ほしぞloveログ

天体観測始めました。

カテゴリ: 調整・改造

手持ちのStick PC、MiNISFORUM S41ですが、値段と性能の良さから天文界隈でも使っている方が意外なほど多いのかと思います。その小ささにもかかわらず、スピードも十分。なかなか微妙な立ち位置のStick PCの中で、久しぶりに出た高評価の実用的なものです。



これまでの状況

その中で唯一の弱点が電源。特にバッテリー駆動だとどうも不安定です。

これまで3種類のUSBバッテリーを使用して、そのうち2種は起動不可だったり、途中で落ちることが多かったです。唯一少しまともだったのがLess is moreというところの100Wまで出せるというバッテリーです。起動不可という経験はしたことがなく、テストでは不安定なことはありませんでした。

その後、Less is moreを実戦投入したのですが、撮影中に落ちてしまうということが何度かありました。いずれもSharpCapのPolar alignやファイルをまとめて触ったりするような高負荷なときです。今のところ、純粋に撮影だけしていた時に落ちたことはありません。それでも撮影が止まるのが怖いため、何度か落ちるのを経験した以降は使うのを諦めて、結局今はAC100V出力がある大容量バッテリーに、S41に付属のACアダプターを使って電源供給をしています。

もう少し汎用的にならないかと思うので、いったいどれくらいの電流になると落ちるのか調べてみようと思い、少し測定してみました。


まずは分解

測定に先駆けて、S41を分解して少し中を見てみました。

0C1E94C5-25EF-4A15-8756-6DE269383143

電源部をもう少し見てみます。

77FEA294-B834-48A1-83A3-BD1C40F7E5F0

付属のACアダプターのType Cコネクタの出力をStick PCにつないで、テスターで少し測定してみました。USB Type Cコネクタを使ってますが、形だけ使っているみたいで信号のやりとりはなく、電源とグランドピンだけしか使っていないみたいです。確かにこれだとUSB出力のバッテリーでは、大きな電流は流せないはずです。元々USB2.0は5Vで0.5Aまでしか流せない規格で、USB3.0でも5V、0.9Aです。その後USB PDなど色々拡張して20V x 5A =100Wとかまで使えますが、これはあくまで規格にのっとた信号のやり取りをした場合のはずです。なので、今回のように電圧ピンだけ使っているような場合では電圧が出ないはずなので、落ちる可能性が高いのは理解できます。


Ankerのバッテリー

では実際にどれくらいの電流が流れているの測定してみましょう。使ったのはUSBチェッカーです。

AD518BA4-027C-471F-880D-53551A8DD390

写真ではAnkerの13000mAのバッテリーをつなげています。上の写真は起動前の状態です。

5回くらい起動テストして、起動さえしなかったことが2回ありました。その場合は再起動を繰り返した場合と、止まってしまった場合がありました。それでも起動することもあり、起動した後は特に操作しなければ安定です。

ここの状態からソフトを立ち上げ負荷をかけますが、Ankerの場合SharpCapとStellariumを立ち上げたくらいで落ちることが多いです。落ちた後は0.87Aでほとんど動かなくまります。

FA243E68-C84E-4137-A450-8B6A433B4977

落ちる前にその負荷の高い時の電流を見ると、なぜか1A-1.5Aくらい普通にでてるんですよね。しかも大きな電流でも落ちない時もあり、さらにプレートソルブとかもかけてやります。すると一瞬ですが2Aを超えることもあります。

851C51F3-3F88-403A-9A2F-14EFEFD4CF86

これはどういうことなのでしょうか?そもそも規格で0.9Aしか出ないと思ってましたが、2A出すこともできるみたいです。

このAnkerバッテリー、負荷が低い時は安定する時もありますが、高負荷にしていくと必ず毎回最後は落ちました


Less is moreのバッテリー

Ankerの結果はあまりよくわからないですが、気を取り直してこれまで落ちにくかったLess is moreの100W出せるというバッテリーにつなぎ変えてみます。このバッテリー、Amazonで買ったのですが既にリンク先が切れていました。60Wのものは見つかりましたが、100Wの代替のものは無いみたいです。

61B75800-D386-44BA-BC86-8C128655AD80

ほとんど落ちることはなかったので、思いっきり負荷をかけます。CPUパワーは100%です。見ることができた最大電流は2.5A越え。

BB616BEE-BBD2-4DAD-8AC4-19BA7627BC76

ただし電圧が4.8V台全半まで落ちてます。2A位までは5Vを保ってますが、2Aを超えると供給電圧が落ちていくようです。StellariumにSharpCapでPolar align、プレートソルブをかけながらStellariumをグリグリ動かすととうとう落ちました。でも落ちる瞬間に電流がものすごく高いかというと、そうでもありません。フラフラしてますがCPUパワーが100%で頭打ちなので、平均では2A切ってます。

ここで言えることは、Ankerのものよりは確実に落ちにくいということくらいで、それでも高い負荷だと落ちることは落ちます。5回くらい試しましたが、ただ1度どう負荷をかけても落ちない時があって、その時は諦めて自分で電源を落としました。


付属のACアダプター

次に試したことが、ではACアダプターに繋げた時にどれくらいの電流が流れるか確認することです。でもこれも不思議なことに、2.3A位までは見ましたが2.5Aとかを見ることはできませんでした。CPUパワーが100%で頭打ちで、それ以上電力を使うことができないからかなと思ってますが、はっきりした理由は不明です。

一つだけ言えることは、どれだけ高負荷にしても落ちることは一度もなかったことです。


まとめ?と言えるのか...

結局今回試したことで定量的にはほとんど何も言えませんでした。定性的には
  • バッテリーを使う限りは、多少の違いはあるが、負荷がかかると落ちることを避けることは出来なさそう。
  • 付属のACアダプターが唯一まともな電源で、少なくとも高負荷などで落ちることは確認できなかった。
ということくらいです。逆に疑問点の方が多く
  • USBバッテリーで何の規格のやりとりもなしで2A以上も出せるのか?
  • 逆にいうと、ここまで電流出せるのになぜ落ちることがあるのか?
  • 落ちる理由は何か?もしかして電圧降下が直接の理由なのか?
など、わからないことだらけです。

今回はUSBチェッカーの表示だけを見たので、もっと速い速度で応答を見れば何か分かるかもしれません。もう少し原因がわかれば、何か手を打つこともできるかもしれませんが、USBの範囲でやろうとすると規格外のことになるので、無難に付属のACアダプターを使った方がいい気がしています。

あと、今考えてるのがラジコン用とかのもっとシンプルなバッテリーを使うことです。これをType Cの端子だけ100円ショップで見つけてきて変換アダプターを作るとかだとうまくいく気がします。もちろん自己責任になります。

 

前記事の惑星撮影の傍ら、大阪あすとろぐらふぃ〜迷人会工房様の微動雲台を、微動機能の検証に引き続き、もう少し試しました。今回は揺れについてです。


どれくらい揺れるかを見てみる

前回は本来の極軸微動の機能を中心に評価しましたが、今回はどれくらい揺れるかです。前回も少し書きましたが、ポタ赤(ポータブル赤道義)はそもそも極軸合わせの微動機能が付いていないことがほとんどで、微動で合わせようとすると別途用意する必要があります。その際、なかなか強度的に満足できるものがなく、私はポタ赤での撮影では三脚の足を横に僅かにずらしたり、三脚アジャスター を用いて微動がわりとしていました。でも、もし強度的に十分で、微動がついているなら、それを使わない手はありません。

前回の検証で、迷人会工房の微動雲台は多少の引っ掛かりはあるものの精度的には十分であることがわかりました。でも、微動雲台が元で揺れを導入してしまうようでは元も子もありません。前回の検証ですでにかなり頑丈そうというのは、触っているだけでわかりました。果たしてこれを客観的に評価できるのでしょうか?以前使わなくなった手持ちの微動雲台と比較して検証してみたいと思います。


振動測定のためのセットアップ

まずはセットアップです。迷人会製の極軸用微動雲台にSWAT200を載せて、そこにFS-60Qを取り付けます。鏡筒は出来るだけ頑丈に取り付けるために、モノタロウで購入した大型の1軸クランプにアルカスイスクランプをとりつけて、そこに鏡筒の上下についているアルカスイスプレートで固定しました。

ポタ赤なので、鏡筒としてはせいぜい600mmくらいの焦点距離が最長クラスだろうということから、FS-60Qでの評価に決めました。

振動を見るための動画撮影用にASI294MC Proを取り付けていますが、ここを例えば6Dクラスの一眼レフカメラをつけたときには慣性モーメントが結構変わってくるので少し注意が必要です。

三脚はゴム脚ではなく、石突きでアスファルトに接しているため、地面にはある程度きちんと固定されているはずです。

IMG_0878

この状態で写真にあるようにガイド鏡を用いてSharpCapのPolar Align機能で極軸を1分角以下の精度に合わせ込みます。その後、振動測定の際にはこのガイド鏡は外しています。


ターゲットマーカー天体

この状態で、南東方向、高度50度くらいにある火星を導入し、SharpCapでカメラの映像を見ます。速い動きを見たいため、露出時間を相当短くする必要があり、かなり明るい星を見ることになります。そのため、ターゲットは最接近に近い-2等級よりも明るくなっている火星としました。

露光時間は5msとし、さらに転送レートを上げるために4倍のビニングをして、ROIで画面を1024x768にしました。ビニングがあるので実際撮影した画像の解像度は256x192となります。フレームレートは65fpsとなったため、ナイキスト周波数の30Hzちょいまでは測定できるはずです。


振動モード

実際に揺らしてみると分かるのですが、本当は真南方向にある星を入れると、鏡筒との向きと雲台部の揺れのモードの向きが一致すると思ったのですが、この方向には明るい星がなく無理で、モードの励起に少し苦労しました。とにかく、頑丈すぎて鏡筒を揺らしても全然揺れが励起しないのです。

いろいろ触って分かったことが、揺れの中で一番低いモード(一番弱いところ = 一番共振周波数が低いところ )は
  1. pitch(仰角、縦方向)の自由度
  2. それに垂直に上に乗っている機材(具体的にはSWAT本体)を真横に押して倒すようなモード
のようです。今回はこの2つのモードが一番揺れるようで、ここを測定することにしました。

これ以外のモードはこれより大きく揺れることはないと思われます。例えば、水平回転モードなどはもっと周波数が高く(もっと頑丈と言う意味)、指で押すくらいでは単独に綺麗に励起できませんでした。

