ほしぞloveログ

天体観測始めました。

カテゴリ: 調整・改造

みなさんこんにちは、ほしぞloveログのSamです。最近「ほしぞloveさん」とか呼ばれたりしますが、ハンドルネームは「Sam」です。「ほしぞloveログ」と書いて星空ブログ(ほしぞらぶろぐ)と読みます。

前回
前々々回の記事で、先週金曜日にペルセウス座流星群と天の川の撮影をしてたと書きましたが、本当は今回書く記事が一番試したいことでした。少し時間がかかってしまいましたが、やっと画像処理も終わったのでまとめておきます。

QBPのこれまでのまとめ

これまで好んで使っていた、サイトロンのQBP(Quad Band Pass)はHα、SII、Hβ、OIIIの4つ(Quad)の基線を通すためこの名前がついています。このフィルターかなり便利で、自宅のような光害地でも、多少の月明かりがあっても、星雲を相当炙り出すことができます。

QBPの作例については以下をご覧ください。

















さらになんと、私がTwitterで電視観望でも使いたいと呟いたリクエストで、QBPのアメリカンサイズまで作ってくれ、もうサイトロンさんには感謝しても仕切れないくらいです。



私にとって、QBPは撮影にも電視観望にも、すでに無くてはならないフィルターになっています。


QBPの不満

このQBP、ものすごく便利なのですが、実は2つ不満があります。
  1. 一つは、最初の方の作例を見てもらうとわかるのですが、普通に赤を出そうとするとどうしても朱色がかった赤になってしまうのです。他の方の作例を見ても同様の傾向が多いので、これはQBPの特徴の一つなのかと思います。でもこれは何度か画像処理をしていて、青を少し強調してやると赤の色バランスがよくなることに気づきました。QBPの特性として、どうも相対的に青色が弱く写ってしまうようです。最後の方のバラ星雲なんかは適度に補正してあるので、初期の頃とだいぶ色合いが違うのがわかるかと思います。
  2. もう一つは記事の中で時々書いているのですが、恒星の色、特にオレンジとか緑とかが出ないのです。これは結局解決に至らず、適当に色が抜けたような状態でごまかしています。なので、どうしても色を出したい場合はQBPをあえて使わない時もありました。
そもそもQBPは青が強いM45プレアデス星団や、恒星の色に近い銀河はあまりきちんとした色が出ないようで、今のところ主にHαを出したい時にQBPをよく使っています。

そうは言っても、QBPはこの手のフィルターにしては比較的波長帯の制限をゆるくしてあるために、色バランスが崩れにくいというのが大方の評判で、私もその意見に賛成です。ただ、上記のような不満もあるのも事実なので、これをなんとか改善できないかとずっと思っていました。


CBPの検証開始

今回やったことはサイトロンから少し前に発売されたCBP(Comet Band Pass)フィルターの検証です。

 

一方、今回使ってみたCBPは彗星用に開発されたフィルターということもあり、青や緑の波長帯を通すとのことで、QBPの弱点であった、赤以外の色が意外にバランスよくでるのではという期待があります。ただ、星雲用に開発されたわけではないので、これは自分で試してみないとよくわからないでしょう。

というわけで、毎度のこと前置きが長かったですが、やっと検証の開始です。

今回のターゲット天体は青色を適度に含むM20、三裂星雲です。機材はTSA-120に35フラットナーをつけ、ASI294MC Proで撮影をします。もう8月後半なので、M20は宵のうちから高い位置にあり、しかもこの日はちょうど下弦の月のころなので、M20が沈むくらいまでは月は出てきません。さらに前回の記事でも書いたとおり、この場所は天の川が結構はっきり見える(2つに分かれているのは十分に分かります)場所なので、光害の影響があまりないところです。条件としてはいいのですが、光害のカットという意味での検証にはならないということは注意が必要です。

今回はM20を
  1. フィルター無し
  2. 48mmのCBPを取り付ける
  3. 48mmのQBPを取り付ける
という3つのケースで撮影して比較したいと思います。時間的にはこの順番で、それぞれ上から17枚、9枚、6枚撮影しました。枚数が違うのは、だんだん時間が無くなってきて焦ってきたからです。同じ日で撮った方が公平になると思ったので時間が限られてしまいました。ここら辺はご容赦ください。

高度から考えると、時間と共に位置が下がってくるので、1のフィルター無しが一番有利で、順にCBP、QBPとなるはずで、QBPの7枚目以降はまだそこそこ高度はあったのですが、背の高い木が少し入ってしまったので、そういったうまく撮れていないのは省いた枚数になります。


結果の比較

今回非常に面白い結果が得られたので、早速撮影された画像を見て見てみましょう。画像はどの場合も、1枚のRAWファイル(fits形式)をPixInsightでDebayerして、STFでオートストレッチをかけただけです。画角が同じなので、オートストレッチが公平に働いて、画像の質によって星雲などのコントラストがそのまま表されてきます。

1. フィルター無し

まずはフィルター無しのノーマルです。
masterLight-BINNING_1-FILTER_NoFilter-EXPTIME_180
フィルターなしの場合。

特に色をあぶり出したりしているわけではないので、のっぺりした色合いになっています。それでも暗いところなのでM20の赤と青はそこそこ出ています。


2. QBP

先にQBPを見せます。
masterLight-BINNING_1-FILTER_NoFilter-EXPTIME_180
QBPフィルターを適用。

QBPの実力通り、フィルター無しに比べて赤が相当強調されています。実際に画像をスタックして画像処理までして比較してもみたのですが、一枚でこれだけ差が出ていると、スタックしても結果に大きな違いが出ます。フィルターなしの方が枚数が多いので当然ノイズは少ないですが、淡いところの赤を出そうと思っても最初から色が出ていないものは後から処理してもなかなか出てきません。枚数が少ないQBPの方が遥かに簡単に色が出ます。


3. CBP

ではお待ちかね、最後はCBPです。

masterLight-BINNING_1-FILTER_NoFilter-EXPTIME_180
CBPフィルターを適用。

明らかに青がノーマルの時よりはもちろん、QBPの時よりも強調されています。赤はフィルターなしの場合より濃くなっていますが、QBPよりは若干薄いでしょうか。


分かりやすいように並べてみます。

com1

左から、フィルターなし、QBP、CBPの順です。CBPで青が明らかによく出ているのがわかるかと思います。赤い三裂(4裂?)の周り、特に上部や下部の青なんかは違いが顕著です。

赤はやはりQBPが一番出ていますが、ノーマルと比べるとすでに朱色がかっているのがわかるかと思います。CBPは赤に関してはある意味ノーマルとQBPの中間で、まだそこまで朱色がかっていないです。

これは期待通りというか、期待以上の結果です。


光害に対する効果

QBPよりもCBPの方が波長の透過域が増えるので、光害に対しての効果は減ると推測されます。今回は光害の影響があまりない場所での撮影だったので効果が分かりにくいため、あくまで暫定的ですが少しだけ評価してみます。

PixInsightのSTFのオートストレッチは、画像の持っている明るさによってストレッチ(あぶり出し)のパラメータを決めます。撮影したRAWファイルを何倍くらい明るくするかは、(同じ画角で撮った場合)光害に依るという意味です。光外の少ない暗い画像ほど大きな倍率をとって明るくするはずですし、光害が多く明るく写った画像ほど倍率は小さくなるはずです。出来上がった画像の(背景の)明るさはあまり変わらなくなります。

そのため、撮影した画像の背景の明るさと天体(淡い星雲)の明るさに差があるほど、背景を同じ明るさにした場合には天体がよりコントラスト良く浮き上がってくるはずです。この時のオートストレッチの倍率を比較することで、光害がどれだけ軽減されるか、言い換えると光害防止フィルターがどれくらい働いているか推測することができるはずです。

オートストレッチの値から、フィルターなしを1としたときにQBP、CBPでそれぞれ何倍明るくしたかを表にしました。色によって倍率が違うのでRed、Green、Blueで別々に計算しています。具体的にはSTFのスパナマークを押すと表が出ます。最初なかなか意味がわからなかったのですが、いろいろ試して、結局真ん中の列の逆数が元の画像から何倍ストレッチしたかに相当することがわかりました。結果は以下のようになります。

 RGB
No filer111
QBP3.983566944.486127173.40584795
CBP3.537339063.440159572.7432878

さて、結果をじっくりみていきましょう。


QBP:


この結果を見ると、まずQBPはフィルターなしに比べて4倍くらい明るくできるので、言い換えると余分な光を4分の1くらいにしているということがわかります。以前、波長帯の広がりからざっくり4倍くらい得すると推測していましたが、実測もかなりこの推測に従っているようです。




CBP:

次にCBPです。まず第一に、結果の数値だけを見るとそこまでQBPとは大きく違わないというのが印象です。CBPの方がかなり(下手したら何倍も)明るく出るのではと思っていたのですが、平均だと1.2倍程度です。

R関しては除去比は少しQBP劣りますが、ほとんど違いがありません。GとBに関してはCBPの方が光害を除去しないことになります。と言っても高々1.3倍とか1.2倍です。これはCBPが彗星の核や尾のCN, C2, C3らの基線を透過させるように、主に紫外から青を新たに通すように設計してあるため、この波長での光害に対する除去効果は軽減されるので納得です。ただ、青よりも緑の方が違いが大きいというのが少し疑問ですが、Gセンサーも青の帯域に感度はあるので、これはあり得るのかもしれません。

ここでパッと疑問に思ったのは、青に対する明るさの倍率が低いCBPがなぜQBPよりもより青色を出すか?です。これは当然、これまでカットしてしまっていた青い光をより通すようになったからと考えることができます。倍率が低くても、捨てていた青い光を拾った方が得だったということです。


結論

というわけで、ここでの結論は「CBPはQBPよりも光害に対する効果は多少低いが、違いは全然大きくはなく、むしろ青を通すことでより強調する効果がある。これは青い成分を持つ星雲に有効である。」と言っていいのかと思います。もちろんこの値は光源に依ります。繰り返しになりますが、今回は光外の影響があまりないところで試したので、街明かりの場合や月明かりの場合は結果が違ってくる可能性もあるかと思います。

.
.
.
.
.
.


さらなるCBPの効果

でもでも、実は面白いのはここからだったのです。この検証の過程で3つの画面を見比べていて、一つ気付いたことがあります。もしかしたら勘のいい人はもう気付いているかもしれません。

上で出した3つの比較画像のそれぞれの左上の明るい星に注目してください。その左横に2つの星があると思います。これを3つで見比べてみてください。わかりやすいように拡大して並べて比較します。左からフィルターなし、QBP、CBPです。

com2


わかりますでしょうか?

