試してみて、実用で耐えうるかどうかです。比較しやすいようにFS-60Qでも同様の撮影をしてみます。白濁したレンズでも電視観望では問題なさそうという結果でした。果たして撮影レベルではどうなるのでしょうか?


機材、撮影条件など

鏡筒1: タカハシ FC-76 (口径76mm, 焦点距離600mm、対物レンズが白濁) + 新フラットナー(x1.04)
鏡筒:2 タカハシ FS-60Q (FS-60CB+エクステンダー相当、口径60mm, 焦点距離600mm) 
赤道儀: Celestron CGEMII
センサー: Canon EOS 6D HKIR改造
フィルター: サイトロン QBP(Quad Band Pass) filter
日時: 2019年6月25日、22時頃から
場所: 富山市下大久保
月齢: 22.1、ほぼ下弦の月
撮影対象: M8干潟星雲とM20三裂星雲、猫の手星雲を同画角内に 


IMG_7532
FC-76のセットアップ。

IMG_7535
FS-60Qに交換後。赤道儀は反転。


FS-60Qとの共通オプション

FC-76での撮影をしてみてまず気づいたのが、これまで集めたFS-60Q用のオプション器材がかなり共通で、そのまま使えることです。
  • 具体的にはまずはカメラの回転装置。これはSKY-90用となっているのですが、タカハシのシステムチャートによるとFC-76もFS-60Qも接眼部へのネジの径が共通なために、これが標準の回転装置となります。
  • 同様に、ワイドタイプのカメラマウントDX-60Wもシステムチャートによると共通で使えます。
  • さらに新フラットナーもアダプターさえFC-76用を買い足せば使い回しがききます。アダプターは数千円と安価なので気軽に買うことができます。
実際今回撮影用途で購入したのはこのアダプターだけで、あとは何も買い足す必要がなかったのはありがたかったです。

IMG_7555
このように、FS-60CB用の機材がほぼそのまま使えます。


実際の撮影

実際の撮影ですが、久しぶりのこともあり、少し手間取りました。

今回撮影用のコンピュータとしてStick PCを使ったのですが、StickPCの動作がなぜか重い。64bit版のSharpCapはポーラーアラインメントを開始するとすぐに止まってしまいます。仕方ないので32bit版にしたら、こちらはなんとか最後まで動きました。あと、PlateSolvingで使っているAstroTortillaがうまく位置を検出してくれません。仕方ないので、All Sky Plate Solverを使いましたが、こちらは位置検出まではしてくれるものの、赤道儀へのフィードバックがうまくいきません。時間もあまりないことなので諦めて、何度かテスト撮影をして位置を決めました。でもFS-60Qに交換した時にPlateSolvingがなかったことが原因で、位置ズレと、さらにピンボケを導入してしまいます。

あと、これもStickPC関連かもしれませんが、BackYardEOS(BYE)が安定しなくなる時がありました。なぜかBYEが立ち上がらなくなること、接続はうまくいっているのになぜか撮影ボタンが押せなくなることでした。前者はPCを再起動することで、後者はBYEを再度立ち上げることで解決しました。これまであまりなかったことなので、少し気になります。

さらに、鏡筒をFS-60Qに切り替える時に、対象が南天を超えていたので赤道儀反転したこともあり、今一度アラインメントからやり直しました。その際、CGEMIIのハンドコントローラーにStickPCからのケーブルが繋がっていて電力が多少供給されていたので、赤道儀本体の電源スイッチを落としても電源が完全に落ちません。それに気づかずに、再度スイッチを入れた時にコントローラの明かりが半分暗いような状態になってしまって、あ、故障かも!と少し焦りました。電源を落として、かつハンドコントローラーに繋がっているケーブルを抜くことでこれも回避です。

これに加えて、もう一つ関連した問題が発生しました。FS-60Qに交換したた時に、鏡筒が軽くなりすぎてしまって、赤経方向の重量バランスが取れなくなり、初期アラインメントの途中でトルク不足で止まってしまうのです。ウェイトを一番内側まで持っていってもまだバランス不足でだめでした。今回はCelestronのパワータンクでなく、40000mAhくらいの大容量のリチウムイオンバッテリーを使ったのですが、このせいかもしれません。結局、ハンドコントローラーにUSBケーブルをつないで電力を少し加えたらなんとうまく初期アラインメントができました。FS-60QにCGEMIIは大げさすぎるのかもしれません。いずれにせよもう少し軽いウェイトを用意しておいたほうがよさそうです。

撮影時間はFC-76の180秒露光が10枚で計30分、300秒露光が6枚で計30分、FS-60Qでは300秒露光が6枚で同じく計30分となります。その他、ISOは全て3200で固定。撮影時間の違いの影響をできるだけなくすために、撮影対象の位置をちょうど南天を挟んで前半がFC-76、後半がFQ-60Qというようにしてあります。なので赤道儀も前半と後半で反転しています。

惜しむらくは、次の日仕事ということもあり、時間があまりなかったので、FS-60Qでのピントが少し甘くなったことです。途中で気づいてやり直そうか迷ったのですが、もう月が昇ってくるのと、対象が木の陰に隠れそうだったので泣く泣く諦めました。後で見たらやはり少し星像が肥大していました。


撮って出し

撮って出しJPG画像です。それぞれ撮影の1枚目の画像になります。このブログにアップロードするのに画像サイズが大きすぎたので、縦横2分の1に縮めました。

M8_LIGHT_6D_180s_3200_+24cc_20190625-21h59m48s127ms_cut
FC-76、180秒露光。

M8_LIGHT_6D_300s_3200_+25cc_20190625-22h45m11s577ms_cut
FC-76、300秒露光。

M8_LIGHT_6D_300s_3200_+27cc_20190626-00h42m55s063ms_cut
FS-60Q、300秒露光。星がはっきりしているように見えますが、
単にピンボケで星像が肥大しているだけです。拡大するとダメなのがよくわかります。

それぞれFC-76、FS-60Qが、干潟星雲、三裂星雲、猫の手星雲ともに綺麗に出ています。透明度は悪くなかったのですが、自宅でもこんなに出るのはやはりQBPの威力かと思います。後半のFS-60Qでは午前1時半頃まで撮影していたので月が少し上っていたはずですが、その影響もQBPのおかげかほとんど無いようです。これをみる限り、露光時間の違いによる明るさの違いはきちんとFC-76の300秒>FS-60Qの300秒> FC-76の180秒と順番通りになっていることと、FS-60Qでのピンボケ以外に、撮って出し画像ではほとんど差はわかりません。FC-76の周辺減光が少し目立ちますでしょうか。

少なくとも撮って出しだけではFC-76の白濁の影響があまりよくわからないという、ポジティブな意味です。



ダークとフラット画像

その後、次の日に180秒と300秒のダーク画像を撮影、さらにその次の日もかけてFC-76とFS-60Qのフラット画像を撮影しました。フラット画像はiPadのColor Screenというソフトを使い、モノクロ色にして最大の明るさで撮影しまして。全てISO100、露光時間1/4秒です。不思議なのは撮影条件を同じにしてもFC-76とFS-60Qでヒストグラムで見てヒストグラムのピークの位置がほとんど変わらないことです。口径で76/60=1.26倍の違いがあるので、光量ではその2乗の1.6倍の違いがあるはずです。この口径差がピーク位置に出てこないのが不思議です。

ただし、ピーク位置は変わりませんが、その広がりは雲泥の差があります。FC-76のヒストグラムがかなりブロードなのに対し、FS-60Qが非常に鋭いピークなのです。


IMG_7564
FC-76ではフラット画像のヒストグラムが広がっている。

IMG_7558
FS-60Qのフラット画像のヒストグラム。もう、全然鋭いです。

最初これが白濁の影響かと思いました。でもどうやらそれも間違いで、周辺減光の違いが大きいということがわかりました。下の画像、出すのも恥ずかしいのですが、適当にストレッチするとセンサー面のゴミがFC-76ではまだはっきり見えていないのに、周辺減光がすでに顕著です。一方FS-60Qでは相当余裕を持ってストレッチできていて、センサー面のゴミがはっきり見えていますが、まだ四隅は暗くなっていません。

IMG_7561
FC-76のフラット画像。まだあぶり出しきっていないのに、
周辺減光が大きく、ゴミもはっきり見えきっていません。

IMG_7563
一方FS-60Q。かなりあぶり出していて、ゴミがくっきり見えていますが、
まだ周辺減光は顕著ではありません。

これはちょっと意外でした。単純にFC-76のほうが口径が大きいので、周辺減光も余裕があると思っていたのですが、カメラの絞りと同じで、より絞ってあるFS-60Qの方がより均一に撮影できるということでしょうか。