それ以外では、今回使ったものではSWATに載っている機材を含む赤経体の回転軸方向、三脚のねじれやたわみモード、上下のバウンスモードなども、周波数が十分高く頑丈なため、撮影時の揺れとしてはほぼ無視できると思われます。

逆に言うと、雲台以外に弱い部分があると、そこが一番大きく揺れてしまいます。例えばSWATでなく構造的に弱いポタ赤を使う場合や、特に三脚が弱い場合です。こういった場合、今回テストしている迷人会製の自由雲台を使ったとしても、せっかく使っている意味が薄れてしまい、性能を引き出し切ることができないので注意してください。

見たいモードを揺らすのは、SWAT部分を直接指で叩くことにしました。
  1. SWATの背中の上部を叩くのが1のモード
  2. SWATを横から上の方を叩くのが2のモード
となります。これらは以下全て共通の揺らし方です。


迷人会微動雲台の実際の揺れ

実際の揺れがどのようになるかを、動画で撮影しました


1.
まずは1のSWATの背中を押したモードです。カメラの角度が鏡筒に合わせてあるので、斜めに動いているように見えますが、実際には雲台のpitch方向と同じ向きの揺れが励起されたモードになります。

22_26_32_F150-550

gifアニメで表示してあり、ほぼリアルタイムですが、実際の時間はオリジナルのserファイルから読み取ります。
  • UTCの13時26分35.546秒から36.322秒で10周期揺れているので、1周期0.0776秒、共振周波数は1/0.0776=12.9Hzとなります。
  • また、半減期は振幅が半分になった時刻で、35.926秒程度で0.32秒くらい。ただし、そもそも励起できている振幅があまり大きくないので、誤差も多いことに注意です。このQ値は4.53x12.9x0.32=19程度
とZEROの時と比べても、励起される振幅が小さく(これは揺れてる点から見ている点までの距離にも依存する)、減衰するのが多少速いということがわかります。


2.
続いてSWATを横から押し、pitch軸が横に倒れるような方向のモードです。

22_31_01_F001-400

  • UTCの13時31分03.865秒から04.503秒で10周期揺れているので、1周期0.0638秒、共振周波数は1/0.0638=15.7Hzとなり、少し共振周波数が高くなるので、後ろから押したモードよりも揺れにくいと言うことがわかります。
  • また、半減期は振幅が半分になった時刻が04.169秒程度なので、0.30秒くらい。Q値は4.53x15.7x0.30=21程度となります。


比較のための手持ちの微動雲台の揺れを見てみる

比較のために、以前SWATで撮影用に使おうとしたのですが、揺れが大きくて使わなくなってしまった微動雲台と比較をしてみます。高さを合わせるのと、鏡筒が三脚に当たらないように、こちらはハーフピラーを取り付けていますが、一番弱いところは微動雲台部なので、結果に影響はないはずです。

IMG_0883

構造を見てもわかりますが、片持ちで強度的には不利そうなことがわかります。

gifアニメのファイルの大きさ制限に引っかかってしまいアップロードすることができなかったので、少しトリミングしていますが、動いている部分はおなじようにみえるはずなので問題ないと思います。


1.
SWATの背中を押したときに励起されるモードです。こちらもpitch方向に調整できる方向と同じ向きのモードです。パッと見ただけでも、迷人会製の物よりもゆっくり揺れていて、揺れが持続するのが分かると思います。
22_57_18_F080-510
  • UTCの13時57分20.133秒から21.273秒で10周期揺れているので、1周期0.114秒、共振周波数は1/0.114=8.8Hzとなります。
  • 半減期が1.0秒程度なので、Q = 4.53x8.8x1.0=38程度。


2.
続いて、SWATの横を押すときのモードです。片持ち部分が揺れる方向になります。
22_56_20_F050-430
  • UTCの13時56分22.255秒から23.287秒で10周期揺れているので、1周期0.103秒、共振周波数は1/0.103=9.7Hzとなります。
  • 半減期が0.86秒程度なので、Q = 4.53x9.7x0.86=38と後ろを叩いた時と同程度。

最後、参考にですが、適当に風が吹いたようなことを仮定して、ランダムに揺らしてみます。他の弱いモードも励起され、しかもかなり持続します。撮影レベルではちょっと厳しいのがわかるかと思います。

22_58_50_F010-430


風などがない場合の揺れを制限するもの

テストで出てきた数値を表にまとめます。

迷人会微動雲台

共振周波数Q値
SWATの背中を叩いたとき12.9Hz19
SWATの横を叩いたとき15.7Hz21


手持ちの微動雲台

共振周波数Q値
SWATの背中を叩いたとき8.8Hz38
SWATの横を叩いたとき9.7Hz38


まず、揺れの原因が地面のみで、風などの外力がないと仮定した場合、地面振動と共振周波数とQ値から、どれくらいの揺れになるのか評価してみます。詳しいことはZEROの評価時の説明を見て下さい。

迷人会微動雲台: 
  • SWATの背中を叩いたとき
\[Q \times \frac{10^{-7}}{f^2}  = 19 \times \frac{10^{-7}}{12.9^2} = 1.1 \times 10^{-8} \rm{[m/\sqrt{Hz}]}\]
  • SWATの横を叩いたとき
\[Q \times \frac{10^{-7}}{f^2}  = 21 \times \frac{10^{-7}}{15.7^2} = 8.5 \times 10^{-9} \rm{[m/\sqrt{Hz}]}\]


手持ちの微動雲台: 
  • SWATの背中を叩いたとき
\[Q \times \frac{10^{-7}}{f^2}  =  38 \times \frac{10^{-7}}{8.8^2} = 4.9 \times 10^{-8} \rm{[m/\sqrt{Hz}]}\]
  • SWATの横を叩いたとき
\[Q \times \frac{10^{-7}}{f^2}  =  38 \times \frac{10^{-7}}{9.7^2} = 4.0 \times 10^{-9} \rm{[m/\sqrt{Hz}]}\]
となります。

風などがないと、ここのモードの揺れがこの値くらいの揺れに落ち着くという意味です。以前評価したように、ものすごくざっくりで1マイクロメートルが星のずれ1秒角程度に相当すると考えると、風さえなければどの場合も問題になるような揺れの大きさではありません。実際には、これら励起された揺れよりも、低い周波数の地面振動自身そのものの揺れがそのまま伝わる振幅の方が大きい(低い周波数の地面振動のほうが振幅が大きいため)はずなので、(風などがない場合の)今回のモードの揺れは撮影時などの揺れを制限しているものではないと思われます。

結果としては各動画の揺れる前、もしくは励起れが収まったあとの揺れ程度の大きさになると考えられます。手持ちの微動雲台の励起がQが大きいため長く続いていますが、この励起が収まった際の動画(励起される前を見るとわかりやすいかも)を見る限り、この評価がそれほど外れているようには思えません。


風などの外力で揺らされた場合

次に風などの外力が機材を揺らす場合を評価します。ただし、地面振動から評価した時のように絶対値で評価することはかなり難しいです。風の大きさ、どのように機材に力がかかるか、鏡筒の大きさや強度などによるからです。なので、評価は相対的なもののみになります。

まず、揺れの振幅は共振周波数の2乗分の1で効いてきます。ZEROの時の評価と違って今回はQ値にも有意な違いがあります。振幅はQに1次で効くので、今回の2つの雲台の風などの外力に対する振幅の比は、手持ち微動雲台の大きい揺れに対して、迷人会微動雲台の揺れがどれくらいかで見ると
  1. SWATの背中を押したときの揺れ: (8.8Hz / 12.9Hz)^2 x (19/38) = 0.23倍
  2. SWATの横を押したときの揺れ: (9.7H / 15.7Hz)^2 x (21/38) = 0.21倍
となります。迷人会微動雲台の方が同じ外力に対し揺れの振幅が4分の1から5分の1程度となるということです。さらに、Q値は持続時間にも効いてくるので、体感としては
  1. SWATの背中を押したときの揺れ: 0.23 x (19/38) = 0.12倍
  2. SWATの横を押したときの揺れ: 0.21 x (21/38) = 0.12倍
とざっくり10分の1くらいに感じることでしょう。

さすがに振幅で5倍、持続時間も考えると10倍程度の違いというのは大きいです。以前星像の揺れで困って今回テストした手持ちの微動雲台を使わなくなったと言うのは間違った判断ではなかったと、改めて思いました。


ここでちょっと疑問が

雲台を変えることによって振る舞いが全然変わり、少なくとも後者の手持ち雲台の測定はより揺れているので、実際に手持ち微動雲台のところで揺れているものだと思われます。ここでふと疑問が沸きました。果たして迷人会製微動雲台を使った測定は、本当に微動雲台そのものが揺れていたのかどうか?ということです。構造を見てみると2つの可能性が考えられて、この揺れが
  1. 微動雲台のところで起きている
  2. それとも他のところ、例えばSWAT本体とSWATの足との接合部で揺れている
のどちらかではないかと考えられます。迷人会製微動雲台が頑丈すぎる際に2.のようなことが起きます。


自由雲台を使わない測定

切り分けのために、微動雲台なしで、ハーフピラーのみにして、同一の追試測定をすることにしました。

この際
  1. 迷人会雲台を使ったときと同様のモードが励起されるなら、迷人会雲台は十分頑丈で、このモードはSWAT本体とSWATの足との接合部での揺れが励起されていたと考えるのが妥当です。
  2. もし同一のモードが見られない、もしくはあからさまに周波数など振る舞いが変わる場合は、迷人会雲台自身が揺れていたと考えるのが妥当になってきます。
これはハーフピラーの方が迷人会雲台よりも頑丈だと言う仮定に基づいていますが、一般的に考えてハーフピラーの方がよりシンプルな構造なために複雑なモードは出にくいと考えられるので、妥当な仮定かと思われます。


ハーフピラーでの結果

さて、結果です。まず、前回同様にSWATの同じ部分を叩いて励起しようとしましたが、背中を叩いても、横側をたたいても、いずれも特定のモードは励起できませんでした。どちらを叩いても、非常に固く、揺れもすぐに減衰していきます。実際の揺れの様子を動画で見てみます。


1.
SWATの背中を叩いた場合: 前回のテストと同じくらいの力で、3回叩いています。迷人会微動雲台の時の揺れに比べても振幅が半分以下程度と、揺れにくいがわかると思います。しかも特定のモードだけが揺れているのではなく、いろんな揺れが混ざっているのが分かります。これは特定の弱い部分がないということを示していると考えられます。
21_05_07_F200-500