なんと、CBPの星像が一番小さくて、しかも色がきちんと出ているのです。ピントの違いの可能性もありますが、他の星の大きさが大きくは変わっていないので、おそらくピントは関係なく、フィルターの違いから来ていると思われます。これは最初の方で書いた2つ目の不満「恒星の色が出ない」を解決する可能性があります。特にオレンジに近い色が出なかったので、期待できます。


なぜこんなことが起きるかというと、ここからはまだ推測なのではっきりとは言えませんが、QBPは実は赤外を通すのではという推測があります。シベットさんがここらへんの話に詳しくて



に記述があります。また、あぷらなーとさんの最近の実験でもその推測を推す結果となったようです。

QBPは赤外を素通しで、赤外の方では収差を補正しきれていない鏡筒ではハロとなって出るが、それに比べて、CBPはきちんと赤外の波長が透過しないように処理もしてあるのではという推測です。このハロを除去したい場合、QBPでは別途フィルターを入れる必要があるが、CBPでは1枚で済んで、恒星の色の再現性も高いということが考えられます。

これまでQBPで恒星の色が出なかったという方は試してみてもいいかもしれません。


まとめ

というわけで長かったですが、CBPの検証はこれで終わりです。赤はもちろん青も出て、色バランスも良く、恒星の色もきちんと出て、光害にも効果がありそうというので、私的にはある意味理想的なフィルターになりそうです。CBPはQBPであった不満をほとんど解決してくれそうです。かなり期待できそうなので、今後CBPの作例を増やしてもう少し検証していきたいと思います。


次の記事で今回撮影した三裂星雲を画像処理して仕上げています。



 

3年半以上前に購入したドスパラのStick PC。撮影やリモートPCとしてずいぶん活躍してくれました。最近は非力でトラブルも多くなってきて余り使ってなかったのですが、ここにきてやっと買い替えとなりました。

梅雨でずっと雨で、いまいち気合いが入らないです。ブログもなかなか書く気になりません。昨日やっと少し晴れてくれたので、Stick PCのテストも兼ねて電視観望をしてみました。


手持ちのStick PC

私がStick PCに手を出したのは2017年です。ここからの連番記事を見ていただければわかると思いますが、その非力さから設定にはかなり苦労しました。その甲斐もあって寒い冬にもお部屋でぬくぬく状態でリモートで撮影をすることができたので、かなり重宝していました。しかしその後、特にSharpCapのアップデートともに計算量が増え、途中で止まるなどのトラブルが頻発してきたために、徐々に使用を控えるようになってしまいました。これまで使った経験から、少しStick PCについてまとめます。

Stick PCの長所
  • コンパクトで軽量。
  • 外部バッテリーで駆動するので、大きなバッテリーを使えば相当な長時間駆動が可能。バッテリーがないので、へたることがない。外部のバッテリーはへたれば交換すればいいだけ。
  • 基本リモート接続なので、リモートデスクトップさえできればどのPCからでも操作できる。特に寒い冬は自宅の部屋や車の中で状況を確認できる。

Stick PCの欠点
  • モニターがないので、トラブルがあると外部モニターに繋がなければならない。遠征時の使用では念のため小型のモニターとキーボードマウスを持っていく必要がある。
  • 基本的にCPUパワーやメモリがあまりないので、重い操作はあまりできない。

手持ちのStick PCの問題点
  • Windows 10 home editionなのでリモートデスクトップの実現に相当苦労をする。
  • メモリが4GBで、撮影に支障がない最低レベルだが、もう少し欲しい。
  • CPUがAtom x5-Z8550でちょと非力。
  • 付属の記憶領域が32GBで既にWindowsシステムでほとんど消費されていて、Proにさえアップデートするのがはばかられる。->リモートデスクトップを必ず別途用意する必要がある。
  • Carte du CielとPHD2、BackYard EOSでのディザー撮影は可能。SharpCapでの撮影も可能だが、転送レートが遅くとりこぼしや落ちることがある。Stellariumは遅すぎて実用的でない。
  • SharpCapのあるバージョンのころから、Polar Alignで止まるようになってしまった。ビニングして画素数を減らしたり、ROIで画素数を減らすと動くこともあるが、めんどう。そのためPolar Alignだけ別のノートPCでやってから撮影時にはStick PCに繋ぎ直すとかしていた。
とまあ、いろいろ不都合もあるのですが、Stick PC自体はそのコンパクトさとリモート操作から、かなり撮影に向いていると思っているので完全に捨てることができません。それより問題は、このStick PC世間的にはあまり人気がないらしく、なかなか新機種が出ないのです。年何回かStick PCについて調べるのですが、あまり手持ちのと差がないのでイマイチ買い換える気にならなかったのです。なので古くて非力でも使い続けざるを得ませんでした。


新しいStick PCが結構よさそう

Twitterでのnabeさん情報で、新しいStick PCを買ってずいぶん快適になったとのこと。しかもたまたまAmazonのタイムセールで安く出てるのを知りました。メモリが4GBのままだったので、ここだけは8GB欲しかったですが、Celeronのn4120 (AmazonではN4100ともN4120とも表記、実際に来たものは箱にはN4120と表記、でもN4100の偽装の疑いあり、Winodows上ではN4120 1.10GHzと出ている) でストレージは64GBで、性能的には相当の改善です。

20台のセールで私が見た時には既に残り4台だったので、早速ポチりました。もしかしたら天文マニアで買い占めてるかもとの噂です。


セットアップと電源トラブル

何日かして到着。早速セットアップです。

電源はType Cで供給です。Type C端子がついたACアダプターも付いています。出力は5V、3Aとなっています。モニター端子はHDMIとMINI DPがついていて、それぞれ接続用のケーブルもついています。USB3.0が2つ、Micro SDを一枚挿すことができます。

IMG_0398

WindowsはHomeが入っていると思い込んでいて、手持ちのProライセンスがあったのでアップデートしてしまいましたが、そもそも入っていたのはHomeでなくProだったようです。リモートデスクトップの使用だけならアップデートの必要がありませんでした。でもProがはいっているだけでもお得です。

一つだけ気になったことがありました。どうも電源を選ぶようです。付属のACアダプターはもちろんいいのですが、USB端子からの給電だと最初動いてもWindows起動直前で止まってしまうことが何度かありました。

一度も問題なかった電源
  • 付属のACアダプター
  • Macbook Pro用のACアダプター
  • Macbook Pro用と思って買ったLess is moreの「100W IN/OUT」端子

一度でもダメだった電源

ところが、一度ダメだったものも改めて試したりすると、全部きちんと立ち上がるんですよね。イマイチ再現性がありません。

Amazonのレビューに書かれていましたが、「このStick PCのTypeCコネクタはホスト機能がないようで、情報のやり取りをしていない。なので1.5A以上流電流を流せないため、使用することができない。」というような意見です。ところが、少なくとも2度目以降、一番非力と思われるMac本体のType Cから(Mac本体にACアダプター接続なし)でもきちんと起動しているので、上のコメントが間違っているか、もしくは1.5Aまで流れていないかのどちらかです。

使っていて思ったのは、このStick PCものすごい省電力です。バッテリーの持ち時間からの判断ですが、以前のドスパラのStick PCよりバッテリー長く持ちます。Macbook Proに繋いでも、Stick PCを接続する場合と接続しない場合でも、体感的にはMac本体のバッテリーの持ち時間にほとんど違いを感じられません。

USBの電力チェッカーがあれば良かったのですが、持っていないので私も推測と手持ちの電源での検証しかできていません。

安価なバッテリーでも大丈夫そうなのですが、遠征に行く時だけは一番確実なLess is moreを使うことにするかもしれません。


撮影用天文関連ソフトのインストール

さて、一通りの天文関連のソフトをインストールします。最初からあるストレージ領域も64GBとかなり余裕があるので、いくつかのアプリは直接Cドライブにインストールしました。追加で128GBのmicro SDを挿しているので、Plate solveのデータなどのGBクラスのものは追加のストレージの方にインストールしました。インストールしたのは
  • ASCOM platform、ASCOM用にCelestron driverとSynScanドライバー
  • ZWO カメラドライバー
  • Stellarium
  • SharpCap
  • ASIStudio
  • PHD2
  • NINA
  • All Sky Plate Solver
  • PlateSolve2
  • ASTAP
  • EOS Utility
  • BackYard EOS
  • Zoom
くらいでしょうか。画像処理関連はまだ何もインストールしていませんが、撮影までなら十分だと思います。

一つだけ、FireCaptureはまだインストールしていません。理由は取り込み速度が出ないからではないかと思っているからです。FireCaptureは惑星と太陽用途のみ。両方とも取り込み速度が重要なので、そのばあいは相当早いノートPCを使うので、おそらくこのStick PCで使うことはないだろうと思うからです。


簡単な稼働テスト

その後、実際に稼働テストをしてみました。この時のバッテリーは一度もトラブっていないLess is moreでした。

とりあえずやったことは、SharpCapでの電視観望。結果だけ言うと、超快適。サクサク動きます。以前のStick PCのモッサリ感から比べたら雲泥の差です。一つだけ注意は、Stick PC本体裏面のファンを塞ぐと熱で止まってしまうようです。警告が書いてあるのですが、一度たまたまファン側を地面に置いてしまい塞がれていて止まってしまいました。

リモートデスクトップもHomeの時の苦労はなんだったんだと思うくらいスムーズです。まあProなので当たり前ですが。

まだ使い始めたばかりなので、またいろいろ試して報告します。



前回のZEROの振動減衰特性の続きになります。さらにマニアックなものになっているかもしれません。でもこの揺れに隠れいている物理をきちんと考えてみると、今後役に立つこともあるのかと思います。数式もあるので少し読みにくい記事になっているかもしれませんが、興味のある方は是非最後まで読んでいただけるとありがたいです。

IMG_0273


今回の記事の目的

とりあえず前回の記事では定量的な評価は控え、定性的にこんな傾向だというところを示しました。揺れの影響を比べるとポルタIIとZEROでは思ったより違うという印象を持たれた方も多いかと思います。

感覚的にでいいので、映像を見比べてポルタIIとZEROで揺れがどれくらい違うと思いましたか?2〜3倍くらい?10倍くらい?30倍くらい?100倍?数値的には答えが最後に出ますので、

みなさん動画を見比べたときの自分の印象を、
是非ここで一度考えてみてください

今回の記事のタイトルにはあえて解析とつけてしまいましたが、もう少し突っ込んで数値で比較できれば思っています。実際には、前回の使った動画から色々数値的なパラメータを引き出して定量的に評価します。これらをできるだけ一般化して、他の機器と比較した場合にも応用ができるようになればと思っています。具体的には共振周波数と半減期とQ値の関係を示し、それが実際の揺れ具合に感覚的にあっているかまで議論できれば上出来と言えますでしょうか。