リニア処理後の画像

画像処理の準備が整ったので、PixInsightでそれぞれリニア処理です。同様の手順がFC-76の180秒と300秒、FS-60Qの300秒と3通りあるので、手間を省くためにScriptのBatchPreProcessingを使います。バイアス、ダーク、フラット補正をしています。

出てきた結果をPhotometricColorCalibrationを使い、色を合わせます。それらをScreenTrasferFunctionでオートストレッチし、JPEGで保存したものを示します。まだ彩度を出す前の過程なので派手やかさはないですが、比較するには十分かと思います。

light-BINNING_1_PCC
FC-76、180秒露光。

light-BINNING_1_PCC
FC-76、300秒露光。

light-BINNING_1_PCC
FS-60Q、300秒露光。

検討

3枚を見比べます。
  • まずFS-60Qはピントが甘かったので星像が肥大しています。
  • 同じ600mmの鏡筒ですが、フラットナーが1.04倍の倍率があるので、FC-76の方が画角が少し狭いです。
  • ノイズに関してはFS-60Qが一番ザラザラしているように見えます。これは口径の違いからくる明るさの違いで説明できそうです。
  • 一見FS-60Qがコントラスト良く見えます。これらはオートストレッチが影響しているのかと思います。オートストレッチはフラット補正がどれくらいうまく当たっているかなど、最大/最小輝度に大きく依存するので、まあ誤差の範囲かなと。FC-76でも180sの方が一見コントラストがよく見えているので、白濁の影響でコントラストが悪くなっているとはこれだけで言うことは難しいと思います。
それ以上のことは、私の目ではほとんど差を見い出すことができません。


とりあえずの結論

できるだけ同じ撮影条件にしようとしましたが、それでもまだなかなか結論めいたことを言うのは大変そうです。ただ一つ言えることが、たとえ多少白濁があっても、撮影レベルで使ってももそれほど遜色なく写ってしまうということでしょうか。これは結構意外というか、驚きの結果です。

白濁が一番効果に現れるのはコントラスト低下かと思います。眼視の場合にはなかなか避けることは難しいでしょうが、それでもこのFC-76では多分よほど目の肥えている人でないと気づかないのではというのが、以前の記事の結論でした。一方、画像処理の過程では、低下したコントラストを補正するのは難しくありません。もちろんノイズとの交換条件になりますが、撮影の方が白濁の不利さは少なくなるのではというのが今回考えたことです。少なくとも私の画像処理のレベルでは、コントラスト差が問題になる程、結果に影響が出てこないようです。

白濁も、レンズについたゴミなども、どれくらい汚いと本当にダメになるのか、一度きちんと検証したほうがいいのかもしれません。特にニュートン反射の主鏡とか、汚れやすいけれども分解しないと綺麗にできないような部分も結構気にせず使ってしまっているので、意外なほど許容範囲は広いのかもしれません。撮影への影響まで含めて、何か定量的に評価できないものなのでしょうか?反射系の副鏡のMTFへの影響なんかは、うまい評価方法なのかもしれません。

今回は一応これで一区切りです。せっかく撮影したので、次の記事でこれら3枚を合わせて、最後まで画像処理をした結果を見せます。


どうもMEADEの25cmのシュミカセ、LX200-25の星像がボテっとしていて満足できません。


FWHM測定がどうも信用できない

前回のラッキーメージングの記事から随分間が空きましたが、実は連休中も含めて色々やっていて、例えばいろんな状況下で星像のFWHM(半値全幅)の測定もしてみたのですが、これもなかなか微妙です。本来FWHMはゲインに依存しないはずですが、ゲインを上げるとFWHMもなぜか少し大きくなったりします。これは何らかのセンサーでの信号の大きさに依存性がありそうだということを示しています。本来、露光時間を伸ばすとシーイングの影響がより大きく出るためにFWHMが大きくなるのですが、ゲイン依存性があるということは信号が増えたことでFWHMが大きくなったのか、本当にシンチレーションで像が大きくなっているのか、いまいち切り分けができません。

それでもそんなことを差っ引いても、あくまで見た目ですが、MEADE LX-200-25を使ってDSOを撮影しようと長焦点で撮影すると、星像がどうしてもボテっとしてしまいます。


困った時の昼間の試験

どうも埒が明かないので、連休中の昼間に色々試してみました。ターゲットは100mくらい離れたところにあるBSアンテナ。

test
このアンテナの文字や、4つのビスを見ながら検証します。
なお、画像は動画から一枚取り出して、ブログ表示用に上下逆にしています。

SharpCapで映す画像を見ながら、まずは光軸調整です。ここではBSアンテナの文字がどれくらい読めるようになるかと、アンテナの真ん中についている4つのビスが綺麗に見える様に、副鏡の3つのネジを調整します。実際にはいじるのは2本のみ。3本目をいじると副鏡のオフセットをいじる自由度になるので、pitchとyawの2自由度に相当する2本のみというわけです。動画で見るとすごい速さでピョコピョコ揺れている様に見えるのですが、フォーカスを合わせることによりそのピョコピョコが収束していきます。光軸がうまく調整できていないと収束しないので、ネジをいじるのとフォーカスを合わせるのを繰り返しながら、出来るだけ収束する様にしてきます。これは通常の光軸調整に相当するので、まあ問題ないです。



昼間で星でなくてもなぜか揺れる?

ところがです、光軸調整を十分にしてもまだ揺れているように見えるのです。星を見ているのと違って、昼間にたかだか100m先を見ているので、シンチレーションの影響はほとんどないはずです。それでも空気が揺らいで揺れることはありますが、時間はかなり経っているので温度順応は十分できているはずですし、見た目は少なくとも陽炎の様なゆらゆらとした揺れではありません。どうも何らかの外乱が入って揺れていると考えた方が良さそうです。揺れ方としては、上で書いた高速のピョコピョコよりももっとゆっくりした、1秒を切るくらいの間隔で、ピョコン、ピョコンとジャンプする様な感じです。

何でこんなことに気づいたかというと、このテストの間にFC-76も同じ様に見ていたのですが、(FC-76のほうが焦点距離が短いので)同じくらいの画角に拡大しても明らかにFC-76の方が揺れが少ないのです。高速のピョコピョコに関してもそうですし、低速のピョコン、ピョコンに関してもです。高速の方はLX200の方がまだ光軸調整を合わせきれていない、もしくはコマ収差のために全面で合わせきれていないのが原因かと思います。問題は低速。この時点で「あーそうか、地面の揺れが関係しているな」と推測しました。自分が座っている椅子とか動かした時に、像が大きくジャンプすることに気づいたのもここら辺です。


地面の揺れがどう効くのか

軽い鏡筒を赤道儀で支持している場合、共振周波数は高周波側にいきます。逆に重い鏡筒の場合、共振周波数は低くなります。正確には軽い重いというよりは、慣性モーメント(離れたところにどれだけ重いものがあるか)の違いになるのですが、まあここでは軽い重いとしておきましょう。共振で元の揺れが何倍くらい大きくなるか(Quality factor、日本語だと略してQ値とかいいます)は、それぞれのモードのロスに依るのですが、簡単のために全て同じと仮定しましょう。そうすると、一般的に地面振動は周波数の-2乗で落ちていくので、低い周波数に共振があった方がRMS振幅(高周波から低周波まで積分した振幅、要するに全体の揺れ幅のこと)としてはより大きく揺れます。もっと単純にいうと、地面振動起因の揺れに関しては重い鏡筒の方がよく揺れる。言い換えると、この赤道儀では実測13kgの鏡筒を支えるにはまだ剛性が不足しているというわけです。


じゃあ解決策は?