きちんとモードが立っていないので、かなりざっくりな計測ですが、5周期分くらいの揺れから15Hz程度と読み取りました。


2.
SWATの横を叩いた場合: 最初に励起されるモードが違うだけで、やはり特定のモードのみを励起できないのは1の後ろを叩いたのと同じ状況です。こちらはラフに14.5Hz程度。よく見ると、2つのモードが冷気されていて、それらは順序こそ逆ですが、1.で揺らしたときと同じ2つのモードに見えます。
21_06_29_F050-500


迷人会微動雲台とハーフピラーの2つのテストから言えることは、迷人会微動雲台部分をハーフピラーに変えた場合は明らかに振る舞いが違い、後者の方がより揺れにくいということです。さすがに迷人会製といえども、可動部を持つ雲台が固定構造のハーフピラーより揺れにくいということはありませんでした。というわけで、一番最初の迷人会微動雲台の時のテストがSWATの足の部分を揺らしているかもしれないというのは杞憂で、きちんと微動雲台の揺れのモードを励起できていたと思われます。

もう少しだけ評価すると、共振周波数だけ見ると迷人会雲台の共振周波数とそれほど変わりません。迷人会の場合は12.9Hzと15.8Hzと差があり、低い周波数のモードが一番揺れに効くと考えられるので、差があるとすればそこでしょうか。

ただし、そこそこ同じような力で叩いているにもかかわらず、明らかにハーフピラーの方が揺れが少ないです。これは、揺れている所から、見ている所(鏡筒及びカメラ)までの距離が短いものと考えられます。一つの可能性が、ハーフピラーをつけた状態では今度こそSWATの足のところで揺れているという推測です。2つのモードが順次励起されていることからも、この可能性が高いと思われますが、これ以上の検証は今のセットアップでは難しいです。FFTアナライザーとかあればもう少し分離できると思います。


まとめ

ウダウダやっていて、解析も色々紆余曲折したので、ものすごく長い記事になってしまいました。また、評価に長い時間がかかってしまい、待っていた迷人会様には申し訳ありませんでした。

それでも、一応最初のテストで迷人会の微動雲台の揺れをきちんと励起できていたようなので、ある程度の評価はできたと思います。ただし、先にも書いた通り、今回のテストはあくまで相対的な評価に留まり、これが実際にどれだけ揺れるにかというのを絶対値で評価するのはとても難しいです。風の強さ、鏡筒の種類にかなり依存してしまいます。同じ力で励起できる加振器などあれば、励起された揺れまで定量的に評価できるのですが、今回はそこまで至っていません。

風がない場合は、上で評価したように地面の揺れ起因のある程度のどれだけ星像が揺れるかの見積もりは可能ですが、これも一旦並進を回転に変換しているので、オーダーレベルではそこまで間違っていないと思いますが、ファクターレベルではまだ誤差も大きいかと思います。 

結論としては、結局最後は経験論になってしまいますが、迷人会工房の微動雲台は、ポタ赤レベルの頑丈さではもったいないくらいで、一般の赤道儀レベルの頑丈さが余裕であります。荷重制限も厳しいポタ赤では、大型鏡筒は無理で焦点距離がそこまで伸ばせないはずなので、よほど強い風が吹かなければ揺れが原因で星像が流れることはないと思います。これでもし星像がずれるならば、それは雲台のせいではなく、三脚など他の弱い部分を疑うべきでしょう。私としては揺れに関してはそれくらいの高い評価です。

ちょっと脱線してしまいますが、むしろ製作側のコストと手間の方を心配してしまいます。このレベルで作り続けるのは相当な努力が必要なはずで、限定品で数が限られてしまうのは容易に想像できます。迷人会工房さんの製作体制がどれくらいのものなのかほとんど把握していないので、勝手な想像でしかないのですが、無理のない範囲で続けていただければと思います。アマチュアグループの機材が売れるのはすごいことなので、そこはどうしても期待してしまいます。


今回の記事は大阪あすとろぐらふぃ〜迷人会工房様の微動雲台のテストです。さてさてどんな結果が出るのか、私自身楽しみです。


あんとんシュガーさんがわざわざ持ってきてくれました

先週の連休にあんとんシュガーさんから大阪あすとろぐらふぃ〜迷人会工房製作の微動雲台を受け取りました。あんとんシュガーさんがしばらく使っていたのですが、自宅に遊びに来がてらわざわざ届けてくれました。受け取った時のパッと見の印象は、頑丈そうというもの。大きさも径もポタ赤にはちょうどいいくらいかと思います。アルミを削って組み上げてますが、銀色がかっこいいです。

e47d47b3
微動雲台本体です。三脚はアントンシュガーさんのもの。


ポタ赤のための極軸合わせ微動雲台

まず最初に断っておきますと、私はポタ赤には微動雲台は必要ないと思っています。いや、より正確にいうと、弱い微動雲台を加えて揺れるくらいならない方がいいという意見です。もし揺れを増加させないような微動雲台があるなら、当然便利になるので使った方がいいと思います。

これまでもポタ赤の極軸を合わせる目的で微動雲台と呼ばれるものは、各種販売されてきています。 ですが、ほとんどのものが強度的に問題がありそうです。私が試したのは以前の記事に書いてありますが、片持ち構造なのが根本的な原因で、撮影では不利になると判断して外してしまいました。同ページの写真を見ても、一見相当頑丈に見えるのですが、やはり鏡筒部がある程度の重さになってくるとどうしても一番弱い微動雲台部分で揺れてしまいます。風などない日は問題ないでしょうが、少し風が出てくるとやはり星像が揺れしまいました。

そのページのコメントにHUQさんがユニテックのものが一番マシと書いてありますが、それでもコストと重量を考えるとあまり大型化もできないことと、本質的に可動部分を持つためにどうしてもこの部分が一番ネックになりやすいのは、ある意味仕方ないのかと思います。


迷人会製微動雲台

この観点からいくと、迷人会工房の物はポタ赤用微動雲台にしては大型の部類に入り、押し押しネジ構造は安定な微動方法、さらに縦、横共にクランプで締め付けることでガタつきをなくすことができそうです。「これまでポタ赤用の微動雲台はあまり使いたくなかったが、これだったら試してみたい」というようなことをTwitterで呟いたら、こたろうさんから「じゃあテストだ!私の決定は絶対じゃあ!(意訳あり)」との命が下り私のところにお鉢が回ってきたというわけです(笑)。

実物の構造を見てみますと、写真でもみたようにpitch(縦)、yaw(横)共に押し押しネジで、クランプで両軸とも固定できるようになっています。クランプを緩めると少しガタついたので、ここがどう効くかがテストのポイントになりそうです。あと、あんとんシュガーさんが「微動ネジを回しているとカクンと動くことがあった」と言っていました。でも雲台単体で動かしてみてもスムーズに動き、そんな変なことはありません。ここもきちんとテストするポイントになりそうです。

この時点で最近ユーザーの多いAZ-GTiの赤道儀モードで試すか、SWATで試すか迷っていたのですが、Twitterで製作者の井戸端秀樹さんから是非ともSWATで試して欲しいとの要請がありました。AZ-GTiは次回専用ものを作るそうです。

ところが、実際にSWATを取り付けようとしたら雲台のトップが水平でなく、35度くらいの角度がついていることに気づきました。ご存知の方も多いと思いますが、SWATは日本での使用が前提で、水平の台に取り付けても回転軸が極軸方向を向くようにあらかじめ35度くらい傾けた足が付いているのです。

このままだと明後日の方向を向いてしまうので、最初にやったことは雲台の分解でした。といってもトップを外しただけです。外したところを見ると、下部に耳が後付けで斜めのところに付いていて、これを外して最下部付近に取り付けることにより、トップ部をまっすぐ、上部が水平になるように取り付けることができるようです。これは対応するポタ赤を増やす優れたアイデアです。日本で使う限り、基本的にこの2箇所の取り付けでこれで十分です。

IMG_0821

IMG_0822

この状態で、微動ネジを回してみるとあんとんシュガーさんが言っていた「カックンとなることがある」というのがわかりました。どうやらSWATを上につけて、それが斜めになっていることで、重力でネジに荷重がかかり、荷重がかかった状態であたりが悪いとネジの周りが悪くなるのです。これはテストのしがいがありそうです。


極軸調整テスト

雲台を受け取ったのは先々週でしたが、9月は全然晴れなかったのでなかなかテストできませんでしたが、最終週になってようやく晴れたので、平日でしたが、まずは本来の目的である極軸合わせののテストをしました。

実際のSWATを、普段AZ-GTiを取り付けている三脚とハーフピラーの上に付けてみました。もともとハーフピラーをつけた理由は、鏡筒が三脚に当たることを防ぐためです。今回その役割をサイズ的に微動雲台が担ってくれたので、ハーフピラーを外すことにしました。

また問題を切り分けやすくするために、撮影用鏡筒はつけずに、ガイド鏡のみを直接SWATに取り付けました。ガイド鏡は以前胎内星祭で購入した120mm F4のもの。カメラはASI290MMです。取り付け方法はこれまで一番揺れが少なかった、モノタローで買ったクランプを利用しました。そこにアルカスイスクランプを取り付け、上下に2つ溝が切ってあるアルカスイスプレートを挟み、ガイド鏡下部のアルカスイスクランプで取り付けます。

IMG_0851

三脚はいつも使っているシステマティック化したGitzoのバサルト製のものです。写真では足の一本にタカハシの三脚アジャスターをかませてますが、最初の微動雲台でのテストでは外しています。


SharpCapでの極軸追い込み

では実際にSharpCapのPole Align機能を使い、迷人会の微動雲台を使って極軸を調整してみましょう。まずは、とりあえず一番最初に使ってみた時のファーストインプレッションです。最終的に1分角以下になれば十分な精度が出ていると考えていいでしょう。
  1. 最初は当然大きくずれているので、微動ネジのレンジだけでは足りずに三脚の足を伸び縮みさせたり、横にずらしたりして大まかに合わせこみます。
  2. ある程度位置が合ってからは微動の出番です。と言ってもまだそこそこずれているので大きくネジを回す必要があります。その際、ピッチでやはりひっかるようなところがありました。
  3. また、これもピッチですが、一方向に回しても星像が一旦逆方向に動いてまた正しい方向に戻るということがありました。どうもネジの当たり具合で線形に動かない部分があるようです。
  4. でもある程度位置が合ってきて、微動になってくるとそういったことは問題にならず、うまく滑らかに動かすことができます。動かす精度は十分なものがあり、1分角以下で余裕で合わせることができます。
  5. 一旦かなり合わせてからクランプを締めてロックすると、やはり位置がずれてしまいます。なので、ロックした後に微調整で合わせる必要があります。ロックしても微調の範囲では星の位置を動かすことはできます。
  6. ロックさえさせてしまえばガタつきはほぼ皆無。少なくとも私は全く気になることはありませんでした。
  7. この状態で下の写真のように、ロックしてかつ極軸も余裕で1分角以下の精度で合いました。
IMG_0829