共振周波数と半減期

今回の解析は前回撮影した映像をさらに突っ込んで解析します。特に新しいデータを取ったというわけではありません。まず、引き出したいパラメータは「共振周波数」と「半減期」です。

160倍相当に拡大し、できるだけフレームレートを上げて撮影した4本(ポルタIIとZEROのそれぞれ縦と横)の動画を解析します。鏡筒をピンと弾いて揺らしたので、インパルス的(「瞬間的な」という意味)な力を与えて、それが主としてそのモード(縦とか横とかいう意味)における最低次(一番低い周波数という意味)の振動を励起し、その振動が減衰していく様子が動画に記録されています。

できるだけ力が同じになるようにピンと弾いたのですが、衝撃の力積(力と、力をかけた時間の積)は必ずしも一定ではありません。それでもその衝撃で励起された「共振周波数」と、その振幅がある時から半分になる時間「半減期」は、最初に与えた衝撃によらずに、そのモードに固有で一定値となります。なのでそれらを測定してやれば、励起された振幅の大きさにかかわらずなんらかの特性が評価できるはずです。



実際の基本モードの測定



ポルタII 横の動き

一番揺れていてわかりやすい、ポルタIIの鏡筒を横向きに弾いた時の動画を例に「共振周波数」と「半減期」を測定してみましょう。ポルタIIの鏡筒を弾いたときの動きはこんな感じでした。

倍率160倍相当の横の動き: ポルタの場合

Youtubeに上げた動画では、細かい時間情報が消えてしまっているので、実際の解析にはSharpCapで録画した生の.serファイルを使いました。ser形式の場合、各フレームが測定された時間もそれぞれ記録されています。


実際に動画を見ながら測定すると、
  • 弾いてから2周期ほど揺れて最大振幅になったところの時間が、(UTCの14時29分)51.70秒
  • 10周期揺れた時の最大振幅の時間が、53.20秒
ということがわかったので、
  • 10回揺れるのに1.50秒かかっています。
ということは
  • 周期 P = 0.150秒
  • 最低次の共振周波数 \( f_0 = 1/P = \) 6.7Hz
ということがわかります。

また、先の弾いてから2周期ほど揺れてから最大振幅になった時(51.70秒)と比べて、
  • 振幅が半分になった時の時間は 52.75秒なので、
  • 半減期 \(t_{1/2} = \) 1.05秒
となります。


ZERO 横の動き

次はZEROの場合の揺れを確認します。

同様に横の基本モードの共振周波数と半減期を測定すると、
  • 弾いてからある最大振幅になったところの時間が、43.24秒
  • 10周期揺れた時の最大振幅の時間が、43.95秒
なので、
  • 10回揺れるのに0.71秒
かかっていることから、
  • 周期 P = 0.071秒
  • 最低次の共振周波数 \( f_0 = 1/P = \) 14.1Hz
また、先の弾いてから2周期ほど揺れてから最大振幅になった時(43.24秒)と比べて、
  • 振幅が半分になった時の時間は 43.66秒なので、
  • 半減期  \(t_{1/2} = \) 0.42秒
となります。

さて、これらのことから何が言えるでしょうか?まず、共振周波数から見ていきましょう。

ところで、ポルタIIとZEROでどれくらい違うか、印象を今一度確認してみてください。何倍くらい違うと思ったでしょうか?ここまでで共振周波数の違いは7Hzくらいと14Hzくらいなので、2倍くらいと既にわかりましたね。

でも揺れの印象だけ見るともっと違いが大きいような気がします。
皆さんはどう思いますでしょうか?


共振周波数について

ある系(この場合鏡筒と経緯台と三脚を含んだ望遠鏡全体)のある揺れやすいところ(方向)に衝撃を与えてやると、一番揺れやすい(軟らかい)ところで大きく揺れます。この揺れを基本モードと呼び、その揺れをその基本モードの共振、その共振の1秒あたりの揺れの回数を共振周波数と呼ぶことにします。

経緯台の骨格を太くしたりしてものを頑丈に固く作るほど、載せている鏡筒を軽くコンパクトに作るほど、基本モードの共振周波数は上がります。逆に、骨格が細く柔らかい系であるほど、また長く(レンズ部など)重さが端部に寄ったダンベル型に近い鏡筒なほど、基本モードの共振周波数が低くなります。

共振周波数が高いということは固いバネに相当し、共振周波数が低いということは軟らかいバネに相当します。中学の理科とか高校の物理の最初の方で習うフックの法則\(F=-kx\)という式を覚えていますでしょうか?ある力Fを加えると、固い(kが大きい)バネほど、伸びxが小さく、軟らかい(kが小さい)バネほど、伸びxが大きいという関係式です。

バネ定数は共振周波数と次のような関係で表されて、\[f_0=\frac{1}{2\pi}\sqrt{\frac{k}{M}}\]などと書くことができます。ここでMは質量に相当します。これをFの式に入れてやると\[F= -4\pi^2 f_0^2 M x\]と書くことができます。同じ質量で同じ力だとすると、共振周波数の2乗で揺れにくくなることがわかります。実際今回扱っているのは回転なので、質量Mは慣性モーメントで考える必要がありますし、係数も変わってきますが、物理的にはバネのイメージで本質的には間違っていないはずです。すなわち、同じ力で鏡筒を揺らすと揺れの振幅が共振周波数の2乗に反比例して小さくなる、言い換えると固い構造(バネ)ほど急激に揺れにくくなるということです。このことは実際の観測時にも同様で、鏡筒に手が当たったとかの場合、弱い(軟らかい)とよく揺れ、強い(固い)と揺れないというのは感覚的にも理解できるかと思います。


半減期について

では次に半減期です。これは一旦起きた振動がどれだけ早く収まっていくかを表すパラメータの一つと考えることができます。どれだけ「発生したエネルギー」をいかに「失わせるか」という損失の大きさに依存します。素材にもよりますし、構造の組み方などにもよります。

例えば金属でできている部分をゴムにすれば、その損失は大きくなり減衰は速くなります。ですが素材をゴムにすると当然やらかくもなるので、共振周波数も下がるので損をします。面白いのは、同じような素材、同じような構造で組むとこのロスというのは大体同じような値になるということです。

ここで、共振周波数と半減期の積を考えて見ましょう。
  • ポルタIIの場合6.7Hz x 1.05秒 = 7.04
  • ZEROの場合14.1Hz x 0.424 = 5.98
と、両者あまり違いがありません。若干ZEROの方が小さいくらいですが高々2割程度です。


Q値について考えてみる

ここで、以前検討したQ値というものを導入してみましょう。Q値は今回測定した共振周波数と半減期を使って、\[Q=4.53 f_0 t_{1/2}\]という式で表されます。共振周波数と半減期の積にある数値をかけたものになります。なぜ4.53なのかは以前の解説記事を参照してください。

ポルタIIの場合は\[Q=4.53 \times 6.7 \times 1.05 = 31.9\] ZEROの場合は\[Q=4.53 \times 14.1 \times 0.421 = 26.9\]という値になります。

ではこのQ値が何を意味するかです。Q値は元々あった揺れが共振によって何倍に拡大されるかということを知ることができるとても便利な値です。では何倍になるかというと、ずばりQ倍になります。その証明はこのページの伝達関数の式のf=f0の場合になります。

例えば地面が揺れていてそれが鏡筒を揺らすとすると、その揺れはQ倍に拡大されるというわけです。地面の揺れは\(10^{-7}/f^2 \rm{[m/\sqrt{Hz}]}\)という振幅になります。fはその揺れの周波数、単位が\( \rm{m/\sqrt{Hz}} \)となっていて少しややこしですが、\(\rm{ / \sqrt{Hz}}\)のところはちょっと無視してください(詳しいことが知りたい場合はこのページの最後を読んでみてください。)。ここでは簡単にm(メートル)で考えてしまいましょう。

ポルタIIの場合、共振周波数が6.7Hz、Qが31.9なので、地面振動からくる揺れは
  • \(Q \times 10^{-7}/f^2  = 31.9 \times 10^{-7} / 6.7^2 = 7.1 \times 10^{-7} \rm{[m/\sqrt{Hz}]}\)
ZEROの場合、共振周波数が14.1Hz、Qが26.9なので、地面振動からくる揺れは
  • \(Q \times 10^{-7}/f^2  = 26.9 \times 10^{-7} / 14.1^2 = 1.3 \times 10^{-7} \rm{[m/\sqrt{Hz}]}\)
程度となります。これは風などの外部の衝撃がない、揺れが落ち着いている時の揺れ幅に相当し、両方とも1マイクロメートル以下なので、実際に視野をのぞいていてもそれほど揺れているとは感じない程度でしょう。鏡筒を叩いて揺らした場合の揺れが減衰していくと、最終的に上記揺れ程度になるということです。それでもZEROのほうが揺れが5分の1程度に落ち着くというのは意識しておいたほうがいいでしょう。たいした大きさの揺れではないので、とりあえず地面の常微振動からくる揺れはあまり考えなくてよく、それよりも視野を移動した時の揺れを議論したようが有益だということが言えるのかと思います。

この実測値からも推定できるように、ポルタIIとZEROでは素材は金属(アルミ合金?)で、使える金属の種類もある程度限られるので、ロス(Q値)に関してはそこまで大きく変えることはできないと言えるのかと思います。逆にQ値が同じなら、Qの定義式から同じ力を加えたときは共振周波数が高いほうが減衰するまでの時間は小さくなるということが言えるわけです。


まとめ

上記検討のまとめをしてみましょう。

構造体に同じような金属を使うのでロス(Q値)が同程度だとして、共振周波数が高いとどれくらい得をするか考えてみましょう。同じ力で鏡筒を揺らした場合、
  • まず振幅が共振周波数の2乗分の1で小さくなります
  • 次にQの定義から、減衰するまでの時間は共振周波数分の1になるので
ざっくり考えて、振幅で2乗、減衰で1乗と、あわせて共振周波数の3乗くらいで揺れの影響が小さくなると言ってしまっていいのかと思います。ポルタIIとZEROでは共振周波数が2倍ちょっと違うので、3乗するとざっくり10倍くらい違うわけです。

皆さんの印象はどれくらいだったでしょうか?

10倍くらいだと思った方はいましたでしょうか?