赤道儀を簡単に代えるわけにはいかないのですが、原因がわかれば解決策は色々あります。一番手っ取り早いのは防振でしょう。試しに三脚の下にゴムのシートを挟み込みました。たかだかゴムシートなので、共振周波数もそれほど低くなく、低周波の防振には役に立たないでしょう。それでもピョコンピョコンといったインパルス的な振動は高周波成分も含むので、かなり抑えられるはずです。

画面で見ると、明らかに動きは小さくなっている様に見えます。ただ、動画を見てもどの周波数に注目すればいいかなかなかわかりにくいので、わかりやすい結果として、10秒間の動画をゴムシート無しと有りで撮影し、アンテナのビスの部分を拡大し、それぞれの動画を静止画に落として、黒丸のところを見るために比較「暗」合成したものを載せます。

まずはゴムシートなしの、露光時間2.5msの一コマ分だけを示します。
test1_001
ゴムシートなし、1コマ2.5ms。

これを13FPSで撮った約10秒分、139コマを比較暗合成するとかなり像が肥大します。
no_rubber
ゴムシートなし、10秒比較暗合成


次に、ゴムシートをつけた場合の1コマ分。短時間なのでゴムシートなしと比べてそれほど差はありません。
test2_001
ゴムシートあり、1コマ2.5ms。


これを10秒分比較暗合成すると、像は肥大しますがゴムシートなしと比べるとかなりマシです。
with_rubber
ゴムシートあり、10秒比較暗合成。

これだけ見ても、もう明らかにゴムシート有りの方が揺れが少ないのがよくわかります。ビスの円形で考えてしまいがちなので、それほど大きな違いに見えないかもしれせんが、実際の星像は微恒星になるほど点になっていくので、示した画像のビスの黒線の「太さ」がどれくらい地面の揺れで成長するかを比べるべき、というところに注目すると、その効果の違いが実感できるかと思います。


定量的な評価

もう少し定量的に評価しましょう。いま、画像の揺れから計算すると揺れ幅は十秒間で15秒角くらい。一般的に地面振動は周波数密度で書くと1e-7/f^2 [sqrt(Hz)] 程度、街中なので一桁くらい大きいかも。ざっくり、1秒間で1μm、10秒間で3μm揺れるくらいの大きさです。地面振動の回転成分はよくわからないので、とりあえず赤道儀が地面震度で上記程度に揺らされて、中心で支えられている長さ50cm程度の鏡筒の前端と後端が同程度にランダムに揺れる様な回転成分になると仮定します。そうすると地面振動のみの揺れでも10秒間で

3e-6/0.5[rad]

くらい揺れることになって、角度に直すのに180/πをかけて、秒各に直すのに3600をかけてやると、

3e-6/0.5 x 180/pi x 3600 = 1.2[秒角]

共振でQ値が10程度と仮定すると12秒角となってしまい、もうすぐに画像で見たものと同じオーダーになってしまいます。普通、よく共振がダンプ(ロスに依る減衰)されたものでQ値が3-4程度なので、Q値が10というのはそれほどおかしい値でもないと思います。

結論としてはフルサイズ換算で焦点距離数千mmとかなってしまうようなDSOの撮影では地面振動が星像に影響してくると思っていいということでしょう。



驚くべきFC-76の結果

参考に、FC-76のものも載せます。MEADEの後に試したので、ゴムシートはすでに敷いてある状態です。ただし、焦点距離が短い分、画像が小さく画像が荒くなるので、上の画像と横幅が同じになるように拡大しています。なので3倍ほど荒いですが、同じ様な画角を見ていることになります。露光時間は(夕方で暗くなってきたので)長くなっていて5msです。

test_001L
ゴムシートあり、1コマ5ms。

output_compL
ゴムシートあり、10秒比較暗合成。

MEADEに比べて10秒たっても像の肥大が少ないことがわかります。これはやはり鏡筒の重さの影響だと考えられます。ちなにみ、10秒の方に見えている黒いポツポツは虫です。MEADEでは写らなかったのですが、FC-76の方がきちんと写っていたみたいです。


まとめ

これらの結果を見るとちょっと嫌になってきます。

鏡筒の揺れの影響で星像が制限されるので、、口径76mmが口径254mmに分解能で勝ってしまうという逆転現象が起きます。FC-76で撮影したときにカメラ上での解像度が荒く出るのは、焦点距離だけの問題なので、FC-76にバローを入れて焦点距離をMEADEに合わせてしまうと、より分解能よく撮影できてしまうという結果になってしまいます。まあ、光量では口径が大きい方がまだいいのは当たり前なのですが。

残念ですが、今の現状では事実なのでしょう。


先日、名古屋に帰省したときに生えてきたFC-76を、自宅に帰ってから実際に試してみました。

FC-76はフローライトレンズを使った口径76mm、焦点距離600mmのアポクロマート鏡筒です。往年のタカハシの作り込み感が半端なく、質実剛健、細部ものすごく丁寧、高級感に溢れていて、持っているだけでも満足感が満たされます。レンズキャップが鋳造物で、重いので下を向けると落ちてしまうと購入時に注意を受けました。キャップだけみても今では考えられないこだわりです。元々はファインダーもあったようですが、今回はファインダーはついていませんでした。でもどうせCMOSカメラで電子ファインダーにしてしまうので特に問題ありません。問題は対物レンズ。結構な白濁です。その分本当に、その場で決断できるくらい格安でした。

IMG_7068


レンズの白濁について

いろいろ調べてみると、この白濁現象は1987年くらいまでの初期のFCシリーズに使われたレンズの反射防止膜がモノコートだった時代のものに、時間が経つとどうしても起きてしまうようで、避けようがないとのこと。1987年より後の後期型のマルチコートになったものはこのような白濁現象は起きないとのことです。

白濁が起きる場所は、弱いと言われている2枚目のフローライトではなく、最初の一枚目の対物レンズの背面(接眼側)だそうです。確かによく見てみると、表面は綺麗。中のどこかが汚くて、ちょうどその表面に見えるレンズの裏面くらいの位置に見えます。

結構ひどいので、この白濁をなんとかできないか調べてみました。まずタカハシはもう清掃や再コーティングなどは受け付けていないようです。(2019年5月11日追記: スターベース東京で確認したところ、現在でも清掃、調整を受け付けているとのことです。)他のメンテナンス会社でも、いくつか清掃をしてくれるところが見つかりました。自分で分解して、レンズ研磨のようなことをして強者もいるみたいです。一眼レフカメラの昔のレンズの白濁除去で探すと、アルカリ溶液でコーティングを除去してしまう例も見つかりました。

おそらく今回のものはコーティングの劣化なので、コーティングを除去してしまえば白濁は無くなるだろうと予測しています。その代わり反射防止の効果がなくなるので、一般的には4%ほどの反射が出てしまいます。ARコートは普通1.数%の反射率に抑えてくれるので、3倍くらいの反射光が出ることになります。大したことないかもしれませんが、多重反射でゴーストにもつながるので注意が必要です。

あと、自分で分解してクリーニングする場合には、光軸調整をきちんとして元に戻さないとダメなようです。私は屈折の光軸調整はごくわずかしかなく、全然自信がないのが正直なところです。これを機会に屈折の光軸調整に挑戦してもいいのかとも思いますが、タカハシなのでやはり躊躇してしまう気持ちもあります。まあとりあえずこの白濁が実際にどれくらい影響するかよくわからないので、まずは一度覗いてみることにしました。


FC-76の実際の見え味

IMG_7076

接眼側から対物側を覗いても、白濁がはっきり分かるので心配でした。とりあえず手持ちのタカハシの鏡筒バンドでサイズが合うものに取り付けて、アリガタを噛ませて赤道儀に載せました。アイピース口も元々25.4mm用ですが、手持ちのVixenの31.7mm交換アダプターで現行のアイピースが使えるようにします。アイピースはとりあえずそこらへんにあった、Vixenのポルタに付属の格安のものです。

昼間の景色を見てみます。白濁のひどさからあまり期待していなかったのですが、覗いた瞬間、その見え味にうっとりしてしまいました。もちろん白濁の影響はあるのでしょうが、アイピースで見ている限り全く気になりません。多分コントラストは落ちているのでしょう。確かに少し眠い気もします。それでも収差の少なさ、カリッカリの分解能の良さ、これで2諭吉さんちょっとなら十分すぎるくらいの性能です。FS-60Qでもそうですが、やっぱりフローライトっていいんですかね。分解清掃はもっと白濁が耐えられなくなるくらい進むまでしないことにしました。電視観望用にと考えていましたが、この分解能だともったいないくらいです。新型フラットナーを持っているので、うまくいくと撮影にも使えそうです。