この後、何度か同じようなことを繰り返しましたが、最初の印象と違いはそれほどありませんでした。というわけで、上に書いたものが偶然とか、たまたまとかではなく、ほぼ実際の動作状況だと思います。


クランプの影響

あと、みささんも気になると思われるクランプロックの影響を書いておきます。動画で実際の動きを確認してみてください。
  1. まず、クランプロックされた状態で1分角以下、平均30秒角以下程度に合わせます。
  2. 次にyaw方向のクランプを緩める(動画7秒辺り)と、1.5分角程度にズレます。その後、再びクランプを締める(動画17秒辺り)と30秒角程度に戻ります。
  3. さらにpitchのクランプを緩める(動画38秒辺り)と、今度も1.5分程度ズレます。問題はこの後で、閉めて(動画47秒辺り)も戻らずに、時として3分以上にズレが大きくなることがあります。ずれる量は押し押しネジが互いにどれくらい耳に強く当たっているかに依存するようです。


というわけで、やはりクランプ開け閉めの影響は存在するようです。この結果だけ見ると、クランプの影響が大きく思えてしまうかもしれませんので、実際にどれくらいの精度が必要かはきちんと定量的な評価が必要かと思います。

必要な極軸の精度

では、極軸のズレで1分角というのは実際にどれくらい大きなズレなのでしょうか?細かい計算はこのページを見てもらうとして、ざっくり1分角の極軸のズレで、4分間露光して、星像にして最大で1秒角のズレ。

結論だけ言うと、普通の目で合わせる極軸望遠鏡ではほとんど分からないレベルのズレかと思います。ポタ赤で撮影する場合、せいぜい600mm程度が最長の焦点距離になるかと思われます。この焦点距離程度なら、1分角で合わせたら例えば5分間露光しても極軸のズレからくる星像のズレは1秒角程度となります。これをたとえばEOS 6Dで撮影すると、1ピクセル2.3秒程度なので、ズレは1ピクセルの半分以下。ほとんど影響はありません。むしろピリオディックモーションが一般的にポタ赤レベルだと数十秒角、今回使うSWAT200でも10秒程度と遥かに大きくなり、こちらは4ピクセル程度のズレとなるため、支配的になります。

極軸精度で1分角程度、星像のズレに換算してして4分で最大1秒程度というのは、SharpCapなど極軸を正確に合わせることができるツールがあって初めて検証できる精度の話になっています。ちなみに、北緯35度の日本では極軸は大気差で1分30秒角程度ずれるので、大気差補正をしないと意味がないレベルでもあります。SharpCapにはこの大気差を観測場所の緯度に応じて補正する機能があります。1分各程度で合わせ混むことができると、この機能が意味を成してきます。

なので、今回この微動雲台で合わせている精度自体、ポタ赤ではすでに十分すぎるものと考えることができます。


とりあえず触ってみての結論

さて、この状態である程度の結論を言うと、
  • まだ少し引っ掛かりや進行方向の反転はあるけれどもこれは十分改善可能と思われる。
  • 微調整に関しての精度は十分満足。
  • ロック時のズレは気になるが、精度的には十分で、さらに運用で影響を少なくすることはできる。
  • 特筆すべきは、クランプをロックした後の揺れの少なさで、まるで大型の赤道儀の揺れの少なさを彷彿とさせます。振動試験は後で別途やろうと思っていますが、このレベルならば撮影でも全く問題ないと思います。
というわけで、私としてはこの時点でも実践投入可能という意味で十分な合格点を出したいと思います。

動画で見てみる: 微動

上で説明したことを実際に動画で見てみましょう。

1. まずは極軸近辺でpitch方向に微動した時、どれくらいきれいに動くかです。

pitch、微動

動きのスムーズさを見るために、1. 一旦通り越して、2. 反転して戻ってまた一度通り越して、3. さらに反転して微調整して合わせこんでいます。これくらいの操作は余裕ということです。


2. 次にYawの微動です。

yaw、微動

同様に、一旦通り越して、反転して戻ってまた一度通り越して、さらに反転して微調整して合わせこんでます。


動画で見るとわかると思いますが、pitch、yawともかなり精度よく合わせこむことができるのが分かるかと思います。


動画で見てみる: ズレた位置から合わせ混むまで

1. まず最初に試したのが、迷人会製微動雲台を使って実際に位置から合わせ込んだときの動画です。一応何度か試したので、操作には慣れてある程度スムーズに行くときの場合です。約2分半かかってます。


1分5秒くらいのところでしょうか、pitchの移動方向が反転しているところがあります。でもこれネジは一方向に回しています。このようにおそらくネジの頭が斜めになっているためにいったん反対方向に進んでしまうようなところがあります。1分35秒辺りでYawに、1分59秒辺りでpitchに大きく飛んでいるのはクランプを締めたからです。クランプを閉める前に微調整してしまっても結局ずれてしまうので、ある程度あってきたらまずはクランプを締めています。その後の微調整はスムーズにいきます。


2. 次に試したのが、微動を使わずに三脚の足の伸び縮みでpitchを調整し、足を横にずらしてyawを調整するというものです。3分以上格闘しましたが、pitchの調整が難しすぎて最後まで1分角以下では合わせられなくて諦めました。Gitzo三脚の伸び縮みも、固定してしまえばかなり頑丈ですが、ロックするときのズレは微動雲台より遥かに大きいです。嫌になったので動画は無しです。


3. 最後は、三脚足の調整では難しかったpitchを、タカハシの三脚アジャスターに変えた場合です。Yawは三脚の足ずらしで合わせ混んでいます。


多少慣れたせいもあるかもしれませんが、なんとこれが1分半ほどで合わすことができてしまい最短でした。なんか迷人会様に合わせる顔がありません <(_ _)> 。原因はタカハシの三脚アジャスターの動きがスムーズなところです。

なのでpitchに関してはまだ三脚アジャスターに分があり、こちらの方が合わせる時間が短いです。ここはやはり迷人会さんの微動雲台も改良してスムーズさを出して欲しいとことです。

Yawに関しては以前計算したことがありますが、適当な仮定を置いて考えると微動雲台で調整するのに比べて、三脚の足をずらす方法では5倍くらい精度が悪くなります。でもコンコンコンとか、叩いて少しづつずらすようにしていくと、なんとか合わせ込めるみたいです。

ちなみに、三脚アジャスターとはこんなやつです。

IMG_0861

三脚の下に置いて、ネジをくるくる回すことで高さを調整できます。3つの足全てに置く人もいるようですが、私は(結構高いので)一つしか持ってません。でも改めてネジの先を見ているのですが、あまりキレイとも言い難いです。やはりボルト端部が面に垂直に接するのが肝なのかもしれません。

IMG_0862



改良案

現段階での改良案を提示しておきます。この提案は振動試験をやったら変わる可能性もあります。
  • まず、押しネジは一点でプレートに接するのが理想。
  • 特にpitchは接地面がボルトに対して斜めになるので不利なのではないでしょうか。耳のつける位置を変えて二通りの曲軸設定に対応するというアイデアは秀逸です。真っ直ぐにトップを立てる場合でも少し斜めの位置に取り付けることになっているので、一つは耳を真下につけたほうがいいと思います。日本仕様で35度付近に付けるようにして、ボルトと耳の設置面が垂直に当たるようにしてはどうでしょうか?
  • ボルトの端部の加工を少しすればずいぶんマシになると思います。今は斜めになってしまっているので、へんな戻りが出てしまうのかと思います。今の端部だと耳の設置面に傷ついてしまっています。

まとめ

今回、大阪あすとろぐらふぃ〜迷人会工房様から微動雲台をお借りしました。

これまで微動雲台の決定版がなかなかなかったことから、強度的にはこれが決定打になる気がします。ネジのあたりの部分を改良してよりスムーズな動きになれば、精度の面でも決定打になると思います。

次回、振動の方もテストしてみたいと思いますが、見ている限り既に頑丈そうで、違いが示せるかどうか心配しているくらいです。もうしばらくだけお借りします。


みなさんこんにちは、ほしぞloveログのSamです。最近「ほしぞloveさん」とか呼ばれたりしますが、ハンドルネームは「Sam」です。「ほしぞloveログ」と書いて星空ブログ(ほしぞらぶろぐ)と読みます。

前回
前々々回の記事で、先週金曜日にペルセウス座流星群と天の川の撮影をしてたと書きましたが、本当は今回書く記事が一番試したいことでした。少し時間がかかってしまいましたが、やっと画像処理も終わったのでまとめておきます。

QBPのこれまでのまとめ

これまで好んで使っていた、サイトロンのQBP(Quad Band Pass)はHα、SII、Hβ、OIIIの4つ(Quad)の基線を通すためこの名前がついています。このフィルターかなり便利で、自宅のような光害地でも、多少の月明かりがあっても、星雲を相当炙り出すことができます。

QBPの作例については以下をご覧ください。

















さらになんと、私がTwitterで電視観望でも使いたいと呟いたリクエストで、QBPのアメリカンサイズまで作ってくれ、もうサイトロンさんには感謝しても仕切れないくらいです。



私にとって、QBPは撮影にも電視観望にも、すでに無くてはならないフィルターになっています。


QBPの不満

このQBP、ものすごく便利なのですが、実は2つ不満があります。
  1. 一つは、最初の方の作例を見てもらうとわかるのですが、普通に赤を出そうとするとどうしても朱色がかった赤になってしまうのです。他の方の作例を見ても同様の傾向が多いので、これはQBPの特徴の一つなのかと思います。でもこれは何度か画像処理をしていて、青を少し強調してやると赤の色バランスがよくなることに気づきました。QBPの特性として、どうも相対的に青色が弱く写ってしまうようです。最後の方のバラ星雲なんかは適度に補正してあるので、初期の頃とだいぶ色合いが違うのがわかるかと思います。
  2. もう一つは記事の中で時々書いているのですが、恒星の色、特にオレンジとか緑とかが出ないのです。これは結局解決に至らず、適当に色が抜けたような状態でごまかしています。なので、どうしても色を出したい場合はQBPをあえて使わない時もありました。
そもそもQBPは青が強いM45プレアデス星団や、恒星の色に近い銀河はあまりきちんとした色が出ないようで、今のところ主にHαを出したい時にQBPをよく使っています。