ポルタIIに比べると、ZEROの共振周波数の違いが高々2倍くらいしか違わないのに、揺れの印象が感覚的にも10分の1くらいだかと思うのは、それほど間違っていないのではないかと思います。経緯台のような微動ハンドルを回して天体を追尾していく場合には、構造を固くして共振周波数を上げることがいかに重要かということが分かる結果です。


今後の展開

ZEROは非常に優秀で、口径100mm程度までなら載せても揺れが気にならないと聞いています。ただし、口径120mmのTSA-120をZEROに載せると、さすがに積載限界を超えているのか揺れてしまうとう報告がZEROの販売ページにあります。また非公式ですが、某天文ショップの店員さんから、同様のことを試して揺れが出てしまうという報告をTwitter経由で聞いています。

なので次はTSA-120をZEROに載せて、実際にどれくらい揺れるのかを、共振周波数を測定することで、比較してみたいと思います。これは自分自身でもかなり興味があって、うまくTSA-120をZEROで快適に使用する方法があるのかどうかを探ってみたいのです。鏡筒だけでなく、全体の系で共振周波数が決まるので三脚の影響も大きいかと思います。

気の向いた時にパッとTSA-120を出してZEROに載せて、振動なく見えるというのはかなり魅力的です。


今回、振動減衰特性が素晴らしいと評判の、スコープテック社の新型経緯台ZEROを手に入れました。梅雨ですが、晴れ間を狙って色々と評価してみました。


目的

この記事では、スコープテックの新型経緯台「ZERO」の振動減衰特性を評価をすることを目的とします。わかりやすいように、今回は入門機の標準と言ってもいい、Vixen製の天体望遠鏡「ポルタII A80Mf」と比較してみます。


ポルタII

ポルタIIに関しては言わずと知れたVixen社の看板製品の一つで、とりあえず望遠鏡が欲しくなったときに最初におすすめされる、おそらく日本で最も売れている望遠鏡かと思われます。

屈折型のA80Mf鏡筒とセットになっているものが一番有名で、鏡筒、ファインダー、経緯台、三脚、2種のアイピース、正立プリズムなど、基本的に必要なものは最初から付属しています。初心者でもすぐに天体観察を始めることができ、天文専門ショップのみでなく、全国カメラ店などでも購入でき、その販売網はさすがVixenと言えます。

機能的にもフリーストップを実現した経緯台方式で初心者にも扱いやすく、鏡筒はアクロマートながら口径80mmと惑星などを見るにも十分。全て込みでこの値段ならば、十分適正な価格であると思います。

私は2018年の小海の星と自然のフェスタのフリーマーケットで手に入れました。中古ですが付属品はアイピースなども含めて全て付いていて、おまけに別売のフレキシブルハンドルも付いてきました。また鏡筒キャップの中に乾燥剤が貼り付けてあったり、夜に機材が見えやすいように反射板を鏡筒や三脚にマーカーとして貼ってあったりと、前オーナーはかなり丁寧に使ってくれていたことが推測できます。

IMG_5577



ZEROの特徴

一方、ZEROは経緯台のみに特化した単体の製品です。鏡筒や三脚は基本的に付いていないので、別途用意する必要があります。発売開始は2020年3月なので、すでに解説記事などもたくさん書かれています。ZERO自身の機能的な解説はメーカーのZERO本体のページ天リフさんの特集記事が詳しいです。購入もスコープテックのページから直接できます。




スコープテックはもちろんですが、ZEROはサイトロンなどいくつかの販売店からも販売されています。シールをのぞいて同じものとのことです。違ったバージョンのシールにしたい場合はこちらから頼む手もありです。





本記事では、機能に関しては上記ページに任せて簡単な解説にとどめ、振動特性を中心に評価したい思います。

実際のZEROを見てみます。

IMG_0191

ZERO自身は実際に手に取って見ると思ったよりコンパクトです。初めて使う場合は「お使いになる前に必ずお読みください!」と書いてある紙が入っていますが、これだけでなくマニュアルも必ず読んだ方がいいでしょう。一旦組まれたものを外して、経緯台として動くように組み直す必要があります。また、手持ちの三脚に合わせて(注文時に選択した)アダプタープレートを合わせて組み込んで三脚とセットする必要があります。


なぜ片持ちなのか?

基本的に片持ち構造は、強度や振動特性に関しては不利なはずです。それでもフリーストップにするためには片持ちが適しています。なぜなら鏡筒を縦方向に動かしたときにバランスが崩れないため、どこで止めてもつりあいがとれるからです。これがフリーストップを安定に実現させている理由です。

この片持ちという不利な構造にあえて選んで振動減衰特性に挑戦しているのが、ZEROの真骨頂と言えるでしょう。しかも軽量でコンパクトに折りたたむことができま、気軽に持ち運無ことができます。

フリーストップで、しかも揺れなくて、コンパクトとのこと。これは実は初心者に向いた設計と言ってしまってもいいのかと思うくらいです。スコープテッックが初心者向けの機材を相当丁寧に作ってくれていることは、私も実際に望遠鏡セット使って知っているので、おそらく本当に初心者のことを考えて今回のZEROも設計、製作しているのかと思われます。

でもこのZERO、初心者だけに使うのはもったいなさそうです。ベテランのアマチュア天文家が気楽にパッと出して星を見たいというときには、軽くて、且つ揺れないというのはベストのコンセプトです。観望会を開いて、お客さんに見てもらう場合とかでも十分に活躍してくれそうです。また、コンパクトなので遠征に気楽に持っていけそうです。遠征先の撮影の合間に気楽に観望とかでも使い勝手が良さそうです。


ポルタIIとは違い、ZEROは基本的に経緯台のみの単体販売で、三脚も鏡筒も付いてはきません。全部込み込みのポルタの実売価格はZERO単体よりも数千円高い程度ですので、価格的にはポルタIIに比べたら割高と感じるかもしれません。経緯台に特化した分だけの性能に対する価値を、どこまで見い出せるかがポイントになるのかと思います。


測定条件

まずは振動特性を見るための条件です。

共通項目
  • 鏡筒はポルタII付属のA80Mfを使う。
  • 微動ハンドルはVixen製のポルタ用のフレキシブルハンドルを使う。
  • 眼視を想定し、三脚の足を半分程度伸ばした状態で、2台の三脚を同じ高さにする。

IMG_0237
2台のセットアップです。三脚はほぼ同じ高さにしています。
鏡筒とフレキシブルハンドルを載せ替えて比較しています。
写真でZEROについているハンドルは無視してください。

2つの測定の違う点
  1. ポルタIIの経緯台をポルタIIの三脚に載せたものに鏡筒を載せる(以下このセットアップをポルタIIと呼びます)
  2. ZEROをCelestron社のAdvanced VX用の三脚に載せたものに1と同一の鏡筒を載せる(以下このセットアップをZEROと呼びます)

ただし、後から分かったことですが、三脚の強度に無視できないくらいの大きな違いがあることが判明しました。なので今回はZEROにAdvanced VX用三脚でここまで振動を抑えることができるという目安と考えていただければと思います。


観測方法

ポルタIIとZEROの2種で鏡筒部分を揺らし、その揺れがどのように減衰していく様子を、視野を撮影しながら見ていきます。


2種の倍率

それぞれ観測、測定のたびに鏡筒をフレキシブルハンドをポルタ経緯台とZEROに載せ換えます。光学的に2種類の設定をそれぞれの経緯台で試します。
  1. 40倍相当: 天体導入時を想定し、焦点距離800mmの鏡筒と焦点距離20mmのアイピースで40倍程度の視野を仮定し、フォーサーズ相当のCMOSカメラ(ASI294MC Pro)ので撮影
  2. 160倍相当: 天体導入後、拡大して観察する場合を想定し、焦点距離800mmの鏡筒と焦点距離5mmのアイピースで160倍程度の視野を仮定し、同一CMOSカメラの(ASI294MC Pro)一辺4分の1、面積にして16分の1を切り取って撮影
1.、2.ともにフレームレートを上げるために4倍のビニングをして画素をそもそも4分の1に落としています。また、2.ではさらに速い動きを見るために、画面を切り取って小さくしてフレームレートをできるだけ上げています。


昼間の景色で比べてみる

まずは大まかな動きを掴むために、昼間の明るい景色で40倍相当で比較してみました。最初に望遠鏡を買って、昼間に練習するのに相当すると思えば良いでしょうか。具体的には山の上に立っている鉄塔を端から真ん中ら辺に持ってきています。

まずは横方向(yaw, ヨー方向)です。フレキシブルハンドルをまわして動かします。動かした後にどれくらい揺れるかを見ます。

ポルタの場合です。
倍率40倍相当の横の動き: ポルタの場合



ZEROの場合です。
倍率40倍相当の横の動き: ZEROの場合

これを見るだけで相当インパクトのある比較になっています。とにかくZEROの振動減衰が見事です。

続いて縦方向(pithc, ピッチ方向)です。まずはポルタIIの場合

倍率40倍相当の縦の動き: ポルタの場合

次にZEROです。
倍率40倍相当の縦の動き: ZEROの場合

ポルタIIもZEROも、横よりは縦の方が揺れにくいのは同じのようです。これは構造的に縦は縦のみの機構を担っていますが、横は横の機構と縦の機構を合わせて担当しています。当然重くなるので、その分横が揺れやすいのは不思議ではありません。

ポルタIIの方は多少揺れますが、やはりここはZEROの揺れの少なさを褒めるべきでしょう。揺れの振幅も、揺れが小さくなる時間もZEROは素晴らしいです。ただしこの結果はかなり大きく揺らした場合なので、実際に初心者がポルタIIで昼間に最初に練習する時でも、そこまで困ることはないのかと思います。


実際の観測を想定して木星で比べてみる:  導入時相当

初心者が望遠鏡を買って見てみる醍醐味の一つが木星や土星などの惑星です。そのため、今度は実際の観察を想定して、夜に木星を見て揺れの具合を比較してみましょう。

まずは木星で40倍相当で判定します。これは低い倍率で天体を導入するときの動作に相当します。木星を端から真ん中ら辺に持ってくるときの揺れで比較します。

横方向の揺れです。まずはポルタIIから。

23_16_31_F001-193s
倍率40倍相当の横の動き: ポルタの場合

次は同じく横方向で、ZEROの場合です。
23_40_29_F001-193s
倍率40倍相当の横の動き: ZEROの場合


次に縦方向で、まずはポルタの場合。

23_18_10_F001-192s
倍率40倍相当の縦の動き: ポルタの場合

縦に振っているのですが、横の揺れの方が出やすいので多少横揺れがカップルしてしまっています。

次にZEROの場合です。
23_40_54_F001-192s
倍率40倍相当の縦の動き: ZEROの場合


惑星の動きで見てもZEROの振動の減衰具合は特筆すべきで、特に縦方向の操作はもう十分すぎるほど減衰してしまって、インパルス的に動きを与えることが困難になっているくらいです。

実際操作していて思ったのですが、どのようにハンドルを回してどういったインパルス応答を与えるかで揺れの具合は違ってきます。ポルタIIの場合でも熟練してくると、最終的な揺れを少なくするように、最初は大きく動かして、見たい所の近くでゆっくり動かすなどのテクニックを、自然に習得できるのかと思います。なので、倍率が低い天体導入の際には、慣れてくれば上記動画の差ほどは気にならなくなるかと思います。