試しにFC-76にASI294MC Proをつけて直焦点で撮影してみました。.serファイルで動画で撮影した一枚をjpegにまで落として、上下ひっくり返したものです。画像処理は何もしてません。拡大してみるとわかりますが、遠くのBSアンテナの4つのビスまできちんと写しこんでいます。ぱっと計算すると、ビスの直径が13秒角くらい、ビスの円を描いている黒線が3秒角くらいで、これだけみるともう少し出てそうです。3秒角でもすでにエアリーディスク径の2倍くらいなので、まあ相当なもんです。

test1

実は同じ構図でMEADEの25cmと比較していたのですが、分解能は口径と焦点距離の分FC-76が不利なはずなのに、口径差3倍以上でもFC-76も決して負けていません。焦点距離を合わせたら口径の差は消えてしまいそうなくらいです。それよりも考えさせらたのは画像の安定度で、軽いこともあるでしょうし、光軸調整が流石にタカハシレベルなのもあるのでしょうか、むしろFC-76の方がブレないです。この件もう少しまとまったらまたレポートします。

というわけでかなり使えそうなので、まずは鏡筒バンドとアリガタプレートなど、実戦配備に耐えうるように少し予算を割くことにしました。


GW特集の記事、もしかしたらもう一本書くかもしれませんが、こちらはちょっと時間がかかるかもしれません。

星座用のビノがたまってしまいました。いつの間にやら7個です。今回は実際に見たときの感想も含めて、それぞれレビューしてみます。

IMG_6951
左上から下に向かって、
WideBino28(新)、WideBino28(旧)、星座望遠鏡(双眼)、星座望遠鏡(単眼)、
右に移ってテレコンビノで、cokin、JAPAN OPTICS(?)、Nikonです。

IMG_6948
接眼レンズ側です。cokinのレンズ径の大きさが群を抜いています。



IMG_6926
ケースやキャップなども一緒に。順序は上と同じです。

タイトルには星座用ビノと書きましたが、正式な一般名称がよくわかりません。もともと2倍テレコンを利用して自作していたのが主流だったこともあり「テレコンビノ」と呼ばれていることもあります。商品名になるのでしょうが「星座望遠鏡」は分かり易い名前だと思います。でも一般の人にはそれでもなんのことやら、星座用の望遠鏡って???だと思います。「星座観察用双眼鏡」なんて長い呼び方もあるようです。とりあえずここでは「星座ビノ」と呼ぶことにします。


星座ビノとは

ここで少し、どれくら星座ビノがすごいのか説明しようと思います。まずこれらのビノを昼間にのぞいてもほとんどその価値はわかりません。ちょっと拡大されるだけで目で見るのとあまり変わらない。なんでこんなものにこんな値段を出すのか、全くわからないと思います。実際私がそうでした。原村の星まつりで昼間にのぞいても全然理解できなかったのです。でもこれを夜に、しかもある程度の光害地で使うと評価は全く変わります。大抵は「何これ!」「めっちゃくちゃ見える!」「こんなに星があるの!」と驚嘆の声を上げることでしょう。


見える星が増える理由 

見える星の数が増える理由はひとえに低い倍率にあります。普通双眼鏡というと10倍とかそこそこの倍率で、一見倍率が高い方がいいと思ってしまうかもしれません。ところが星座ビノの倍率はどれも2倍程度です。この2倍というのが非常にバランスが取れた倍率なのです。2倍の倍率ということは、2x2=4で4倍暗い星まで見ることができます。これはビノをのぞいたときに一辺2倍の長さに拡大してみるということなので、面積で考えると4倍に拡大してみることになります。すなわち明るさは4分の1になるわけです。ところが星は点光源なので、面積がなく広がらないために明るさは変わりません。星の明るさは変わらず周りの明るさを4分の1にするので、4倍暗い星まで見えるということになります。

では4倍暗い星(明るさが4分の1倍の星)とはどういうことでしょう?星は等級という単位で明るさを表します。都会や光害地では肉眼ではせいぜい2等星程度までしかみることができません。3等星まで見ることができればまだそこそこ暗いところになりますい。この等級という単位、2等級の差があると明るさは5倍違います。星座ビノでは4倍くらいの暗い星を見ることができるので、ざっくり2等級近く暗い星まで見ることができます

では等級ごとにいくつくらいの星があるのでしょうか?

1等星:21個、2等星:68個、3等星:183個、4等星:585個、5等星:1858個、6等星:5503個

だそうです。たとえば2等星までしか見えない都会や光害地では約90個の星が見えます。これが2等級余分に見えるようになって4等星まで見えるとすると、約850個にまで見える数が増えます。なんと約10倍の数の星が見えるのです。実際には上の表には南半球で見える星も入っているので、数としては半分程度ですが、10倍近くの数の星が見えるようになるということは変わりません。高々2倍倍率を上げるだけで、10倍近くの星の数が増えるというのだから効率がものすごくいいのです。

では調子に乗ってさらに倍率を上げたらどうでしょうか?確かにより暗い星までみえるので、見える星の数は増えます。が、今度は視野が狭くなって「一度に」見える星の数が減ってきます。しかも狭い範囲を見ることになるので、いったい空のどこを見ているかがわからなくなってくるでしょう。この2倍程度という倍率は、大多数の星座の一つ一つがすっぽり視野に入るくらいの倍率なので、自分がなんの星座を見ているかすぐにわかるのです。しかも星座にある小さな星まで見えてくるので、星座早見盤と見比べながら星座を自分で一つ一つ確認して形をトレースすることができます。自分でやってみるとわかりますが、これはかなりおもしろいですよー。星座ってホントにこんな形を結んでできているんだと実感することでしょう。こんな理由から「星座」ビノなんて呼ぶのが適しているのかと思います。

2倍という倍率は本当に微妙で、覗いてみてもあまり視野が狭くなった気がしません。もちろん視野は狭くなっているのですが、人間の目が焦点を合わせられる範囲はそれほど広くはないので、ちょうどそこらへんの範囲と、星座ビノで視野が狭くなる範囲が一致するくらいにあるためだと思います。一方星の数は上の理屈通り、本当に増えて見えます。これはびっくりするくらい増えたように感じます。「わー、こんなに星が隠れてたんだー」という言葉を発したくなるくらいです。

さて長くなりましたが、いよいよレビューといきます。まずは現行機種で、簡単に手に入れらるものからです。


現行機種

WideBino28

販売: 笠井トレーディング
倍率: 2.3倍
口径: 公称40mm (対物側が実測で39mm、接眼側が実測で8mm)
入手方法: アマゾン、各種天文ショップ
値段: 1万6千円程度

長所: 入手しやすい。歪みは少ない。おすすめ。
短所: 接眼側の径が小さい。ピント合わせが軽いので首からぶら下げておくと服とかに当たってずれる。光軸中心から目がずれると大きくぼやける。現行機種の中では少し値段が高いほう。


IMG_6932

IMG_6936


私が一番最初に手に星座ビノです。星を始めた年の原村の星まつりで見たのが最初です。もっとも、その時は価値を全く理解できずに、「なんだ大して拡大もしないのに高い双眼鏡だなと」思ってしまいました。望遠鏡で暗い星が見えるようになる理由がわかってから、天の川を倍率の低い双眼鏡で見たらどうなるのだろうと思った時に、初めて「あ、だから原村であんなのが売ってたんだ!」とやっと理解できてすぐに入手しました。

もともと笠井トレーディングからの販売で、私はKYOEIで買いましたが、一般の天文ショップでも売っています。今ではAmazonで手に入れられるとのことで、とても入手しやすくなっています。たまにヤフオクとかで元の笠井よりも高額な値段をつけてあることがありますが、専門業者でもなんでもないところが高く売りつけようとしているだけなので、こんなところでは買わないように注意してください。

とても見やすく、値段もそこそこ。入手性もよく、一番おすすめです。ピントも合わせやすいですが、つまみが軽くて、首からぶら下げていると服とかに当たって勝手につまみが回ってしまい、ピントがずれてしまうことがよくあります。見え方も特に不満なく、よく見えます。倍率も2倍より少し高いので、多少暗い星まで見ることができます。

接眼レンズが少し小さいのですが、視野に関しては特に不満はありません。光軸中心から目の位置がずれると大きく像がボケるのが気になります。なんでこんなことを書くかというと、子供はなかなか上手く光軸中心に目を合わせられないからです。子供は最初はピントを合わせるのさえも難しいです。大人なら多分全く問題ないです。

私としては入手性や見え方なども考え、これが一番おすすめで、とにかく迷ったらこれです。


星座望遠鏡(単眼、両眼)

販売:  スコープテック
倍率: 1.8倍
口径: 公称40mm (対物側が実測で42mm、接眼側が実測で20mm)
入手方法: アマゾン(単眼双眼セット)、各種天文ショップ
値段: 単眼7千円程度、両眼1万4千円程度