そうは言っても、QBPはこの手のフィルターにしては比較的波長帯の制限をゆるくしてあるために、色バランスが崩れにくいというのが大方の評判で、私もその意見に賛成です。ただ、上記のような不満もあるのも事実なので、これをなんとか改善できないかとずっと思っていました。


CBPの検証開始

今回やったことはサイトロンから少し前に発売されたCBP(Comet Band Pass)フィルターの検証です。

 

一方、今回使ってみたCBPは彗星用に開発されたフィルターということもあり、青や緑の波長帯を通すとのことで、QBPの弱点であった、赤以外の色が意外にバランスよくでるのではという期待があります。ただ、星雲用に開発されたわけではないので、これは自分で試してみないとよくわからないでしょう。

というわけで、毎度のこと前置きが長かったですが、やっと検証の開始です。

今回のターゲット天体は青色を適度に含むM20、三裂星雲です。機材はTSA-120に35フラットナーをつけ、ASI294MC Proで撮影をします。もう8月後半なので、M20は宵のうちから高い位置にあり、しかもこの日はちょうど下弦の月のころなので、M20が沈むくらいまでは月は出てきません。さらに前回の記事でも書いたとおり、この場所は天の川が結構はっきり見える(2つに分かれているのは十分に分かります)場所なので、光害の影響があまりないところです。条件としてはいいのですが、光害のカットという意味での検証にはならないということは注意が必要です。

今回はM20を
  1. フィルター無し
  2. 48mmのCBPを取り付ける
  3. 48mmのQBPを取り付ける
という3つのケースで撮影して比較したいと思います。時間的にはこの順番で、それぞれ上から17枚、9枚、6枚撮影しました。枚数が違うのは、だんだん時間が無くなってきて焦ってきたからです。同じ日で撮った方が公平になると思ったので時間が限られてしまいました。ここら辺はご容赦ください。

高度から考えると、時間と共に位置が下がってくるので、1のフィルター無しが一番有利で、順にCBP、QBPとなるはずで、QBPの7枚目以降はまだそこそこ高度はあったのですが、背の高い木が少し入ってしまったので、そういったうまく撮れていないのは省いた枚数になります。


結果の比較

今回非常に面白い結果が得られたので、早速撮影された画像を見て見てみましょう。画像はどの場合も、1枚のRAWファイル(fits形式)をPixInsightでDebayerして、STFでオートストレッチをかけただけです。画角が同じなので、オートストレッチが公平に働いて、画像の質によって星雲などのコントラストがそのまま表されてきます。

1. フィルター無し

まずはフィルター無しのノーマルです。
masterLight-BINNING_1-FILTER_NoFilter-EXPTIME_180
フィルターなしの場合。

特に色をあぶり出したりしているわけではないので、のっぺりした色合いになっています。それでも暗いところなのでM20の赤と青はそこそこ出ています。


2. QBP

先にQBPを見せます。
masterLight-BINNING_1-FILTER_NoFilter-EXPTIME_180
QBPフィルターを適用。

QBPの実力通り、フィルター無しに比べて赤が相当強調されています。実際に画像をスタックして画像処理までして比較してもみたのですが、一枚でこれだけ差が出ていると、スタックしても結果に大きな違いが出ます。フィルターなしの方が枚数が多いので当然ノイズは少ないですが、淡いところの赤を出そうと思っても最初から色が出ていないものは後から処理してもなかなか出てきません。枚数が少ないQBPの方が遥かに簡単に色が出ます。


3. CBP

ではお待ちかね、最後はCBPです。

masterLight-BINNING_1-FILTER_NoFilter-EXPTIME_180
CBPフィルターを適用。

明らかに青がノーマルの時よりはもちろん、QBPの時よりも強調されています。赤はフィルターなしの場合より濃くなっていますが、QBPよりは若干薄いでしょうか。


分かりやすいように並べてみます。

com1

左から、フィルターなし、QBP、CBPの順です。CBPで青が明らかによく出ているのがわかるかと思います。赤い三裂(4裂?)の周り、特に上部や下部の青なんかは違いが顕著です。

赤はやはりQBPが一番出ていますが、ノーマルと比べるとすでに朱色がかっているのがわかるかと思います。CBPは赤に関してはある意味ノーマルとQBPの中間で、まだそこまで朱色がかっていないです。

これは期待通りというか、期待以上の結果です。


光害に対する効果

QBPよりもCBPの方が波長の透過域が増えるので、光害に対しての効果は減ると推測されます。今回は光害の影響があまりない場所での撮影だったので効果が分かりにくいため、あくまで暫定的ですが少しだけ評価してみます。

PixInsightのSTFのオートストレッチは、画像の持っている明るさによってストレッチ(あぶり出し)のパラメータを決めます。撮影したRAWファイルを何倍くらい明るくするかは、(同じ画角で撮った場合)光害に依るという意味です。光外の少ない暗い画像ほど大きな倍率をとって明るくするはずですし、光害が多く明るく写った画像ほど倍率は小さくなるはずです。出来上がった画像の(背景の)明るさはあまり変わらなくなります。

そのため、撮影した画像の背景の明るさと天体(淡い星雲)の明るさに差があるほど、背景を同じ明るさにした場合には天体がよりコントラスト良く浮き上がってくるはずです。この時のオートストレッチの倍率を比較することで、光害がどれだけ軽減されるか、言い換えると光害防止フィルターがどれくらい働いているか推測することができるはずです。

オートストレッチの値から、フィルターなしを1としたときにQBP、CBPでそれぞれ何倍明るくしたかを表にしました。色によって倍率が違うのでRed、Green、Blueで別々に計算しています。具体的にはSTFのスパナマークを押すと表が出ます。最初なかなか意味がわからなかったのですが、いろいろ試して、結局真ん中の列の逆数が元の画像から何倍ストレッチしたかに相当することがわかりました。結果は以下のようになります。

 RGB
No filer111
QBP3.983566944.486127173.40584795
CBP3.537339063.440159572.7432878

さて、結果をじっくりみていきましょう。


QBP:


この結果を見ると、まずQBPはフィルターなしに比べて4倍くらい明るくできるので、言い換えると余分な光を4分の1くらいにしているということがわかります。以前、波長帯の広がりからざっくり4倍くらい得すると推測していましたが、実測もかなりこの推測に従っているようです。




CBP:

次にCBPです。まず第一に、結果の数値だけを見るとそこまでQBPとは大きく違わないというのが印象です。CBPの方がかなり(下手したら何倍も)明るく出るのではと思っていたのですが、平均だと1.2倍程度です。

R関しては除去比は少しQBP劣りますが、ほとんど違いがありません。GとBに関してはCBPの方が光害を除去しないことになります。と言っても高々1.3倍とか1.2倍です。これはCBPが彗星の核や尾のCN, C2, C3らの基線を透過させるように、主に紫外から青を新たに通すように設計してあるため、この波長での光害に対する除去効果は軽減されるので納得です。ただ、青よりも緑の方が違いが大きいというのが少し疑問ですが、Gセンサーも青の帯域に感度はあるので、これはあり得るのかもしれません。

ここでパッと疑問に思ったのは、青に対する明るさの倍率が低いCBPがなぜQBPよりもより青色を出すか?です。これは当然、これまでカットしてしまっていた青い光をより通すようになったからと考えることができます。倍率が低くても、捨てていた青い光を拾った方が得だったということです。


結論

というわけで、ここでの結論は「CBPはQBPよりも光害に対する効果は多少低いが、違いは全然大きくはなく、むしろ青を通すことでより強調する効果がある。これは青い成分を持つ星雲に有効である。」と言っていいのかと思います。もちろんこの値は光源に依ります。繰り返しになりますが、今回は光外の影響があまりないところで試したので、街明かりの場合や月明かりの場合は結果が違ってくる可能性もあるかと思います。

.
.
.
.
.
.


さらなるCBPの効果

でもでも、実は面白いのはここからだったのです。この検証の過程で3つの画面を見比べていて、一つ気付いたことがあります。もしかしたら勘のいい人はもう気付いているかもしれません。

上で出した3つの比較画像のそれぞれの左上の明るい星に注目してください。その左横に2つの星があると思います。これを3つで見比べてみてください。わかりやすいように拡大して並べて比較します。左からフィルターなし、QBP、CBPです。

com2


わかりますでしょうか?

なんと、CBPの星像が一番小さくて、しかも色がきちんと出ているのです。ピントの違いの可能性もありますが、他の星の大きさが大きくは変わっていないので、おそらくピントは関係なく、フィルターの違いから来ていると思われます。これは最初の方で書いた2つ目の不満「恒星の色が出ない」を解決する可能性があります。特にオレンジに近い色が出なかったので、期待できます。


なぜこんなことが起きるかというと、ここからはまだ推測なのではっきりとは言えませんが、QBPは実は赤外を通すのではという推測があります。シベットさんがここらへんの話に詳しくて



に記述があります。また、あぷらなーとさんの最近の実験でもその推測を推す結果となったようです。

QBPは赤外を素通しで、赤外の方では収差を補正しきれていない鏡筒ではハロとなって出るが、それに比べて、CBPはきちんと赤外の波長が透過しないように処理もしてあるのではという推測です。このハロを除去したい場合、QBPでは別途フィルターを入れる必要があるが、CBPでは1枚で済んで、恒星の色の再現性も高いということが考えられます。

これまでQBPで恒星の色が出なかったという方は試してみてもいいかもしれません。


まとめ

というわけで長かったですが、CBPの検証はこれで終わりです。赤はもちろん青も出て、色バランスも良く、恒星の色もきちんと出て、光害にも効果がありそうというので、私的にはある意味理想的なフィルターになりそうです。CBPはQBPであった不満をほとんど解決してくれそうです。かなり期待できそうなので、今後CBPの作例を増やしてもう少し検証していきたいと思います。


次の記事で今回撮影した三裂星雲を画像処理して仕上げています。



 

3年半以上前に購入したドスパラのStick PC。撮影やリモートPCとしてずいぶん活躍してくれました。最近は非力でトラブルも多くなってきて余り使ってなかったのですが、ここにきてやっと買い替えとなりました。

梅雨でずっと雨で、いまいち気合いが入らないです。ブログもなかなか書く気になりません。昨日やっと少し晴れてくれたので、Stick PCのテストも兼ねて電視観望をしてみました。