実際の観測を想定して木星で比べてみる:  拡大時相当

次に、木星で160倍相当で見てみます。これは定倍率で導入された惑星を、倍率を上げて拡大して見るときに相当します。視野が狭いので、先ほどのようにフレキシブルハンドルを回すとうまく揺れてくれないので、鏡筒をピンと弾くことでインパルス応答に相当する揺れを与えました。

まずは揺れやすい横方向です。最初はポルタIIから。 
倍率160倍相当の横の動き: ポルタの場合

ZEROです。
倍率160倍相当の横の動き: ZEROの場合


次は縦。まずはポルタII。
倍率160倍相当の縦の動き: ポルタの場合


最後にZEROの縦方向です。

倍率160倍相当の縦の動き: ZEROの場合



この試験は、フレキシブルハンドルを回したわけではないので、例えば観望会などでお客さんが鏡筒に触れてしまったことなどに相当するのかと思われます。これくらいの倍率で惑星を拡大して見る場合、特に望遠鏡の扱いに慣れていない初心者には、揺れの違いは実際の快適さの差として出てくると思います。ZEROの揺れくらいで収まってくれると、木星の細かい模様をじっくり見るときにも見やすいでしょう。


実際の使い心地

使って見て思ったことです。確実にZEROの方が揺れが少ないのは上記映像を見てもわかるのですが、その一方ポルタ経緯台に比べてZEROの方がハンドルが固いです。これはフリーストップの調整ネジとかの問題ではなくて、ある程度強度を保つためにこれくらいの固さが必要だったのではという印象です。また、微動調整つまみをフレキシブルハンドルで回すとき、遊びが少し多いなと思いました。これらは好みかもしれませんが、ポルタとZEROを比べると硬さと遊びに関しては個人的にはポルタに一日の長があると思いました。

おそらく微動の固さに関連すると思うのですが、揺れに対しての感想は反対になります。ポルタだけを使っていた時は、揺れは多少は気になっていましたが比較したわけでないのでそこまでは気づかず、今回ZEROと比べて、初めてはっきりと不満と感じました。

繰り返しになりますが、私が持っているポルタ2は中古で手に入れたものなので、新品の時の性能が出ている保証がありません。ですが、初心者がこの揺れだけを見てメーカーに修理を出す判断をする、もしくは実際に修理を出す気になるとも到底思えず、仮に使っていてヘタったのだとしたら、耐久性という意味で少し考えた方がいいのかもしれません。いずれにせよ、私が持っているポルタ2は一例に過ぎず、当然全てのポルタ2を代表しているわけではありません。その上でのことですが、少なくとも手持ちのものは(ZEROと比べると改めて気づきますが)揺れは結構大きくで、フレキシブルハンドルから手を離して揺れてしまうと、フレキシブルハンドル自身の揺れで視野が揺れてしまうくらいです。


三脚に関して

今回ZEROと比較することにより、これまであまり気にしなかったポルタIIの弱点が見えてきました。なぜポルタがZEROに比べて揺れが出るのか明るいうちに見てみました。2つの原因があるのかと思います。
  • 経緯台の可動部が柔らかく、ハンドルを回すのも軽くて操作しやすい反面、ここでぐらついてしまっている可能性が高い。
  • 根本的に三脚が弱い。
特に三脚に関しては目で見て揺れやすいのがわかるくらいです。動画でその様子を撮影してみました。


わかりますでしょうか?鏡筒を揺らすと、三脚(真ん中手前がわかりやすいです)もつられて揺れてしまっています。わかりにくい場合は、全画面表示などにして見てみてください。一見小さな揺れに思えるかもしれませんが、本来三脚は載っているものを揺らさないような役割をするものです。鏡筒を揺らすだけでこれだけ三脚が揺れてしまうのは、無視できる範囲とは言い難いでしょう。触らなければ揺れないかと思いがちですが、風が吹いた時は致命的ですし、導入時はどうしても触れてしまうので揺れてしまう可能性が高いです。

ちなみに、ZEROをAVX三脚に乗せたときに、同様に鏡筒を揺らしたときの映像も載せておきます。


こちらは拡大しても揺れている様子が全く見えません。揺らしていないように思われるかもしれませんが、音を大きくして聞いてみると途中から鏡筒を叩いているのがわかるかと思います。人間の力なので必ずも同じ状況にはならないですが、基本的に同程度の力で叩いたつもりです。音が小さいと思われるかもしれませんが、やはり揺れていないので記録された音も小さくなっているのかと思われます。

本来三脚は積載物を安定に支えるのが役割なので、揺れないものの方がいいのは当然です。それでもやはりこれも程度問題で、頑丈すぎるものは逆に重くなったりして取り回しに苦労することもあります。ただ、Advanced VX用の三脚程度の重量とZEROの組み合わせでここまで振動が減るのなら、特に惑星などを拡大して見たときには十分に検討する価値があるのではないかと思います。ZEROの販売ページを見ると強化版の三脚を選べるようです。これだと今回使ったAdvanced VX三脚と同等クラスかと思いますので、より揺れを少なくしたい場合はこちらを選ぶのもいいかと思います。

これらのことから、まずポルタIIは少なくとも三脚を改善もしくは丈夫なものに交換するだけでも揺れは相当改善すると思われます。別の言い方をするなら、経緯台として考えるとZERO自身の揺れは相当小さいため、もしZEROの性能を引き出したい場合は、ある程度強度のある三脚を使わないともったいないとも言えます。でもこのことは三脚の重量増加にもつながるので、手軽さという利点を損なう可能性もあるので、ケースバイケースで強度と重量のバランスを考えて選択すればいいのかと思います。

今回はZERO用には相当強度の高い三脚を選択してしまいました。結局のところ、今回の比較は「入門機の標準と言ってもいいポルタIIとの振動に比べて、振動減衰特性を特徴として開発したZEROを使うと、どのくらいまで揺れを改善できるか」という例を示したことになるのかと思います。ポルタIIを改善していって、揺れないものにアップグレードしていくような楽しみ方を見出すこともできるのかと思います。


まとめ

星まつりで何度かプロトタイプには触れたことはあり、ある程度すごいことは知っていましたが、実際に使って見ると、ZEROの振動減衰に関しては驚くほどの結果でした。ポルタIIだけを使っていた時は揺れはここまで意識できていなかったので、例えば初心者がポルタIIを最初に買って普通に使う分には、特に気になるようなことはないでしょう。ただ、もし今使っている経緯台に不満がある場合は、ZEROを検討してみる価値は十分にあるのかと思います。

経緯台単体にそこまでかける価値があるのかというのは、人それぞれかと思います。個人的にはZEROは素晴らしい製品に仕上がっていて、スコープテックさんの努力や熱意を十分に伺うことができるのかと思います。満足です。


ちょっと間が空きましたが、N.I.N.A.の試用記の続編です。



前回の記事を書いてからなかなか晴れなくて、やっと日曜の夜に少しだけ星が見えたのでテストしました。本当は撮影までしたかったのですが、結局曇ってしまいNINAのテストだけで終わってしまいました。

第一回の撮影までに加えて、今回は少し応用編。導入など、撮影の準備に相当する部分になります。撮影までのことなので、本当はこちらを先に説明しても良かったのですが、一度赤道儀で導入して撮影まで進めてしまえば見通しが良くなると思ったからです。


スカイアトラス 

最初に左アイコン群の「スカイアトラス」でターゲットを調べるといいでしょう。左上に対象とする天体を入力します。例えばM57と入力すると、その情報が出てきます。

IMG_0155

その際、「オプション」「一般」タブの「スカイアトラス画像ディレクトリ」を設定しておくといいでしょう。ここはスカイアトラスで画像を表示するために使います。サイトのダウンロードページの一番下にある「Misc」のところの「Sky Atlas Image Repository 」をダウンロード、展開して、「スカイアトラス画像ディレクトリ」で設定したディレクトリに置くと、「スカイアトラス」の「詳細」のところにカタログ画像が表示されるようになります(TKさんに教えてもらいました。ありがとうございました。)。

このスカイアトラスのところで「導入」ボタンを押してしまっても導入はできるのですが、次のフレーミングで導入した方がいいでしょう。


フレーミング

撮影時にPCがインターネットに接続されているなら、フレーミング機能が便利です。デフォルトで縦横3度の視野角を見るようになっていますが、画像を落とすのに結構時間がかかります。今どれくらいダウンロードしたか表示があるとよかったかもしれません。

一旦ダウンロードした画像はキャッシュに保管され、キャッシュを表示することを選べばインターネットがない環境でも確認することができます。撮影時にインターネット環境がないなら、事前に対象天体の検索して画像をダウンロードしておくといいでしょう。

ダウンロードした画像があると、撮影時の画角や位置を確認できます。

IMG_0156

M57を囲んで大きな四角い枠が見えます。これが接続されているカメラと、この画面の「画像の読み込み」の「カメラパラーメーター」の「焦点距離」から計算された、撮影した場合の画角になります。

黄色の丸は、現在赤道儀(望遠鏡)が向いている位置になります。上の写真の場合、M57の中心からは少しずれた位置にいることになります。でもこれは実際に向いている位置とは限らなくて、N.I.N.A.が「赤道儀が向いていると思っている」位置です。この数値は接続した赤道儀から得ています。なので、この状態で撮影しても、黄色の場所が中心なるとは限らず、後のプレートソルブを使い誤差を無くします。

さて、画角を示すこの四角は移動することができます。四角の中心が導入したい目的の位置になります。今はM57の中心が四角の中心になっているので、ここで「導入」ボタンを押してみます。すると実際の赤道儀の向きに合わせて、一旦黄色い丸が画面からはみ出し、しばらく待つと

IMG_0160

のように、黄色い丸が画角の中心にきます。

この際、もしガイドをしっぱなしなら、PHD2のオートガイドを外すのを忘れないようにしてください。また、導入が終わったら、撮影前に再びPHD2のオートガイドをオンにするのを忘れないでください。

でもまだ注意です。ここですでに画面中央に目的の天体が導入されたかに見えますが、本当にその向きに向いているかどうかの保証はありません。赤道儀の持っている情報と実際の向きが合っているかは保証がないからです。ここで次のプレートソルブの出番です。


プレートソルブ

プレートソルブは思ったよりはるかに簡単にできました。もともとAPTで「PlateSolve 2」と「All Sky Plate Solver(ASPS)」をインストールしていたからというのもあります。この場合は「オプション」「プレートソルブ」のところでパスを通すだけで使えてしまいました。