長所: 現行機種では接眼側のレンズ径が大きい。入手しやすい。日本での開発、設計で、スコープテックが日の出光学に持ち込んで企画したもの。単眼だと一番安価(ただし、この記事を書いている間に笠井から最安値のCS-BINO 2x40が販売されました)。
短所: 周辺が少し歪む。

IMG_6935

IMG_6934

IMG_6937

発売は2017年だったと思います。原村星まつりで販売された直後のものをスコープテックのブースで手に入れました。もともと単眼で売っていたものを、去年2018年の原村の星まつりの頃に両眼アダプターの販売が始まりました。2つとアダプターを買うと双眼になるというものです。私は双眼の方も原村の星まつりで手に入れました。今では双眼用のセットとして、2つとアダプターが一緒になって売っているようです。

私が買った時は全部単眼(合計3つ)でレンズキャップがついてこなかったですが、今は単眼のものは対物側のキャップは付属するみたいです。でもアマゾンの写真を見ている限り、双眼セットにはキャップがついてこないように見えますが、どうなのでしょうか。

倍率が1.8倍とより視野を広く取れる代わりに、暗い星までは少し見えにくくなっています。光軸ずれに対しては上のWideBino28よりはるかにマシですが、周辺像が少し歪みます。でも実は、星座ビノ一般に言えることですが、歪みは昼間は目立って気になるかもしれませんが、夜に星を見ているとそこまで気にならないです。

値段が安いのも特徴で、試しに単眼でというなら7千円程度で購入できます。倍率も低いのであっさりした見え味が特徴でしょうか。でもこのあっさりというのは、コストも考えたらなかなかできるものではなく、日本のメーカーという特徴が出ている一品だと思います。とりあえず単眼で試してみたいというのならこれ一択です。


その他、現行機種

現行機種でまだ購入していないものが2つ (3つ?) あります。VixenのSG2.1×42とサイトロンの星空観測双眼鏡Stella Scan 2x40です。Vixenのは現行機種では結構高めなのと、サイトロンのは店舗に行ったときに何も欲しいものがないときに買おうと思ってとってあります。特にサイトロンのものはケーズデンキで購入することもできるので、天文ショップなどがないところでも、実際のものを見て決めることができると思います。これらはいつか購入したらまたレビューしたいと思います。

さらにこの記事を書いている間に、つい先日WideBino28を販売している笠井トレーディングからCS-BINO 2x40という星座ビノが発売されましたが、どうやらこれはサイトロンのものと同等の色違いらしいという噂があるのですが、実物を見たわけではないのでわかりません。単眼でも販売しているようで、価格もかなり戦略的なものになっていて、星座望遠鏡よりも安価になっているようです。(追記: 初出でCS-BINO 2x40の販売元を間違ってしまいました。ご迷惑をおかけしました。)


旧型機

ここからは現在では普通には販売されていない、多少入手困難なものです。入手順に書いていきます。普通のお店で手に入れるのは難しくなりますが、それでも特筆すべき特徴を持ったものもありますので、参考に書いておきます。


旧型WideBino28

まずはWideBino28の旧型。

販売: 笠井トレーディング
倍率: 2.3倍
口径: 公称40mm (対物側が実測で39mm、接眼側が実測で8mm)

長所: 歪みは少ない。
短所: 接眼側の径が小さい。光軸中心から目がずれると大きくぼやけるのは現行機種と同じだった。

IMG_6940

IMG_6941

三重県のアイベルに行ったときに入手しました。現行機と違って白色がベースです。笠井のページで見ると、旧型機でも黒いので、さらにもう少し昔のもかと思われます。適合目幅や重量など多少違いはありますが、倍率など大きなところは同じです。見え味も現行機とほとんど変わらない印象です。中古のせいか、紐がついていなかったりキャップがなかったりします。安く入手できるのでなければ、現行機を買ったほうがいいかと思います。



テレコンビノ

ここからはテレコンビノと呼ばれる、デジタル用の2倍程度のテレコンを双眼用に自作したフレームに取り付けたものになります。基本的にピントを合わせる機構がないので、目が悪い人は星もボケて見えてしまいます。その代わりにレンズ径が大きいので、メガネをかけても視野が狭くなりません。目が悪い人はメガネをかけて見るほうがいいです。


cokin テレコンビノ

販売: ケンコートキナー (DIGITAL TELE LENS-200-52mm)
倍率: 不明、実視ではSCOPTEHCの星座望遠鏡とほぼ同じなので1.8倍?
口径: 対物側が実測で65mm、接眼側が実測で38mm

長所: とにかくレンズ径が大きい、ピント合わせをする必要がない(できない)ので、子供でも扱いやすい。
短所: 周辺ひずみが大きい。分解能が少し劣る。

IMG_6942

IMG_6943

cokin製の2倍のテレコンを利用した自作のビノです。昨年の小海の星フェスで、趣味で作っているという方から手に入れました。このビノの特徴はとにかくレンズ径が大きいことです。対物側も大きいのですが、接眼側もそれに負けないくらい大きいのが特徴です。そのためすぐに星を視野に入れることができて、ほとんど迷うことなくすぐに見ることができます。初心者の方、特に子供に大人気です。観望会でも「これが一番いい」という方が多いです。欠点はピント調整ができないこと。これはテレコンビノに共通で、私はこのピント調整ができないということを最初知らなくて、購入してから「あ、しまった」と思いました。ところが意外や意外、観望会では調整をする必要がない(できない)ので、逆に扱いやすく、これも一番人気の理由です。このことが元で、もっとテレコンビノが欲しくなり、下の2種を最近ヤフオクで落としました。

ピント調整ができないと言っても、パンフォーカス(被写界深度を深くする事によって、近くのものから遠くのものまでピントが合っているように見える)なので、調整がないこと自体は気になりません。それでも目が悪い人はそれなりにしか見えないので、眼鏡をかけて見たほうがいいです。私は最近度が進んでしまっていてメガネがあまりあっていないので、ちょっとボケてしまいます。

見え味ですが、レンズが大きく見やすいのはとてもいいのですが、かなり歪みます。夜だとあまり歪みが気にならないのと、レンズ径が大きいのには代え難い扱いやすさがあるので、もし入手できるのならこれはかなりおすすめです。ただ、分解能が少し劣るのを不満に思う方がいるかもしれません。


メーカー不明 テレコンビノ

販売: 不明、JAPAN OPTICS? (DIGITAL HIGH DEFINITION 2X TELEPHOTO LENS)
倍率: 公称2倍?、実視ではSCOPTEHCの星座望遠鏡とほぼ同じなので1.8倍?
口径: 対物側が実測で45mm、接眼側が実測で31mm

長所: ひずみが少ない。軽い。安価だった。
短所: 多分入手がすごく困難。色収差が目立つ。分解能が少し不満。

IMG_6952

IMG_6953

まだ購入したばかりなので、実戦では使えていません。でも明るいところで見る限り、歪みとかは少ないです。あえていうなら少し色収差が大きく、分解能が他と比べると足りないことがわかります。


Nikon TC-E2 テレコンビノ

販売: Nikon (Tele Converter TC-E2 2x)
倍率: 公称2倍、実視ではSCOPTEHCの星座望遠鏡より倍率は高く、笠井WideBino28よりは倍率が低い。
口径: 対物側が実測で52mm、接眼側が実測で17mm

長所: ほとんど文句がない。キリッとしていて、ひずみも少ない。意外に入手しやすい。
短所: 中古だが、最近レンズ単体が高騰していて高い。

IMG_6954

IMG_6956

念願のNikon TC-E2を使ったテレコンビノをやっと手に入れることができました。以前、小海で実物を見せてもらったのですが、見え味は素晴らしかったです。その時は他に買いたいものもあり手が出ませんでしたが、ヤフオクで手の届く値段で出ていたので今回落札しました。ところが、フレームの作りやパッケージがcokinのテレコンビノとよく似ています。もしやと思ってヤフオクで連絡を取ってみたら、小海でcokinを売ってくれた方と同じ人で私のことも覚えていてくれていたらしく、Facebookでも友達になってしまいました。この方はまだいくつもNikonのTC-E2を持っているとのことで、最近フレームを大量に作ったのでこれからもいくつか販売するらしいです。フレームを自作するのは結構大変そうなのと、テレコン自身も高騰しているのですが、こういった方から入手できるというのはありがたいことです。