手持ちのStick PC

私がStick PCに手を出したのは2017年です。ここからの連番記事を見ていただければわかると思いますが、その非力さから設定にはかなり苦労しました。その甲斐もあって寒い冬にもお部屋でぬくぬく状態でリモートで撮影をすることができたので、かなり重宝していました。しかしその後、特にSharpCapのアップデートともに計算量が増え、途中で止まるなどのトラブルが頻発してきたために、徐々に使用を控えるようになってしまいました。これまで使った経験から、少しStick PCについてまとめます。

Stick PCの長所
  • コンパクトで軽量。
  • 外部バッテリーで駆動するので、大きなバッテリーを使えば相当な長時間駆動が可能。バッテリーがないので、へたることがない。外部のバッテリーはへたれば交換すればいいだけ。
  • 基本リモート接続なので、リモートデスクトップさえできればどのPCからでも操作できる。特に寒い冬は自宅の部屋や車の中で状況を確認できる。

Stick PCの欠点
  • モニターがないので、トラブルがあると外部モニターに繋がなければならない。遠征時の使用では念のため小型のモニターとキーボードマウスを持っていく必要がある。
  • 基本的にCPUパワーやメモリがあまりないので、重い操作はあまりできない。

手持ちのStick PCの問題点
  • Windows 10 home editionなのでリモートデスクトップの実現に相当苦労をする。
  • メモリが4GBで、撮影に支障がない最低レベルだが、もう少し欲しい。
  • CPUがAtom x5-Z8550でちょと非力。
  • 付属の記憶領域が32GBで既にWindowsシステムでほとんど消費されていて、Proにさえアップデートするのがはばかられる。->リモートデスクトップを必ず別途用意する必要がある。
  • Carte du CielとPHD2、BackYard EOSでのディザー撮影は可能。SharpCapでの撮影も可能だが、転送レートが遅くとりこぼしや落ちることがある。Stellariumは遅すぎて実用的でない。
  • SharpCapのあるバージョンのころから、Polar Alignで止まるようになってしまった。ビニングして画素数を減らしたり、ROIで画素数を減らすと動くこともあるが、めんどう。そのためPolar Alignだけ別のノートPCでやってから撮影時にはStick PCに繋ぎ直すとかしていた。
とまあ、いろいろ不都合もあるのですが、Stick PC自体はそのコンパクトさとリモート操作から、かなり撮影に向いていると思っているので完全に捨てることができません。それより問題は、このStick PC世間的にはあまり人気がないらしく、なかなか新機種が出ないのです。年何回かStick PCについて調べるのですが、あまり手持ちのと差がないのでイマイチ買い換える気にならなかったのです。なので古くて非力でも使い続けざるを得ませんでした。


新しいStick PCが結構よさそう

Twitterでのnabeさん情報で、新しいStick PCを買ってずいぶん快適になったとのこと。しかもたまたまAmazonのタイムセールで安く出てるのを知りました。メモリが4GBのままだったので、ここだけは8GB欲しかったですが、Celeronのn4120 (AmazonではN4100ともN4120とも表記、実際に来たものは箱にはN4120と表記、でもN4100の偽装の疑いあり、Winodows上ではN4120 1.10GHzと出ている) でストレージは64GBで、性能的には相当の改善です。

20台のセールで私が見た時には既に残り4台だったので、早速ポチりました。もしかしたら天文マニアで買い占めてるかもとの噂です。


セットアップと電源トラブル

何日かして到着。早速セットアップです。

電源はType Cで供給です。Type C端子がついたACアダプターも付いています。出力は5V、3Aとなっています。モニター端子はHDMIとMINI DPがついていて、それぞれ接続用のケーブルもついています。USB3.0が2つ、Micro SDを一枚挿すことができます。

IMG_0398

WindowsはHomeが入っていると思い込んでいて、手持ちのProライセンスがあったのでアップデートしてしまいましたが、そもそも入っていたのはHomeでなくProだったようです。リモートデスクトップの使用だけならアップデートの必要がありませんでした。でもProがはいっているだけでもお得です。

一つだけ気になったことがありました。どうも電源を選ぶようです。付属のACアダプターはもちろんいいのですが、USB端子からの給電だと最初動いてもWindows起動直前で止まってしまうことが何度かありました。

一度も問題なかった電源
  • 付属のACアダプター
  • Macbook Pro用のACアダプター
  • Macbook Pro用と思って買ったLess is moreの「100W IN/OUT」端子

一度でもダメだった電源

ところが、一度ダメだったものも改めて試したりすると、全部きちんと立ち上がるんですよね。イマイチ再現性がありません。

Amazonのレビューに書かれていましたが、「このStick PCのTypeCコネクタはホスト機能がないようで、情報のやり取りをしていない。なので1.5A以上流電流を流せないため、使用することができない。」というような意見です。ところが、少なくとも2度目以降、一番非力と思われるMac本体のType Cから(Mac本体にACアダプター接続なし)でもきちんと起動しているので、上のコメントが間違っているか、もしくは1.5Aまで流れていないかのどちらかです。

使っていて思ったのは、このStick PCものすごい省電力です。バッテリーの持ち時間からの判断ですが、以前のドスパラのStick PCよりバッテリー長く持ちます。Macbook Proに繋いでも、Stick PCを接続する場合と接続しない場合でも、体感的にはMac本体のバッテリーの持ち時間にほとんど違いを感じられません。

USBの電力チェッカーがあれば良かったのですが、持っていないので私も推測と手持ちの電源での検証しかできていません。

安価なバッテリーでも大丈夫そうなのですが、遠征に行く時だけは一番確実なLess is moreを使うことにするかもしれません。


撮影用天文関連ソフトのインストール

さて、一通りの天文関連のソフトをインストールします。最初からあるストレージ領域も64GBとかなり余裕があるので、いくつかのアプリは直接Cドライブにインストールしました。追加で128GBのmicro SDを挿しているので、Plate solveのデータなどのGBクラスのものは追加のストレージの方にインストールしました。インストールしたのは
  • ASCOM platform、ASCOM用にCelestron driverとSynScanドライバー
  • ZWO カメラドライバー
  • Stellarium
  • SharpCap
  • ASIStudio
  • PHD2
  • NINA
  • All Sky Plate Solver
  • PlateSolve2
  • ASTAP
  • EOS Utility
  • BackYard EOS
  • Zoom
くらいでしょうか。画像処理関連はまだ何もインストールしていませんが、撮影までなら十分だと思います。

一つだけ、FireCaptureはまだインストールしていません。理由は取り込み速度が出ないからではないかと思っているからです。FireCaptureは惑星と太陽用途のみ。両方とも取り込み速度が重要なので、そのばあいは相当早いノートPCを使うので、おそらくこのStick PCで使うことはないだろうと思うからです。


簡単な稼働テスト

その後、実際に稼働テストをしてみました。この時のバッテリーは一度もトラブっていないLess is moreでした。

とりあえずやったことは、SharpCapでの電視観望。結果だけ言うと、超快適。サクサク動きます。以前のStick PCのモッサリ感から比べたら雲泥の差です。一つだけ注意は、Stick PC本体裏面のファンを塞ぐと熱で止まってしまうようです。警告が書いてあるのですが、一度たまたまファン側を地面に置いてしまい塞がれていて止まってしまいました。

リモートデスクトップもHomeの時の苦労はなんだったんだと思うくらいスムーズです。まあProなので当たり前ですが。

まだ使い始めたばかりなので、またいろいろ試して報告します。



前回のZEROの振動減衰特性の続きになります。さらにマニアックなものになっているかもしれません。でもこの揺れに隠れいている物理をきちんと考えてみると、今後役に立つこともあるのかと思います。数式もあるので少し読みにくい記事になっているかもしれませんが、興味のある方は是非最後まで読んでいただけるとありがたいです。

IMG_0273


今回の記事の目的

とりあえず前回の記事では定量的な評価は控え、定性的にこんな傾向だというところを示しました。揺れの影響を比べるとポルタIIとZEROでは思ったより違うという印象を持たれた方も多いかと思います。

感覚的にでいいので、映像を見比べてポルタIIとZEROで揺れがどれくらい違うと思いましたか?2〜3倍くらい?10倍くらい?30倍くらい?100倍?数値的には答えが最後に出ますので、

みなさん動画を見比べたときの自分の印象を、
是非ここで一度考えてみてください

今回の記事のタイトルにはあえて解析とつけてしまいましたが、もう少し突っ込んで数値で比較できれば思っています。実際には、前回の使った動画から色々数値的なパラメータを引き出して定量的に評価します。これらをできるだけ一般化して、他の機器と比較した場合にも応用ができるようになればと思っています。具体的には共振周波数と半減期とQ値の関係を示し、それが実際の揺れ具合に感覚的にあっているかまで議論できれば上出来と言えますでしょうか。


共振周波数と半減期

今回の解析は前回撮影した映像をさらに突っ込んで解析します。特に新しいデータを取ったというわけではありません。まず、引き出したいパラメータは「共振周波数」と「半減期」です。

160倍相当に拡大し、できるだけフレームレートを上げて撮影した4本(ポルタIIとZEROのそれぞれ縦と横)の動画を解析します。鏡筒をピンと弾いて揺らしたので、インパルス的(「瞬間的な」という意味)な力を与えて、それが主としてそのモード(縦とか横とかいう意味)における最低次(一番低い周波数という意味)の振動を励起し、その振動が減衰していく様子が動画に記録されています。

できるだけ力が同じになるようにピンと弾いたのですが、衝撃の力積(力と、力をかけた時間の積)は必ずしも一定ではありません。それでもその衝撃で励起された「共振周波数」と、その振幅がある時から半分になる時間「半減期」は、最初に与えた衝撃によらずに、そのモードに固有で一定値となります。なのでそれらを測定してやれば、励起された振幅の大きさにかかわらずなんらかの特性が評価できるはずです。



実際の基本モードの測定



ポルタII 横の動き

一番揺れていてわかりやすい、ポルタIIの鏡筒を横向きに弾いた時の動画を例に「共振周波数」と「半減期」を測定してみましょう。ポルタIIの鏡筒を弾いたときの動きはこんな感じでした。

倍率160倍相当の横の動き: ポルタの場合

Youtubeに上げた動画では、細かい時間情報が消えてしまっているので、実際の解析にはSharpCapで録画した生の.serファイルを使いました。ser形式の場合、各フレームが測定された時間もそれぞれ記録されています。