IMG_0101

具体的には、撮像ページで右上「ツール」アイコン群の左から3つ目「プレートソルブ」を押してプレートソルブパネルを出します。

IMG_0165

パネルの位置がわかりにくいかも知れません。「画像」パネルの下のところに「プレートソルブ」タブが出ていると思いますので、それを選択します。ここで「同期」が「オン」になっていると、プレートソルブが成功した際の位置情報が赤道儀にフィードバックされ、赤道儀上の一情報が書き換わります。その際「ターゲットの再導入」を「オン」にしておくと「エラー」の値よりも誤差が大きい場合に再度自動で導入し直してくれますが、導入は後で自分でもできるので、とりあえずはオフでいいでしょう。「露出時間」と「ゲイン」なども適当に入れます。準備ができたら、真ん中の三角の再生マークのところの「画像素取得してプレーとソルブ処理します。」を押します。

勝手に撮像が一枚始まって、プレートソルブが始まり、うまく位置が特定できると「成功」のところにチェクマークが出ます。

IMG_0164

フレーミングでM57を中央にしたにもかかわらず、やはり実際に撮影するとずれしまっていて、その誤差を赤道儀側にすでにフィードバックしているので、今一度フレーミングを見てみると、

IMG_0166

のように、黄色い丸がずれているのがわかると思います。横にずれたのはカメラが90度回転しているからです。この状態で再度「導入」を押すと黄色い丸がM57のところに行き、実際に撮影してみると

IMG_0168

のように、今度は本当に赤道儀がM57の方向をきちんと向いていることがわかります。


その他

ASI290MMでLRGB撮影をやってみようと思っていて、かなり前に勝手ずっと使っていなかったZWOのフィルターホイールを繋いでみました。ポイントはEFW用のASCMOドライバーをZWOのページから落としてきてインストールしておくことと、NINAを一度再起動することです。これでNINAの「機材」の「フィルターホイール」からZWOのフィルターホイールとして認識され、選択することができるようになります。

IMG_0162


フォーカスに関して
  • オートフォーカス機能はあるようですが、マニュアルでのフォーカスをサポートするような機能は見当たらない。と思っていたら、撮像の右上のツールのところにありました。今度使ってみます。

まとめ

だいたい試したのはこれくらいでしょうか。2度に渡って使用して、その使い勝手をレポートしましたが、2回目は撮影まではしていないので、まだ説明が不十分なところもあるかもしれません。例えば、フォーカサーとかフラットパネルと接続した撮影の機能もあるみたいで、ここら辺は機材を持っていないので試すことができません。

とりあえず十分すぎるくらいの機能があることもわかって、撮影するには何も不便なところはなく、ベータ版でもすごく安定しています。

前回と今回の記事を読めば導入して撮影するまでできるのではないかと思います。わかりにくいところがあったらコメントしてください。私も全部理解しているわけではないですが、質問に答えがてら理解していきたいと思います。


最近話題のNINAを試してみました。すごくいいです。試したのはVISACでM13を撮影したときです。


N.I.N.A.を使ってみた

そもそもAPTをまともに使い始めたばかりなのに、なんでNINAを使ってみたかというと、APTで少し不満があったからです。
  • Live viewの映像がうまくストレッチできない。
  • ピント合わせで拡大できない。
  • 撮影ごとのログが残らない。fitsに特化しているので、各ファイルの中に情報は含まれてますが、いちいちヘッダを見なくてはならないのが少し不満です。
  • 撮影中の設定が結構制限される。例えばカメラのカラーバランスやストレッチの設定など、撮影中も触りたいのにできない。(でも、撮影中に弄れたことも一度だけあるのですが、再現性無しです。不思議です。)
と言っても、上のように細かいことだけで、普通に撮影するだけならAPTは十分な機能を持っています。「今回の撮影は前と同じM13で、余裕があるので失敗してもいいからNINA試してみようか」くらいの気分でした。しかもNINAで上記不満が解決されたかというと、実はそうでもなく、せいぜいLive Viewがマシになったくらいでしょうか。

でもそれ以外にいい所がかなりあり、極めて順調に撮影までできたので、この記事を書いています。


N.I.N.A.のインストール

ダウンロードはここからです。

2020年5月13日現在、最新の安定バージョンは1.9ですが、事前情報から日本語を使うためにはベータバージョンを使う必要があり、Version 1.10 BETA002(5月16日の今日、アクセスしてみたらすでにBETA004になっています)をダウンロードしました。

Windows版のみ存在し、MacやLinux版はないようです。32ビット版と64ビット版がありますので、各自の環境に合わせて選択します。自分のWindowsが32ビットか64ビットか分からない場合はここなどを参考にして確認して下さい。

今回は64ビット版を使ってみましたが、注意事項が書いてあって、もしNINAの64ビット版を使う場合はASCOMも64ビット版を使う必要があるそうです。いくつかのASCOMドライバーは未だ32ビットのままなので、その場合は32ビット版を使うか、64ビット版のドライバーの開発を促してくれとか書いてあります。とりあえず今回の使用(一通りセットアップして、plate solvingして導入、長時間撮影とかするくらいまで)では64ビット版で困ることはありませんでしたが、たくさんの機器を繋いで本格的に稼働させるとかの人は32ビット版の方がいいのかも知れません。

インストールは普通にやれば特に困ることはないでしょう。


最初の設定

インストール後、起動して一番最初にやるべきことは左端アイコン群の一番下「オプション」の「一般」の設定でしょう。そもそも日本語になってないと「Options」の「Genaral」になっています。まずは、そこの「Language」を「Japanese(Japan)」に変えます。変えた瞬間に日本語に切り替わるのが素晴らしいです。でも後から再起動して気づいたのですが、細かいところ、例えば先ほどの「Japanese(Japan)」は再起動して初めて「日本語(日本)」に切り替わるので、全ての項目が瞬時に切り替わるわけではないようです。一応言語を切り替えたら、一旦終了して立ち上げ直した方がいいでしょう。

同じページで「天文測定学」(ちょっと訳が微妙ですが)で緯度、経度を写真のように「137.12」などという形式で「度と分だけを小数点で区切った形」で入れておくといいでしょう。後の「スカイアトラス」のところで正しく表示されるようになり、撮影時間などの目安を立てやすくなります。


IMG_0090

「オプション」「撮像」「画像ファイルパス」で、撮影した画像を保存する場所を指定できます。好みの適当なところにしておくといいでしょう。


機材の接続

最低限の設定がとりあえず終わったら、次は「機材」ページです。この時点で、必要な機器はケーブルなどで実際に接続しておいた方がいいでしょう。今回設定したものはカメラ、望遠鏡(赤道儀のこと)、ガイダーです。これら3つは接続すると縦に並ぶアイコン群の右下に小さな電源マークが出るので、何が接続されているのか一目で分かります。

IMG_0087

それぞれのページの一番上で接続したい機器を選択し、その右の電源マークのアイコンを押して「接続」します。例えばカメラなら、すでにカメラが接続されていれば上の写真のように「ZWO ASI294MC Pro」という選択肢が出てきます。カメラが繋がれていないとASCOMとかN.I.N.A.のシミュレーターカメラとかしか出てこないので注意です。もしきちんとカメラにケーブルをつないでいても、つないだカメラ名が出てこない場合は、接続アイコンの左の矢印が回っている「デバイスの再スキャン」を押すと再認識されて、選択肢として出てくることがあります。

うまくカメラが接続できると温度制御やゲインの設定などができるようになります。冷却は設定温度を決めて、右横の雪の結晶マークのアイコンを押すだけです。撮影終了時の昇温は下の炎マークのアイコンを押します。オフセットはダークファイルのオフセットより大きな値が入っていればいいのかと思います。通常数十とかでしょうか。ゲインは後の「撮像」のところで改めて設定するので、適当でいいです。


適当な天体の導入と、PHD2でオートガイド

とりあえず、赤道儀での自動導入でも、マニュアル導入でもいいので、撮影したい適当な天体を導入します。最初はテスト撮影だと思って下さい。NINA自身の導入機能「フレーミング」については次回の記事で説明します。

一旦撮影したい天体が導入できたら、PHD2を起動してオートガイドを始めます。その際ですが、PHD2で赤道儀に接続した時に出てくる4方向ボタンのの小さな画面が後で導入すうる時に便利になるので、できればボタンを押してきちんと赤道儀が反応するか確かめておくといいでしょう、

きちんとオートガイドされていることが確認できたら、「オプション」「ガイダー」で、PHD2に接続して下さい。もしかしたら自動的に認識されて、すでに接続された状態になっているかも知れません。もし選択肢にPHD2が出てこなかったら、「オプション」「機材」の右下の「ガイダー設定」できちんと「PHD2パス」が設定されているか確認してみて下さい。私は先にPHD2を動かしていて、うまく動いている状態でNINAを立ち上げたので、特に何も設定する必要はなかったですが、うまくいかない場合はここが設定画面になるはずです。

IMG_0096

うまくPH2Dが接続されると、ガイドされているグラフが「機材」「ガイダー」のところに表示されます。PHD2の制御情報がそのままNINAで表示されるのがすごいです。左の方の選択で、y軸、x軸の表示設定とともに、誤差の単位を変えることができます。下の写真ではピクセル単位にしています。概ね0.5ピクセル以内に収まっているでしょうか。

IMG_0089

ついでにここで、NINA上でも赤道儀との接続も済ませておきましょう。PHD2がうまく動いているなら、すでに赤道儀はPCと接続されているはずです。NINAの「オプション」「望遠鏡」で自分の赤道儀のドライバーを選択し、右の「接続ボタン」で接続します。

IMG_0088



撮像

次はNINA画面の左端アイコンの下から二番目「撮像」ページです。ここは盛り沢山で混乱しますが、最初は最低限の機能から試します。

IMG_0094

まずは右上の「撮像」パネルのところのシャッターマークの「露光開始」ボタンを押して一枚テスト撮影して見て下さい。その際、「露出時間」は適当に10秒くらい、「ビニング」は1x1、「ゲイン」は200から400くらいいいでしょう。これらの設定はテスト撮影の時のみ有効で、本撮影では別の設定項目があり、そことは独立に設定ができます。撮影中は左下に「撮像:露出中」とか出て、時間バーが動いていきます。一枚撮影すると画像が出てくるはずです。望遠鏡の蓋がきちんと外れていて、ピントも合っていて、何かターゲットが入っているはずなのに真っ暗な画面しか出てこない場合は、撮影画面の上の右側にあるアイコン群の真ん中の棒のようなマークの「画像の自動オートストレッチをトグルスイッチでオン/オフする(表示のみ)」を押して、ボタンが明るくなるのを確認して下さい。同時にオートストレッチが効いて撮影画面も明るくなり、星などが見えてくると思います。

右上の「撮像」パネルのカメラマークの「ライブビュー」も同様です。「露出時間」を1秒とかにして「オートストレッチ」をうまく使って、リアルタイムで連続してみることができます。ただ、この「ライブビュー」うまくいかないことが何度かありました。「ライブビュー」ボタンを押して「露光開始」を押してうまくいったときもあれば、画面の拡大率を変えてうまく行った時もあります。同様のことをしてエラーが出たこともあります。ライブビューはまだ少し不安定な気がします。