見え味は改めて見ても素晴らしいです。歪みも色収差も少なく、これがテレコンの最高峰と言われている理由がよくわかります。接眼側のレンズ径がcokinには負けているので、子供とかの評価ではパッと見の視野は負けるかもしれませんが、大人なら間違いなくこちらの方が見え味に納得すると思います。


まとめ

7機種(実質はWideBino28が新旧の違いだけ、星座望遠鏡が双眼と単眼の違いだけなので5機種)をじっくり見比べてみました。1機種だけだとあまり気にならないことも、さすがにこれだけ一度に見比べると違いがよくわかります。Nikonは間違いなく見え味は最高でしょう。ピントを合わせられないのが唯一の欠点と思えてくるくらい、本当に素晴らしいです。今ならまだ入手することもそれほど難しくはありません。笠井のWideBino28は現行機種の中ではおすすめです。SCOPTECHの星座望遠鏡は双眼で買っても2つの単眼として二人で使うこともできるのでお得です。私は持っていませんが、サイトロンのStella Scanは全国にあるケーズデンキで実物を見ながら購入できるので、こちらもいいかもしれません。

色々比べましたが、基本的にはどの機種を持っていっても、実際の星空を見ればびっくりするでしょう。本当に「こんなに星が隠れてたのか!」というのを実感できるはずです。一般の方にはこんな小さな双眼鏡にしては少し高価に感じるかもしれませんが、下手な望遠鏡とか、倍率の高い双眼鏡よりもはるかに楽しかったりします。まだ経験されたことがない方は、騙されたと思って是非とも一度お試しください。

つい最近(2019/3/24)、Stellariumが0.19.0にバージョンアップされました。最近Stellariumがかなりすごいです。


星雲星団の実画像表示

星雲星団の実画像の充実に気づいたのは何ヶ月か前、バージョン0.18.2から0.18.3にアップデートされた時(アップデート自身は2018/12/22)です。ちょうどプラネタリウムソフトで星雲や星団がきちんと写真レベルで表示されないかなと思って色々試している時でした。撮影時の実際の星雲の広がり具合とかをあらかじめ比べたかったからです。あれ、0.18.3になってなんか綺麗な画像が増えたなと思って当時ちょっと調べてみました。Mac版の場合、アプリケーションフォルダの中のStellariumのファイルを右クリックして、「パッケージの内容を表示」で、Contents->Resources->nelulae->defaultの中を見ると、実際の星雲星団の画像がたくさん入っているのがわかります。

IMG_6850

上の写真の一番下のファイル数で比べると、0.18.2->0.18.3で248ファイルから439ファイルと倍増近くになっています。0.18.3->0.19.0は439->473と数はそれほど増えたわけではないですが、細かく見ると画像のクオリティが上がってたりするのがわかります。

IMG_6851
左が0.18.3付属のIC1805、右が0.19.0のもの。
サイズは1MB->509kBと小さくなっているのに、
クオリティは明らかに上がっている。

例えばオリオン座のM42です。Stelalrium上でかなりの画質で表示させることができます。

IMG_6842

これを見るとトラベジウムあたりは飛んでいってしまていますが、拡大すると徐々に画像を消すなどしてうまくトラベジウムが見えるようにしているようです。

IMG_6844

それでも星雲の画像を表示させたくないときもあると思います。そんな時は、右の端にカーソルを持っていくと出てくる「設定画面」から「Extras」タブで「星雲の背景ボタンを表示」にチェックをしておいて、カーソルを画面下に持っていって出てくる「深宇宙の背景画像」をオフにしてやれば下の画面のように画像を消すことができます。

IMG_6852

まだ一部もやっとした光も残っていますが、これは天の川の一部として低解像度で表示されているものです。これも右端で出てくる「空と表示の設定」から「空」タブで「Milky Way brightness/saturation」をオフにすると完全に消すことができます。


自分の持っている機材で視野角を確認

さて、前項のこういった星雲や星団の実画像があると何が便利なのか?それは撮影時の実際の視野角と簡単に比較することができるからです。

ご存知の方も多いと思いますがStellariumでは自分で持っている機材を登録して、視野を直接画面の中に表示することができます。右上の左から二番目の四角の枠だけのアイコンを押すと、画面の中に赤い枠が出てくると思います。これが現在設定されている視野です。これを自分の持っている機材に変更します。同じく右上の一番右のアイコンを押します。タブに「望遠鏡」、「補正レンズ」、「CCD」、「アイピース」がありますが、それぞれ設定します。「望遠鏡」は鏡筒、「補正レンズ」はバローレンズやレデューサなど、「CCD」はCCDカメラやCMOSカメラ、一眼レフカメラでももちろん構いません。赤道儀の機能は「望遠鏡」のところの「赤道儀」をクリックします。実際の視野の回転は「CCD」のところの「回転角(度)」で調整します。ここは大抵0度か90度ですね。

いくつか鏡筒やカメラを登録すると、右上の左から二番目の四角アイコンを押した時に、登録した機材を画面を見ながら変更することができます。この時、星雲の実際の画面があると、どれくらいの視野で、どのような機材で撮影すればいいのかが一発でわかるのです。


他波長での背景表示

もう一つ面白い機能を紹介します。多波長で空を見た場合、その画像をStellariumの背景として表示させることができます。これはバージョン0.18.0から搭載された機能で、まだテストレベルのようです。

画面右端で出てくる「空と表示の設定」から「Surveys」タブで「Deep Sky」を選び、ズラーっと出てくるリストが衛星や観測装置など研究レベルで撮影されたデータになります。たくさんあるのですが、アマチュア天文で撮影に使用する場合はほとんどがあまり関係なく、この中でお勧めできるのは「DSS colored(2つあるうちの下の方の)」と「DSS2 Red(F+R)」です。

IMG_6846
DSS colored

IMG_6848
DSS2 Red(F+R)

上のように分子雲モクモクの背景を表示させることができます。写真ではカラーの方が見栄えが良くなってしまっていますが、実際のPCの画面ではモノクロの方が見やすいかと思います。特に構図を決める時はかなり狭角で見ることになるので、モノクロの方がより分子雲の度合いがわかります。一方、広角で見る場合はモノクロの場合はつぎはぎになってしまうのでカラーの方がお勧めです。

この画面を表示させるためにはもう一つやることがあります。このやり方が最初どうしてもわからなくてしばらくの間ずっと画像を表示できなくてやきもきしていたのですが、色々調べてやっとわかりました。画面右端にカーソルを持っていくと出てくる「設定画面」から「Extras」タブで「Show HiPS button」をオンにして、画面下に出てきた「Toggle Hierarchical Progressive Surveys (experimental)」をオンにすると、やっと上のような画像が出てきます。でもこの機能はとても重いのと、多分データをその都度ダウンロードしているようなので、ある程度早いCPUパワーとネットワークが必要になるかと思います。

IMG_6845

他に面白いのは、「IRAS IRIS HEALPix survey, color」でしょうか。天の川全体を表示させるような場合は、IRAS IRIS HEALPix survey, color上のDSS coloredのように、カラー化されたものの方が見やすそうです。

IMG_6849
IRAS IRIS HEALPix survey, color

Surveysの方のリストはたくさんありすぎて私も全部は見ていません。いくつかのデータは表示してもほとんど何も変化がなかったりもするので、もしかしたら多少加工しなければ見えないようなデータもそのまま表示してしまっているのかもしれません。もしリストの中で他にも撮影の役に立ちそうなものがあったら、コメントなどで情報共有してもらえるとありがたいです。

あと全く別の同様の機能に、「デジタル・スカイ・サーベイ(DSS)ボタン」があります。こちらも画面右端にカーソルを持っていくと出てくる「設定画面」から「Extras」タブで設定できます。画面下に出てきた「デジタル・スカイ・サーベイ(TOAST)」ボタンを押すと、分子雲なども多少見ることができる背景が表示されますが、「Survey」で表示されるものの方が見やすいかと思うので、あまりこの機能はお勧めしません。

いずれにせよ、上の両機能ともものすごく重いので、お勧めの表示のさせ方を書いておきます。
  • まずプラネタリウム表示の時間経過を止める。画面下の三角ボタンを押すと止まります。
  • 画面を移動する時には、両機能ともオフに。
というくらい気を使うことになると思います。

また、最近のステライメージも最新版では多波長に対応しているとのこと。おそらく、画像を多少加工してあるのでしょうか、ステライメージの方が見やすくなっているようなので、こちらもお勧めです。