実際に動画を見ながら測定すると、
  • 弾いてから2周期ほど揺れて最大振幅になったところの時間が、(UTCの14時29分)51.70秒
  • 10周期揺れた時の最大振幅の時間が、53.20秒
ということがわかったので、
  • 10回揺れるのに1.50秒かかっています。
ということは
  • 周期 P = 0.150秒
  • 最低次の共振周波数 \( f_0 = 1/P = \) 6.7Hz
ということがわかります。

また、先の弾いてから2周期ほど揺れてから最大振幅になった時(51.70秒)と比べて、
  • 振幅が半分になった時の時間は 52.75秒なので、
  • 半減期 \(t_{1/2} = \) 1.05秒
となります。


ZERO 横の動き

次はZEROの場合の揺れを確認します。

同様に横の基本モードの共振周波数と半減期を測定すると、
  • 弾いてからある最大振幅になったところの時間が、43.24秒
  • 10周期揺れた時の最大振幅の時間が、43.95秒
なので、
  • 10回揺れるのに0.71秒
かかっていることから、
  • 周期 P = 0.071秒
  • 最低次の共振周波数 \( f_0 = 1/P = \) 14.1Hz
また、先の弾いてから2周期ほど揺れてから最大振幅になった時(43.24秒)と比べて、
  • 振幅が半分になった時の時間は 43.66秒なので、
  • 半減期  \(t_{1/2} = \) 0.42秒
となります。

さて、これらのことから何が言えるでしょうか?まず、共振周波数から見ていきましょう。

ところで、ポルタIIとZEROでどれくらい違うか、印象を今一度確認してみてください。何倍くらい違うと思ったでしょうか?ここまでで共振周波数の違いは7Hzくらいと14Hzくらいなので、2倍くらいと既にわかりましたね。

でも揺れの印象だけ見るともっと違いが大きいような気がします。
皆さんはどう思いますでしょうか?


共振周波数について

ある系(この場合鏡筒と経緯台と三脚を含んだ望遠鏡全体)のある揺れやすいところ(方向)に衝撃を与えてやると、一番揺れやすい(軟らかい)ところで大きく揺れます。この揺れを基本モードと呼び、その揺れをその基本モードの共振、その共振の1秒あたりの揺れの回数を共振周波数と呼ぶことにします。

経緯台の骨格を太くしたりしてものを頑丈に固く作るほど、載せている鏡筒を軽くコンパクトに作るほど、基本モードの共振周波数は上がります。逆に、骨格が細く柔らかい系であるほど、また長く(レンズ部など)重さが端部に寄ったダンベル型に近い鏡筒なほど、基本モードの共振周波数が低くなります。

共振周波数が高いということは固いバネに相当し、共振周波数が低いということは軟らかいバネに相当します。中学の理科とか高校の物理の最初の方で習うフックの法則\(F=-kx\)という式を覚えていますでしょうか?ある力Fを加えると、固い(kが大きい)バネほど、伸びxが小さく、軟らかい(kが小さい)バネほど、伸びxが大きいという関係式です。

バネ定数は共振周波数と次のような関係で表されて、\[f_0=\frac{1}{2\pi}\sqrt{\frac{k}{M}}\]などと書くことができます。ここでMは質量に相当します。これをFの式に入れてやると\[F= -4\pi^2 f_0^2 M x\]と書くことができます。同じ質量で同じ力だとすると、共振周波数の2乗で揺れにくくなることがわかります。実際今回扱っているのは回転なので、質量Mは慣性モーメントで考える必要がありますし、係数も変わってきますが、物理的にはバネのイメージで本質的には間違っていないはずです。すなわち、同じ力で鏡筒を揺らすと揺れの振幅が共振周波数の2乗に反比例して小さくなる、言い換えると固い構造(バネ)ほど急激に揺れにくくなるということです。このことは実際の観測時にも同様で、鏡筒に手が当たったとかの場合、弱い(軟らかい)とよく揺れ、強い(固い)と揺れないというのは感覚的にも理解できるかと思います。


半減期について

では次に半減期です。これは一旦起きた振動がどれだけ早く収まっていくかを表すパラメータの一つと考えることができます。どれだけ「発生したエネルギー」をいかに「失わせるか」という損失の大きさに依存します。素材にもよりますし、構造の組み方などにもよります。

例えば金属でできている部分をゴムにすれば、その損失は大きくなり減衰は速くなります。ですが素材をゴムにすると当然やらかくもなるので、共振周波数も下がるので損をします。面白いのは、同じような素材、同じような構造で組むとこのロスというのは大体同じような値になるということです。

ここで、共振周波数と半減期の積を考えて見ましょう。
  • ポルタIIの場合6.7Hz x 1.05秒 = 7.04
  • ZEROの場合14.1Hz x 0.424 = 5.98
と、両者あまり違いがありません。若干ZEROの方が小さいくらいですが高々2割程度です。


Q値について考えてみる

ここで、以前検討したQ値というものを導入してみましょう。Q値は今回測定した共振周波数と半減期を使って、\[Q=4.53 f_0 t_{1/2}\]という式で表されます。共振周波数と半減期の積にある数値をかけたものになります。なぜ4.53なのかは以前の解説記事を参照してください。

ポルタIIの場合は\[Q=4.53 \times 6.7 \times 1.05 = 31.9\] ZEROの場合は\[Q=4.53 \times 14.1 \times 0.421 = 26.9\]という値になります。

ではこのQ値が何を意味するかです。Q値は元々あった揺れが共振によって何倍に拡大されるかということを知ることができるとても便利な値です。では何倍になるかというと、ずばりQ倍になります。その証明はこのページの伝達関数の式のf=f0の場合になります。

例えば地面が揺れていてそれが鏡筒を揺らすとすると、その揺れはQ倍に拡大されるというわけです。地面の揺れは\(10^{-7}/f^2 \rm{[m/\sqrt{Hz}]}\)という振幅になります。fはその揺れの周波数、単位が\( \rm{m/\sqrt{Hz}} \)となっていて少しややこしですが、\(\rm{ / \sqrt{Hz}}\)のところはちょっと無視してください(詳しいことが知りたい場合はこのページの最後を読んでみてください。)。ここでは簡単にm(メートル)で考えてしまいましょう。

ポルタIIの場合、共振周波数が6.7Hz、Qが31.9なので、地面振動からくる揺れは
  • \(Q \times 10^{-7}/f^2  = 31.9 \times 10^{-7} / 6.7^2 = 7.1 \times 10^{-7} \rm{[m/\sqrt{Hz}]}\)
ZEROの場合、共振周波数が14.1Hz、Qが26.9なので、地面振動からくる揺れは
  • \(Q \times 10^{-7}/f^2  = 26.9 \times 10^{-7} / 14.1^2 = 1.3 \times 10^{-7} \rm{[m/\sqrt{Hz}]}\)
程度となります。これは風などの外部の衝撃がない、揺れが落ち着いている時の揺れ幅に相当し、両方とも1マイクロメートル以下なので、実際に視野をのぞいていてもそれほど揺れているとは感じない程度でしょう。鏡筒を叩いて揺らした場合の揺れが減衰していくと、最終的に上記揺れ程度になるということです。それでもZEROのほうが揺れが5分の1程度に落ち着くというのは意識しておいたほうがいいでしょう。たいした大きさの揺れではないので、とりあえず地面の常微振動からくる揺れはあまり考えなくてよく、それよりも視野を移動した時の揺れを議論したようが有益だということが言えるのかと思います。

この実測値からも推定できるように、ポルタIIとZEROでは素材は金属(アルミ合金?)で、使える金属の種類もある程度限られるので、ロス(Q値)に関してはそこまで大きく変えることはできないと言えるのかと思います。逆にQ値が同じなら、Qの定義式から同じ力を加えたときは共振周波数が高いほうが減衰するまでの時間は小さくなるということが言えるわけです。


まとめ

上記検討のまとめをしてみましょう。

構造体に同じような金属を使うのでロス(Q値)が同程度だとして、共振周波数が高いとどれくらい得をするか考えてみましょう。同じ力で鏡筒を揺らした場合、
  • まず振幅が共振周波数の2乗分の1で小さくなります
  • 次にQの定義から、減衰するまでの時間は共振周波数分の1になるので
ざっくり考えて、振幅で2乗、減衰で1乗と、あわせて共振周波数の3乗くらいで揺れの影響が小さくなると言ってしまっていいのかと思います。ポルタIIとZEROでは共振周波数が2倍ちょっと違うので、3乗するとざっくり10倍くらい違うわけです。

皆さんの印象はどれくらいだったでしょうか?

10倍くらいだと思った方はいましたでしょうか?

ポルタIIに比べると、ZEROの共振周波数の違いが高々2倍くらいしか違わないのに、揺れの印象が感覚的にも10分の1くらいだかと思うのは、それほど間違っていないのではないかと思います。経緯台のような微動ハンドルを回して天体を追尾していく場合には、構造を固くして共振周波数を上げることがいかに重要かということが分かる結果です。


今後の展開

ZEROは非常に優秀で、口径100mm程度までなら載せても揺れが気にならないと聞いています。ただし、口径120mmのTSA-120をZEROに載せると、さすがに積載限界を超えているのか揺れてしまうとう報告がZEROの販売ページにあります。また非公式ですが、某天文ショップの店員さんから、同様のことを試して揺れが出てしまうという報告をTwitter経由で聞いています。

なので次はTSA-120をZEROに載せて、実際にどれくらい揺れるのかを、共振周波数を測定することで、比較してみたいと思います。これは自分自身でもかなり興味があって、うまくTSA-120をZEROで快適に使用する方法があるのかどうかを探ってみたいのです。鏡筒だけでなく、全体の系で共振周波数が決まるので三脚の影響も大きいかと思います。

気の向いた時にパッとTSA-120を出してZEROに載せて、振動なく見えるというのはかなり魅力的です。


今回、振動減衰特性が素晴らしいと評判の、スコープテック社の新型経緯台ZEROを手に入れました。梅雨ですが、晴れ間を狙って色々と評価してみました。


目的

この記事では、スコープテックの新型経緯台「ZERO」の振動減衰特性を評価をすることを目的とします。わかりやすいように、今回は入門機の標準と言ってもいい、Vixen製の天体望遠鏡「ポルタII A80Mf」と比較してみます。


ポルタII

ポルタIIに関しては言わずと知れたVixen社の看板製品の一つで、とりあえず望遠鏡が欲しくなったときに最初におすすめされる、おそらく日本で最も売れている望遠鏡かと思われます。