ちなみに、この撮像画面のパネル、入れ替えとかしてぐちゃぐちゃになってしまったら、「オプション」の「撮像」タブにいき、右下の「画面配置のリセット」でデフォルトの設定に戻すことができます。


シーケンス設定

次にNINA画面左のアイコン群の「シーケンス」を押します。撮影計画をここで設定します。最低限
  • トータル#
  • 時間
  • ゲイン
  • オフセット
  • デザリング
だけ設定すればいいでしょう。デザリングはデフォルトでオンになっているようですが(下の写真はオフになっています。この場合ボタンを押して「オン」と表示されるようにしてください。)、PHD2が動いていてサーバーモードになっていれば、これだけでデザリングもできてしまいます。

IMG_0097

ちなみに、ディザー量などは「オプション」「機材」の右下の「ガイダー設定」で設定します。

シーケンス画面の左上の「対象」のところの「ターゲット名称」のところに希望の天体名を打ち込むと候補が出てきます。例えば「M13」と入れると「Herucles Globular Cluster」と出てくるので、それをクリックします。すると何時頃が撮影どきかとかも知らせてくれます。これと関連して、NINA画面左のアイコン群の「スカイアトラス」でも同じようなことができます。

IMG_0098

これらの画面にある「ガイド開始」「対象の導入」「ターゲットをセンタリング」「シーケンスの対象として設定」「導入」などのボタンはまだ試していません。ここら辺を駆使すれば、時間がくれば自動的に導入して撮影を始めるとかができるのかと思います。ドームでの撮影などでは便利なのかも知れません。


いよいよ撮影開始

さて、最低限の撮影準備が整ったと思います。いよいよ本撮影です。

IMG_0094


左端アイコンの下から二番目「撮像」ページに戻り、右側真ん中の「シーケンス」パネルの三角の再生マーク「シーケンスを開始します」を押して下さい。撮影が開始され、順次右下の「画像履歴」パネルに撮影された画像が溜まっていくと思います。Windowsのエクスプローラで実際に保存先フォルダを見て、ファイルがきちんと保存されているか確かめて見ましょう。私は一番最初だけエラーメッセージが出て、ファイルが保存できないと言われました。これは撮影中に保存先を変更してしまったことなどが原因かと思われます。最初の一度きりで、それ以降はこのようなエラーはなく安定して撮影できました。

撮影時の注意事項ですがが、あえてシーケンスの「リセット」ボタンを押さないと、途中枚数からの撮影が続行されてしまいます。テスト撮影で止めてしまった時など、必要枚数に達しなくなる時があるので、本撮影を始める時は必ず「リセット」を忘れないようにします。左端アイコン「シーケンス」に行って、左下のアイコン群の左から三番目の矢印が回っているマークのアイコンを押すとまた0枚に戻ります。

とりあえずここまでで、最低限のディザーの撮影までできるかと思います。


使っての感想など

うーん、NINAかなりいいです。もちろんどのソフトがいいかは機能だけでなく、インターフェースとかの好みはあるでしょうし、安定性なども大きなファクターです。NINAはまだまだ開発がどんどん進んでいる段階で、しかも今回はベータ版にもかかわらず、一度も落ちることはありませんでした。実は立ち上げてから一度も終了することなく撮影までできてしまうくらい分かりやすいインターフェースでした。オープンソースでこれだけのものができるのは、開発者の方々にただただ感謝です。

ベータ版ですが、すでに日本語が選択できるところもありがたいです。日本語訳もおかしなところはほとんどありません。どなたか日本人の貢献者がいらっしゃるのかと思います。感謝いたします。


感想など、細かいところをいくつか。
  • オンオフボタンがわかりにくいです。オンとオフどちらを押してもスイッチが切り替わってしまいます。どうやらボタンのところに「オン」と出ていたら「現在はオンの状態」、「オフ」と出ていたら「現在はオフの状態」という意味のようです。
  • ライブスタックはSharpCapと比べると流石にまだまだですが、APTよりははるかにマシです。多少不安定なところもありましたが、最低限操作の通りには動いてくれます。
  • 結局撮影ごとのログは残せませんでした。全体のログは残せるがトラブル時以外はあまり有用ではなさそうです。
  • 撮影中もほとんどの設定を変更できるところがいい。
  • 非力なStickPCで試さなかったので、重いかどうかがわかりません。でもホームページには2GBで動くと書いてあるので、意外に軽いのかも知れません。

とりあえず今回はここまで。次回はもう少し応用編として、「プレーとソルブ」と「フレーミング」などについて解説します。実はもう試してはいて、プレートソルブは簡単だったのですが、フレーミングに少し手間取りました。お楽しみに。

縞ノイズが出る理由の一つとして、ガイド時における鏡筒とガイド鏡の相対的なたわみが考えられます。TSA-120用にガイド鏡を取り付けることを考えていましたが、できるだけ撓が少なくなるように、市販の部品を使ってガイド鏡の固定を補強することにしました。


ガイド鏡について

ガイド鏡は昨年の胎内星まつりでBlac Pandaさんのところで先行販売されていたこれ。焦点距離128mmです。最近シュミットさんで販売が始まったようですが、星まつりだったので当時特価で購入できました。

IMG_7908


レンズ部分が筒部分と同じ長さだけあるので、すごく引き出せます。そのためカメラ位置の範囲にかなり余裕ができるため、台座兼アイピースホルダーを外しても焦点を合わせることができるなど、随分と応用範囲が広いです。

IMG_9840

この台座ですが、一本持ちなので少し心許ないです。今回のように撓みをできるだけ無くしたい場合は、できるだけ高さを低くすること、2点支持した方がよさそうです。


どうやって固定するか

もう一本、同じような台座を探してもいいのですが、なかなかいいのがありません。なのでこれを外してしまい、もう少し低くできる固定方法を模索しました。実際、台座部分を外してもネジ径が同じで、ASIカメラのアダプターの径と同じを直接取り付けることができます。

IMG_9845

カメラをねじ込みにすると、回転方向を任意に調整できないと困ることがありそうです。問題はガイド鏡を任意に回転させることができつつ、この円筒部分をどうやって固定して、TSA-120につけたアルカスイスプレートに固定するために、アルカスイスクランプにどうやって持っていくか。

今回はアマゾンでこんなパーツを見つけました。バイク部品のようですが、かなり頑丈で直径54mmまでのパイプに取り付けられるようです。ガイド鏡の円筒部分の外径が45.5mmなのでちょうどいいくらいです。Lサイズが2個1組なのですが、最初LサイズとMサイズが一つづつ届きました。でも、そのことを販売店に知らせたらすぐに対応してくれて、多分最速で新しいものを送ってくれました。間違って配送されたものも、配達員がそのまま引き取ってくれたので楽でした。

それと、安価な120mm幅のアルカスイス互換のクランプです。

IMG_9846

注意する点は、アルカスイ互換スクランプの裏側からネジ止めをするために、丸ネジや通常のキャップネジだと頭が出過ぎてプレートに取り付ける時にぶつかってしまいます。そのため今回は6角の皿ネジを一緒に注文しました。長さは12mmでぴったりでした。

これで加工なしで固定できます。

IMG_9848

裏から見るとこんな風になっています。

IMG_9849


鏡筒に取り付けてみる

鏡筒側にアルカスイス プレートをつけてあるので、直接取り付けることができます。実際TSA-120につけてみるとこんな風になります。プレートも長いので、ある程度前後させることもできます。

IMG_9850

うーん、かっこいい。(自己)満足です。

実際揺らしてみてもほとんど動きません。これで相当頑丈になったはずです。

次回晴れたらテストしてみます。

前回の記事の月の撮影をする、少し前に撮影したM42の内容です。今回は人様に見せるような記事ではなく、自分用のメモです。


35フラットナー

TSA-120での同じような内容のM42は以前記事にしましたが、今回の第一の目的はTSA-120用の35フラットナーと呼ばれるフラットナーのテストです。具体的には
  • フラットナーが使えるかどうか、星像がどこまで改善するのか見てみたい。
  • フラットナーでCMOSカメラを接続したらどうなるか?
  • トラペジウムを四隅の星像の崩れなしで撮っておきたかった。
  • 1秒露光のラッキーイメージングで上位画像だけを撮ったら分解能に効果があるかどうか調べたい。
くらいでしょうか。

撮影と画像処理

ガイドは用意までしたのですが、オリオン座が沈むまでに時間が限られていて準備が間に合わす、結局今回もノータッチガイドです。 
 
機材はTSA-120をCGEM IIに載せて、カメラはASI294MC Proを-15℃、間にQBPを入れてあります。撮影条件はSharpCapで1秒露光、ゲインは320。撮影中にダーク補正だけは64枚をリアルタイムでしました。約1513枚撮影し、FITS形式で保存しました。

まあ、結論だけ言うとシンチレーションがあまりに悪くて、前回のM42の撮影時は写っていたE星、F星も撮影時から全く見えず、ほとんど最初から諦めモードでした。そのせいでしょう、1500枚のうちAutoStakkert!3で上位25%だけスタックしたものと、PixInsightで1500枚全部インテグレートしたものを比較しても、トラペジウムの写りはほとんど差がなく、枚数差で背景ノイズが滑らかになるかどうかの違いが見えただけでした。 

1000枚を超える処理は、PixInsightだと結構時間がかかるので、ラッキーイメージングのような短時間露光の時はser形式でRAW動画として保存して、AutoStakkert!3の方が楽そうです。一応AutoStakkert!3はFITS形式も読めるのですが、その前にdebayerしてカラー化しないとダメで、debayerをPixInsightでやると.xisf形式になってしまい直接は読めないので、さらにTIFF形式とかへの変換が必要になります。ただ、ser形式にすると、クールピクセル処理とかはできなくなりそうなので、これもまた考えものです。一度手法をきちんと確立する必要がありそうです。

しかも、ノータッチガイドで少し流れたので、縞ノイズやらカラーノイズが結構出てしまい、あまり画像処理をする気にもならないレベルでした。


撮影結果と四隅の具合

とりあえず結果だけ。

integration_ABE_PCC_STR_all_PS_2nd

背景がノイジーなので、全然炙り出せません。暗いままです。トラペジウムも前回よりボヤボヤです。天体画像としては不十分ですが、元々の目的のフラットナーの評価だけはできます。肝心の四隅だけ見てみます。

integration_ABE_PCC_STR_all_PS_2nd_cut9


それでも元々が1秒露光なこともあり、写っている星の数が少ないので評価しにくいです。例えば右下を見るとやはり少しだけ流れているように見えます。これは、フラットナーとカメラセンサーの距離がきちんと調整されていないことが一つの原因かと思います。少し分解能は落ちるかもしれませんが、早めに一眼レフカメラに移行して、きちんとしたバックフォーカス長で撮影した方がいいかもしれません。