分子雲モクモク画面を見ていると、かなり構図決定の参考になるかと思います。これからもこういったものを撮影に活用していければと思います。

 

もう先々週になってしまいますが、3月8日金曜日の帰宅後、ちょっと疲れていたのですが新月期で天気も良かったので、かねてより試したかったAZ-GTiによる2軸ガイドを試してみました。これができると、かなり軽量コンパクトな撮影システムになるので、海外や登山でも持っていけそうです。

撮影対象はM42、オリオン大星雲です。画像処理に時間がかかってしまったので、記事にするのに時間がかかってしまいました。撮影結果を先に示しておきます。本来ガイドを試して星像を見るテストなのですが、今シーズン最後のオリオンになるだろうことと、撮影時間1時間弱にしてはそこそこ出たので、AZ-GTiで(まだまだ稚拙ですが)ここまでは出るという指標として、きちんと画像処理までしたものをあげておきます。

light_M42_PCC_maskstretched_ok_HDR_dark

富山県富山市下大久保 2019/3/6 21:23-23:04
f=600mm, F10 + AZ-GTi(赤道儀モード)
EOS 6D(HKIR改造, ISO3200, RAW)
300sec x 11frames 総露出時間55分 + HDRのため3sec x 12
PixInsight , Photoshop CCで画像処理




AZ-GTiのこれまでの経緯

これまで、これまでAZ-GTiを赤道儀モードも含めていろいろ試してきました。
  1. AZ-GTiのファーストテスト
  2. AZ-GTiの赤道儀化(その1): ハードウェア編
  3. AZ-GTiの赤道儀化(その2): ソフトウェア編
  4. AZ-GTiの赤道儀化(その3): 極軸調整とオートガイド
  5. AZ-GTiの赤道儀化(その4): Stick PCでのガイドとTips

実際4のところでガイドも試していますが、露光時間が30秒と短すぎたのでまだちゃんとしたテストにはなりませんでした。その後、この赤道儀モードでもう少し時間をかけた撮影を試みました。
  1. 昨年11月2日にAZ-GTiの赤道儀モードでノーガイドでテスト。
  2. 11月3日にAZ-GTiの赤道儀モード2軸ガイドに挑戦するが、接続問題で断念。
  3. その後、ブログの記事にはしていませんが、11月15日に少しくらい山の方に行ってAZ-GTiの赤道儀モード2軸ガイドに挑戦するが、ISO1600、3分で13枚だけとって、そのうち成功はわずか2枚、Maybeが5枚で、失敗6枚とほとんどダメだったので、検証は失敗。原因は風が強くて全く点像にならず。
と、現状はこういったところです。

この頃はまだQBPフィルターを手に入れる前なので、自宅ガイド無しで露光時間90秒が最長、山の中のガイドありでも3分が最長で、その代わり特に自宅だと露光時間の短さを補うためISOが6400と高めです。それからだいぶん日にちが経ってしまいましたが、今年の目標の中にはまだAZ-GTiの赤道儀モード2軸ガイドは入っていました。なかなか天気が良くなかったり、途中レデューサーフラットナーのテストも入ったりしたのですが、それらのテストも一巡して、FS-60CBだった鏡筒もやっとエクステンダーを付け直して、焦点距離600mmのFS-60Qに戻りました。やっと久しぶりのテスト再開です。


目標

さて、この「AZ-ZGiでの2軸ガイド」計画の目標ですが、具体的には
  1. 焦点距離600mmの鏡筒をAZ-GTiの赤道儀モードで稼働し、2軸のガイドを実現すること。
  2. フルサイズのカメラで撮影して、少なくとも3分以上の露光で、赤道儀起因の流れが十分無視できる程度の撮像が得られること。
  3. 撮影枚数のうち、8割以上の成功率を実現すること。
の3つです。これは海外へ行く時など、できる限り軽量で実用的な撮影ができるという条件から設定しています。この目標が達成できれば、十分海外へ持っていっても使い物になると考えることができます。

1については上で書いたように、赤道儀化テストの4番目や、昨年11月15日にシステムとしては稼働しているので、すでにほぼ目標達成です。2については上記の3に書いてあるように、3分で2枚だけ成功しているのですが、風が弱かった時での成功で、もしかしたらピリオディックモーションがたまたま小さかった時のみの成功かもしれません。なので主にここからの検証です。

機材とソフトウェア

  • 鏡筒: タカハシ FS-60Q (口径60mm, 焦点距離600mm)
  • 赤道儀: AZ-GTiを赤道儀モードで使用
  • センサー: Canon EOS 6D(HKIR改造)、ISO3200、露光時間5分x11枚、計55分 + HDR合成のため、3秒x12枚、バイアス画像100枚、ダーク画像5秒x15枚、フラット補正無し(撮影後、フラットを撮る前にセッティングを変えてしまったため)
  • 初期アラインメントおよび追尾ソフトウェア:iPhone上でのSynScan Pro、その後Windows10上のSynScan Pro
  • 自動導入および視野確認: Carte du Ciel + SynScan Pro AppのASCMOドライバー、Astro Trotilla + BackyardEOS
  • ガイド時のソフトウェア: Windows10上のSynScan Pro AppのASCMOドライバーにPHD2 + BackyardEOSでガイド+ディザー撮影
  • ガイド機器: ASI178MC + 50mm Cマウントレンズ
  • フィルターサイトロン Quad BP フィルター(クアッド バンドパス フィルター、 以下QBP)
  • 撮影場所: 富山県富山市下大久保
  • 日時: 2019年3月6日、21時23分から
  • 月齢: 29.6(新月)、天気快晴、風が少々
  • 画像処理: PixInsight、Photoshop CC


セットアップ

まずはAZ-GTiを赤道儀モードで稼働させることが前提です。経緯台モードでも2軸ガイドができるという情報もありますが、私はまだ試したことがありません。

AZ-GTiでの2軸ガイドのポイントの一つは、SynScan App用のASCOM driverをインストールして、PHD2からのガイド信号をSysScan経由でAZ-GTiにフィードバックすることです。すなわち、PC上で信号のやり取りはほぼ済んでしまうために、ケーブルとしてはガイドカメラからのUSBケーブル一本、あとは今回の場合BackYard EOSを使ってディザーガイドをしているため、PCとEOS 6DをつなぐUSBケーブルが一本の、計2本です。AZ-GTiの電源は乾電池で内臓、EOS 6Dの電源も電池のため内臓で、AZ-GTiの駆動はWi-Fi経由なので、本当にケーブル2本、もしディザーをしなくてカメラ単体でとるのならわずかケーブル1本での2軸ガイドが可能です。

さらに今回の場合、Stick PCを使い、PC自身も三脚あたりに取り付けてしまったため、本当にコンパクトな2軸制御システムとなりました。Stick PCの操作はWiFi経由なので、自宅からぬくぬくと撮影、モニターをすることができます。


実際の撮影

極軸合わせはいつも通りSharpCapで行いました。一つだけポイントを挙げておきます。

AZ-GTiは構造的にそこまで頑丈ではないです。SharpCapの極軸合わせで90度視野を回転させる場合、手で回す際はウェイトバーがついているところのネジを緩める必要があるのですが、その時全体が大きくたわんでしまいます。90度回す時はモーターで回転させた方がはるかに精度が出ます。

さて、実際の撮影はフル自動導入の赤道儀とほぼ同様に扱うことができます。これは、Carte du CielなどのプラネタリウムソフトでAZ-ZTiを制御して自動導入することもできますし、Astro Tortillaなどでplate solvingすることもできるので、撮影した写野から位置を特定することもできることを意味します。ようするに、操作性だけ言えば大型で高機能な赤道儀に全然遜色ないということです。

視野が決まれば、あとは撮影です。QBPを使っているので、5分露光くらいまでは十分耐えることができます。ISOは3200としました。撮影中は自宅にいたのですが、今回は星像が気になってしまい、仮眠をとったりすることができませんでした。というのも、最初のうちはガイドは非常に安定していたのですが、30分くらいしてからガイド星の位置が結構頻繁に飛びはじめたのです。しかもピリオディックモーションが出ないはずの赤緯の方です。時に上に行ったり、時に下に行ったり、ガイドがかなり頑張って補正しているようでした。何か調子が悪いのかと思って外に出たらすぐに納得しました。明らかに風が強くなっていたのです。どうやらAZ-GTiは、撮影レベルになるとやはり外乱の影響を受けやすくなってしまうようです。もちろん三脚などでも変わると思うので、もう少し大型の三脚に載せてもいいかもしれませんが、それだと売りのコンパクトさが損なわれてしまいます。使えるのは風が強くない日限定でという制限をつけた方がいいかと思います。