ちなみに、フラットナーなしの場合はこうなります。

integration2_cut9

比較して見ると、四隅は当然ですがフラットナーなしの時よりは全然マシになっています。でもトラペジウムの解像度や、中心部の星雲の解像度は前回の方が全然上ですね。同じ機器でもこれだけの違いが出ます。ピントは今回もかなり気を使ったのですが、シンチレーションの差は如何ともし難いです。


まとめと来シーズンへのの課題

結論としては
  • フラットナーを一応使うことができた。焦点も出るし、星像も改善される。
  • CMOSカメラだと少し流れている。フラットナーからの距離の調整が必要かもしれない。
  • オリオンももう季節終わりで、トラペジウムベンチマークもまた来シーズン。 
  • 1秒露光は長時間になると結構大変になってくるので、もう少しやり方を考えた方がいいかもしれない。
とかでしょうか。特に最後の長時間のラッキーイメージはどうするかは課題です。分解能を稼ぐために新ちれションが悪いところを省きたいのですが、
  • 例えばLiveStackで枚数を減らすか?でもそれだと上位画像を選べない。
  • serフォーマットで撮るか?でもそれだとクールピクセル除去ができない。-> ディザー?
  • ガイドは必須。
  • でもティザーは?何分かおきにやるのか?
など、検討すべき点がたくさんあります。 他にも
  • バローを入れる。
  • 赤外の方がシンチレーションの影響が少ないか?
とかも興味のあるところです。

大元の目的がM42をトラペジウムのF星よりも分解能よく撮りたいというものです。来シーズンまた挑戦します。
 

TSA-120の取り回しが完成しつつあります。

アリガタプレート変更


2月前に購入した直後は星まつりで100円で買ったVixenのアリガタを使っていたのですが、ちょと前の記事で書いたように、タカハシ純正の鏡筒バンドにMORE BLUE製のLosmandy規格のプレートを付けました。これでも実際には十分な強度だと思います。

IMG_9771

タカハシ の鏡筒バンドの裏側には、直径5cmくらいの円状の高さ1mmくらいの出っ張りがあり、そこがタカハシ製の赤道儀にピッタリはまるようになっています。そのため上の写真のようなプレートに取り付けると、その5cm円の面のみで接触します。揺れや剛性などは一番細いところで決まってしまうので、結局一番小さいこの円の面積が支配的になります。タカハシ純正の赤道儀だと、ちょうどピッタリハマるので、鏡筒バンドの軸の太さと赤緯体の太さが同じになり、弱いところがなくなるのがメリットです。


セパレート式鏡筒バンド

赤道儀はCGEM IIを使っているためVixenかLosmandy規格のアリガタになり、タカハシ鏡筒バンドはタカハシ赤道儀のようにはうまくくっつきません。最初の頃、Vixen規格のアリガタで固定していた時は、ピント合わせなどの時に結構揺れていました。Losmandy規格になり少しマシになりましたが、やはりもう少し剛性が欲しくて、セパレート式の鏡筒バンドにしようと思っていました。

鏡筒バンドはこれまでFS-60QやFC-76で使っていたK-ASTECのものにしようと思っていたのですが、結局MORE BLUEのものにしました。

IMG_9772

決めては値段と、重量、そして底プレートからの高さが低いことです。実際にどれくらい効くかはよくわかりませんが、鏡筒の重心位置が赤経中心数cmのオーダーで近づくことになります。

また、鏡筒バンド間の距離をできるだけ大きくとったので、剛性として相当増しているはずです。実際に星を見て、ピント合わせ時などでも多少改善されることを期待しています。


汎用のアルカスイス プレートの取り付け

次は鏡筒バンド上部。今回は汎用の300mmのアルカスイス プレートを少し加工して取り付けました。

IMG_9808

元々端の方にあったたくさんのM3穴のうち4つを、M10まで広げています。使っているネジはM6ですが、元々の穴が鏡筒バンドのねじ穴と少しずれていて、多少大きめな穴を空けなければ、鏡筒バンドのネジ穴までアクセス出来なかったからです。

このプレートは持ち手がわりにもなりますが、鏡筒との間の距離が短いので指が完全に入らないです。もしかしたらMORE BLUEで販売されている専用スペーサーを上側だけに入れるかもしれません。もしくは別のハンドルをつけてしまってもいいかと思っています。

ただ、このプレート少し厚いので、もっと薄いプレートにしてもいいのかもしれません。その際は、M6用の穴をきちんとした位置で空けるのかと思います。


ファインダーやガイド鏡の取り付け

上部をアルカスイス互換プレートにしたので、ここにいろんなものを簡単に取り付けれるようになります。今回試しに用意したのは、光学ファインダーと電子ファインダー、ガイド鏡です。こんなふうに取り付けます。

IMG_9788


光学ファインダーがこうなった経緯

これまでずっと電子ファインダーが主だったので、FS-60Qなどの付属光学ファインダーは実際ほとんど使っていなくて、鏡筒からは基本取り外して保管箱にしまいこんでいました。 

でもTSA-120の場合、眼視で使うことも多いので光学ファインダーって結構使ってるんですよね。問題は、光学ファインダーがでかいこと。ケースに収める時も苦労したので、まずは取り外し式にしたいというのがありました。

取り外し式にする時に問題になるのが、台座をどうするか。タカハシのファインダー台の取り付け穴って、鏡筒軸に対して垂直にねじ穴が二つ開いていて、しかもそのねじ穴の幅が27.5mmと微妙に広すぎるんです。手持ちでそこらへんにあったVixen用のファインダー台座とかを取り付けることができません。アルカスイス クランプに取り付けるにしても、この幅が仇になり、なかなかうまいこと固定することができません。

既製品をいろいろ調べたのですが、3種類くらいがすぐに見つかりました。
  1. まずはタカハシ純正のFQR-1ですが、対応品の中にTSA-120が出ていないので不安なのと、少し大きいのがマイナスポイントです。あと、タカハシというだけあるのでしょうが、1万円程度と台座だけにしてはちょっと高価です。
  2. 他にNorthern Crossのものがすぐに見つかりました。Vixen互換でタカハシ鏡筒にも対応しているというもので、幅広のタカハシ規格のために爪の真ん中に切り込みを入れてあり、2つになった爪を2つのネジでそれぞれ締めるようになっています。2つネジは安定になりそうなのですが、少し冗長な気もします。
  3. Northern Crossのように切り書きが入っているのですが、ネジが片側だけにしかついてないものもありました。これはこれで固定に不安も出てきます。
結局のところ、そもそも巨大なTSA-120純正の光学ファインダーを使うのはやめて、手持ちで転がっていたもっと小さい、普通サイズの光学ファインダーを使うことにしました。そうするともはや元々の光学ファインダーの位置にこだわる必要もなくなります。

IMG_9805

いくつかある手持ちの光学ファインダーの中で選んだのが、上の写真です。古いもののようで、どこのメーカのかもわかりません。多分どこかの星まつりで買ったもので、手作りと思われるアルミ製のホルダーと台座がついている結構しっかりした物です。レンズとか少し汚れていましたが、分解して掃除したらまともに見えるようになりました。これにアルカスイス互換クランプを取り付けることで、鏡筒上部のアルカスイス互換プレートに簡単に取り付けられるようになりました。


まとめ

今回の鏡筒バンド周りのセットアップで、着々と撮影の準備ができてきました。次はいよいよ専用フラットナーを取り付けてみます。


縞ノイズを時間的に見てみる

もしかしたら興味がある人もいるかと思い、縞ノイズを時間的に可視化してみました。先のバラ星雲の1日目のディザーなしで撮影した失敗画像約2時間ぶんの24枚を使っています。中心あたりの一部を拡大して見ています。といってもやったことは簡単で、ディザーなしで撮影した画像を、PixInsightで動画にしただけです。

Blink

これはガイドをしていても、たわみなどでガイド鏡と撮影鏡筒の相対的な視野が一方向にずれてしまうために起きます。それでももしノイズが完全にランダムなら、このように流れるようには見えないはずです。ノイズが流れて見えるということは、ノイズに時間的なコヒーレンスがあるということです。うーん、結構ありますね。あれだけの縞ノイズになるのもわかる気がします。

integration_DBE_PCC_AS_cut



縞ノイズ動画の作り方

さて、この動画の作り方です。今回縞ノイズを時間的にみる目的でしたが、このやり方覚えておくと色々応用が効きそうです。基本的に、PixInsightを使います。
  1. 普通にBatchPreprocessing 処理などで進めます。
  2. master以下のregsteredフォルダに入っている、位置合わせまで終わって、Integrationする寸前のファイルを使います。ここまでは普通にDebayerしてStarAlignmentでも構いません。
  3. Blinkでそれらのファイルを開きます。
  4. とりあえずは、デフォルト機能の再生ボタン(右三角)を押すと確認できますが、順に動画のようになるように見せるだけです。オートストレッチもできるのでみやすくなります。カラーバランスが悪い場合は、RGBのリンクをオン/オフする「鎖マーク」のアイコンを押してください。
  5. Previewで一部を切り取るとその部分だけ拡大して見えます。
  6. それをBlink画面の右下の一番右端の撮影開始マークアイコンで動画にします。
  7. ffmpegがない場合は別途インストールしてください。
  8. ffmpegがインストールされていても、実行ファイルをフルパスで入れないとダメでした。/usr/local/bin/ffmpegとかいうことです。
  9. オプションは秒20コマのgifファイルにしたかったので、 -y -r 20 -i Blink%05d.png Blink.gifとしました。
このように結構簡単に動画を作ることができます。


M42の場合

もう一つ例です。TSA-120でM42を撮影した時のものです。約30分くらいの撮影時間で、枚数は14枚です。これはディザーもそうですが、ガイドさえもしてないので赤道儀の極軸の精度が悪くてずれていってしまっているものです。上のバラ星雲のように画像の一部ではなくて、ほぼ全体像を示しています。解像度はこのブログにアップできるように(一画像当たり5MBが制限)落としてあります。

Blink

縞ノイズの原因となるクールノイズなどに混ざって、おそらくバイアスノイズに相当する縦線のように見えるノイズも流れていることがわかります。基本的にランダムでないノイズは、全て縞ノイズになり得るだろうことがわかります。

これを普通にスタックすると下のように縞ノイズが盛大に出てくるわけです。

integration



バラ星雲のもそうですが、時間的にこれだけ明らかに変化しているのがわかるのなら、なんとか分離してペラっと一枚皮を剥ぐようにこのノイズだけ取れないですかね?

このページのトップヘ