この頃は冬も終わりに近づき、オリオン座も西に傾く時間がはやくなってしまっているので、結局撮影に使えた時間は21時半くらいから23時くらいまでと1時間半で、総露光時間は55分と1時間を切ってしまいました。


撮影結果

結局14枚撮って(ただし、撮影最後の西に沈んで影になった3枚はカウントから覗きました)11枚が成功でした。と言っても衛星が大きく通った一枚も失敗とカウントしたので、星像という意味では実際には14枚中12枚が成功と言っていいと思います。86%の成功率なので、目標達成といっていいでしょう。

隅の星像を(自作プログラムを改良して8隅が出るようにしました。)拡大してみます。大体のガイド性能までわかると思います。ただし、AZ-GTiのそもそものピリオディックモーションが+/-75秒程度とかなり大きいので、ガイドをしてもその影響を取り去ることはできません。また、風の影響も多少あります。

星像がまともと判断したものの中でベストに近いもの。まあまあ、丸になっていますが、やはり完全ではなく、わずかに斜め方向に伸びています。

M42_LIGHT_6D_300s_3200_+7cc_20190308-21h47m38s110ms_8cut


星像がまともと判断したものの中でワーストに近いもの。ここら辺までが許容限界としました。スタックすると多少は平均化されるのですが、拡大すると明らかに縦方向に伸びています。主に風の影響です。

MAYBE_M42_LIGHT_6D_300s_3200_+6cc_20190308-22h50m46s955ms_8cut


また、下のように風の影響で星像が2つに分かれてしまっているものもあります。一瞬大きな風が吹いたのかと思われます。これはもちろん使えないとしました。

BAD_M42_LIGHT_6D_300s_3200_+6cc_20190308-22h57m53s875ms_8cut


画像処理

画像処理は今回のテーマでないのですが、1時間弱にしては結構出すことができたので少しだけ書いておきます。

結果は一番上の画像を見ていただくとして、とりあえず処理してみると分子雲が結構出てきたので、少し強調してみました。露光時間が短いのでまだ粗いですが、自宅撮影でQBPがあればここら辺までは出せることはわかりました。また、青を出す方法も少しわかってきました。といっても、トーンカーブで青の真ん中らへんを持ち上げるだけですが。やはりQBPだと青色が出にくいので、少し強調してやる必要がありそうです。

最後に、全てスタックして画像処理をした画像(一番最初に示した画像)の星像です。やはり、ごくわずか縦長になってしまっています。どれくらい歪むかは風の強さによるかと思いますが、あとは歩留まりで調節するのかと思います。私的にはここら辺までなら、まあ許容範囲です。

light_M42_PCC_maskstretched_ok_HDR_dark_8cut




まとめ
  • AZ-GTiの赤道儀モードで、PHD2とSynScan用のASCOMドライバーを使った2軸ガイド撮影はそこそこ実用レベルで使用することができる。
  • 具体的には焦点距離600mm程度なら、露光時間5分でもある程度の歩留まりで星像は安定する。
  • ただし軽量システムのため、風に弱い点は否めない。
なんとか目標の歩留まり8割にたどり着きました。軽量コンパクトな撮影システムの構築という目的はある程度達成したと思います。次回海外へ行く時や、登山(多分することはないとわかっているのですが...)で持っていくシステムとしては完成です。このシステムは電視観望システムを含んでいるので、海外とかでのデモンストレーションもできることを考えると、当分コパクトシステムはこれで行くことになりそうです。やはり2軸制御できるところがポイントです。惜しむらくはピリオディックモーションです。もう少し小さいと星像ももっと安定すると思うのですが、この価格でそこまで求めるのは酷かもしれません。SWATなどの方がここら辺は利がありそうです。

AZ-GTiの購入から半年ちょっと、すごく楽しめました。軽量撮影システムとしてはこれで大体完成なのですが、本当に撮影で普段使いをするかというとこれはまた別問題。やはり風に弱いという欠点があるため、車が使える時や、自宅では頑丈な赤道儀を使っての撮影になるかと思います。あ、でも電視観望ではAZ-GTiは完全に主力ですよ。

AZ-GTiは、特に天文を始めたばかりの人でも、アイピースでの観察から電視観望、経緯台モードでの簡易撮影から、赤道儀モードでの本格的な撮影までこれ一台で相当楽しめるはずです。コストパフォーマンスを考えたら間違いなくオススメの一品です。


昨日の記事の続きです。やっとなんとか形になりました。

ノイズを標準偏差で評価するか、平均偏差で評価するか迷っていたのですが、Twitteでガウス分布から外れているのなら飛んだ値が多いはずなので、(飛んだ値に影響されにくい)平均偏差の方がいいのではという意見をもらいました。なるほど、考えてみればその通りで、標準偏差と平均偏差にすでに無視できないような有意な差があるということは、いいかえてみればガウス分布から外れた値も多いということが言えるのではと思います。

Fits画像のhistogram


というわけで実際にヒストグラムで分布を見てみました。まず、debayerなど何の処理もしていないRAW画像です。 

histgram_raw

見ての通り、ガウス分布からかなり外れていることがわかります。これはRGBでそれぞれ反応が違うために山がいくつもできるのかと思われます。

次に、同じ画像をdebayerしてRed、Green、Blueに分けたヒストグラムものを示します。

まずはRed:
histgram_R
次にGreen:
histgram_G

最後にBlue:
histgram_B


不思議なのは、RGBに分離しても山がいくつも見えることです。debayerの際に周りのピクセルの状況も読み込んでいるからなのか、もしくは画面の中で場所によって明るさに違いがあって、それが山になっているのかもしれません。また、RGBを合わせてもRAWの山の形になりそうもないことも不思議です。一瞬違う画像を処理したかと思ってしまったのですが、きちんと確認しても同じRAW画像から分離したものです。debayerもそんなに単純でないようです。

最後に、その中の50x50ピクセルを取り出してきた場合のヒストグラムです。
histgram_50x50
山がいくつもあるようなことはなくなり、大まかな形としてはガウス分布にだいぶん近づきます。それでもサンプル数が少ないことによるばらつきがあるのも確かなので、ここでは平均偏差でいくのが良いと考えることにします。



Conversion Factor

さて、実際にコンバージョンファクターを求めてみました。サンプル数を多くするために画像中心付近の100x100ピクセルを選んで解析しています。

結局今回はPythonで平均偏差を求めるルーチンをを自前で書いて、各ピクセルごとに計算しています。書き忘れてましたが上のヒストグラムも全部Pythonで書いています。やっとPythonでの画像解析に慣れてきました。結果ですが、以下のようになります。

20190302_01_Conversion_Factor

ついにここまでくることができました。結果はグラフの中にも数値で書いてありますが、コンバージョンファクターとして4.12、そこから計算できるUnity gainが200 x log10(4.12) = 123となり、メーカー値の117とわずか0.6dB、1.07倍の誤差くらいの範囲で求めることができました。

検証


もう少し検証してみます。

IMG_3262

上のようなSharpCapでの自動測定の結果のグラフと比べると、自動測定の測定値を伸ばしていくと0点近くに行きますが、自分で測定したものは0点に向かわずに、y切片で-352くらいのところにあたります。本当にきちんと測定しようとするならバイアスノイズをのぞいたり、フラット補正をすべきなのですが、今回は省いています。それでもSharpCapもそれ専用の測定はしていないように見えるので、うまくy切片が0になるような補正をかけているものと考えられます。

もう一点、自動測定の場合、測定点がいくつか重なっているように見えます。おそらくこれはRGBと分解した3点が重なっていると推測されるのですが、それにしても横軸(ADU)が一致しすぎています。普通に測定すると、自分で測定した時みたいにRGBで光源も違えばセンサーのフィルター特性も違うはずなので、ずれるはずです。これもSharpCapの自動測定では何らかの補正をしているものと思われます。


まとめ

結局、上の結果を得るまでに2週間くらいかかりました。色々苦労しましたが得たものも多く、まずPythonでの画像解析の環境がだいぶ揃いました。既存ライブラリに頼らない、ピクセルごとに解析する手法もある程度得ることもできました。統計的にどのようにアプローチすればいいのかも少し学ぶことができました。

次はEOS 6Dのユニティーゲインを求めることでしょうか。
あー、ホントはCP+行きたかったです。

このページのトップヘ