屈折型のA80Mf鏡筒とセットになっているものが一番有名で、鏡筒、ファインダー、経緯台、三脚、2種のアイピース、正立プリズムなど、基本的に必要なものは最初から付属しています。初心者でもすぐに天体観察を始めることができ、天文専門ショップのみでなく、全国カメラ店などでも購入でき、その販売網はさすがVixenと言えます。

機能的にもフリーストップを実現した経緯台方式で初心者にも扱いやすく、鏡筒はアクロマートながら口径80mmと惑星などを見るにも十分。全て込みでこの値段ならば、十分適正な価格であると思います。

私は2018年の小海の星と自然のフェスタのフリーマーケットで手に入れました。中古ですが付属品はアイピースなども含めて全て付いていて、おまけに別売のフレキシブルハンドルも付いてきました。また鏡筒キャップの中に乾燥剤が貼り付けてあったり、夜に機材が見えやすいように反射板を鏡筒や三脚にマーカーとして貼ってあったりと、前オーナーはかなり丁寧に使ってくれていたことが推測できます。

IMG_5577



ZEROの特徴

一方、ZEROは経緯台のみに特化した単体の製品です。鏡筒や三脚は基本的に付いていないので、別途用意する必要があります。発売開始は2020年3月なので、すでに解説記事などもたくさん書かれています。ZERO自身の機能的な解説はメーカーのZERO本体のページ天リフさんの特集記事が詳しいです。購入もスコープテックのページから直接できます。




スコープテックはもちろんですが、ZEROはサイトロンなどいくつかの販売店からも販売されています。シールをのぞいて同じものとのことです。違ったバージョンのシールにしたい場合はこちらから頼む手もありです。





本記事では、機能に関しては上記ページに任せて簡単な解説にとどめ、振動特性を中心に評価したい思います。

実際のZEROを見てみます。

IMG_0191

ZERO自身は実際に手に取って見ると思ったよりコンパクトです。初めて使う場合は「お使いになる前に必ずお読みください!」と書いてある紙が入っていますが、これだけでなくマニュアルも必ず読んだ方がいいでしょう。一旦組まれたものを外して、経緯台として動くように組み直す必要があります。また、手持ちの三脚に合わせて(注文時に選択した)アダプタープレートを合わせて組み込んで三脚とセットする必要があります。


なぜ片持ちなのか?

基本的に片持ち構造は、強度や振動特性に関しては不利なはずです。それでもフリーストップにするためには片持ちが適しています。なぜなら鏡筒を縦方向に動かしたときにバランスが崩れないため、どこで止めてもつりあいがとれるからです。これがフリーストップを安定に実現させている理由です。

この片持ちという不利な構造にあえて選んで振動減衰特性に挑戦しているのが、ZEROの真骨頂と言えるでしょう。しかも軽量でコンパクトに折りたたむことができま、気軽に持ち運無ことができます。

フリーストップで、しかも揺れなくて、コンパクトとのこと。これは実は初心者に向いた設計と言ってしまってもいいのかと思うくらいです。スコープテッックが初心者向けの機材を相当丁寧に作ってくれていることは、私も実際に望遠鏡セット使って知っているので、おそらく本当に初心者のことを考えて今回のZEROも設計、製作しているのかと思われます。

でもこのZERO、初心者だけに使うのはもったいなさそうです。ベテランのアマチュア天文家が気楽にパッと出して星を見たいというときには、軽くて、且つ揺れないというのはベストのコンセプトです。観望会を開いて、お客さんに見てもらう場合とかでも十分に活躍してくれそうです。また、コンパクトなので遠征に気楽に持っていけそうです。遠征先の撮影の合間に気楽に観望とかでも使い勝手が良さそうです。


ポルタIIとは違い、ZEROは基本的に経緯台のみの単体販売で、三脚も鏡筒も付いてはきません。全部込み込みのポルタの実売価格はZERO単体よりも数千円高い程度ですので、価格的にはポルタIIに比べたら割高と感じるかもしれません。経緯台に特化した分だけの性能に対する価値を、どこまで見い出せるかがポイントになるのかと思います。


測定条件

まずは振動特性を見るための条件です。

共通項目
  • 鏡筒はポルタII付属のA80Mfを使う。
  • 微動ハンドルはVixen製のポルタ用のフレキシブルハンドルを使う。
  • 眼視を想定し、三脚の足を半分程度伸ばした状態で、2台の三脚を同じ高さにする。

IMG_0237
2台のセットアップです。三脚はほぼ同じ高さにしています。
鏡筒とフレキシブルハンドルを載せ替えて比較しています。
写真でZEROについているハンドルは無視してください。

2つの測定の違う点
  1. ポルタIIの経緯台をポルタIIの三脚に載せたものに鏡筒を載せる(以下このセットアップをポルタIIと呼びます)
  2. ZEROをCelestron社のAdvanced VX用の三脚に載せたものに1と同一の鏡筒を載せる(以下このセットアップをZEROと呼びます)

ただし、後から分かったことですが、三脚の強度に無視できないくらいの大きな違いがあることが判明しました。なので今回はZEROにAdvanced VX用三脚でここまで振動を抑えることができるという目安と考えていただければと思います。


観測方法

ポルタIIとZEROの2種で鏡筒部分を揺らし、その揺れがどのように減衰していく様子を、視野を撮影しながら見ていきます。


2種の倍率

それぞれ観測、測定のたびに鏡筒をフレキシブルハンドをポルタ経緯台とZEROに載せ換えます。光学的に2種類の設定をそれぞれの経緯台で試します。
  1. 40倍相当: 天体導入時を想定し、焦点距離800mmの鏡筒と焦点距離20mmのアイピースで40倍程度の視野を仮定し、フォーサーズ相当のCMOSカメラ(ASI294MC Pro)ので撮影
  2. 160倍相当: 天体導入後、拡大して観察する場合を想定し、焦点距離800mmの鏡筒と焦点距離5mmのアイピースで160倍程度の視野を仮定し、同一CMOSカメラの(ASI294MC Pro)一辺4分の1、面積にして16分の1を切り取って撮影
1.、2.ともにフレームレートを上げるために4倍のビニングをして画素をそもそも4分の1に落としています。また、2.ではさらに速い動きを見るために、画面を切り取って小さくしてフレームレートをできるだけ上げています。


昼間の景色で比べてみる

まずは大まかな動きを掴むために、昼間の明るい景色で40倍相当で比較してみました。最初に望遠鏡を買って、昼間に練習するのに相当すると思えば良いでしょうか。具体的には山の上に立っている鉄塔を端から真ん中ら辺に持ってきています。

まずは横方向(yaw, ヨー方向)です。フレキシブルハンドルをまわして動かします。動かした後にどれくらい揺れるかを見ます。

ポルタの場合です。
倍率40倍相当の横の動き: ポルタの場合



ZEROの場合です。
倍率40倍相当の横の動き: ZEROの場合

これを見るだけで相当インパクトのある比較になっています。とにかくZEROの振動減衰が見事です。

続いて縦方向(pithc, ピッチ方向)です。まずはポルタIIの場合

倍率40倍相当の縦の動き: ポルタの場合

次にZEROです。
倍率40倍相当の縦の動き: ZEROの場合

ポルタIIもZEROも、横よりは縦の方が揺れにくいのは同じのようです。これは構造的に縦は縦のみの機構を担っていますが、横は横の機構と縦の機構を合わせて担当しています。当然重くなるので、その分横が揺れやすいのは不思議ではありません。

ポルタIIの方は多少揺れますが、やはりここはZEROの揺れの少なさを褒めるべきでしょう。揺れの振幅も、揺れが小さくなる時間もZEROは素晴らしいです。ただしこの結果はかなり大きく揺らした場合なので、実際に初心者がポルタIIで昼間に最初に練習する時でも、そこまで困ることはないのかと思います。


実際の観測を想定して木星で比べてみる:  導入時相当

初心者が望遠鏡を買って見てみる醍醐味の一つが木星や土星などの惑星です。そのため、今度は実際の観察を想定して、夜に木星を見て揺れの具合を比較してみましょう。

まずは木星で40倍相当で判定します。これは低い倍率で天体を導入するときの動作に相当します。木星を端から真ん中ら辺に持ってくるときの揺れで比較します。

横方向の揺れです。まずはポルタIIから。

23_16_31_F001-193s
倍率40倍相当の横の動き: ポルタの場合

次は同じく横方向で、ZEROの場合です。
23_40_29_F001-193s
倍率40倍相当の横の動き: ZEROの場合


次に縦方向で、まずはポルタの場合。

23_18_10_F001-192s
倍率40倍相当の縦の動き: ポルタの場合

縦に振っているのですが、横の揺れの方が出やすいので多少横揺れがカップルしてしまっています。

次にZEROの場合です。
23_40_54_F001-192s
倍率40倍相当の縦の動き: ZEROの場合


惑星の動きで見てもZEROの振動の減衰具合は特筆すべきで、特に縦方向の操作はもう十分すぎるほど減衰してしまって、インパルス的に動きを与えることが困難になっているくらいです。

実際操作していて思ったのですが、どのようにハンドルを回してどういったインパルス応答を与えるかで揺れの具合は違ってきます。ポルタIIの場合でも熟練してくると、最終的な揺れを少なくするように、最初は大きく動かして、見たい所の近くでゆっくり動かすなどのテクニックを、自然に習得できるのかと思います。なので、倍率が低い天体導入の際には、慣れてくれば上記動画の差ほどは気にならなくなるかと思います。



実際の観測を想定して木星で比べてみる:  拡大時相当

次に、木星で160倍相当で見てみます。これは定倍率で導入された惑星を、倍率を上げて拡大して見るときに相当します。視野が狭いので、先ほどのようにフレキシブルハンドルを回すとうまく揺れてくれないので、鏡筒をピンと弾くことでインパルス応答に相当する揺れを与えました。

まずは揺れやすい横方向です。最初はポルタIIから。 
倍率160倍相当の横の動き: ポルタの場合

ZEROです。
倍率160倍相当の横の動き: ZEROの場合


次は縦。まずはポルタII。
倍率160倍相当の縦の動き: ポルタの場合


最後にZEROの縦方向です。

倍率160倍相当の縦の動き: ZEROの場合



この試験は、フレキシブルハンドルを回したわけではないので、例えば観望会などでお客さんが鏡筒に触れてしまったことなどに相当するのかと思われます。これくらいの倍率で惑星を拡大して見る場合、特に望遠鏡の扱いに慣れていない初心者には、揺れの違いは実際の快適さの差として出てくると思います。ZEROの揺れくらいで収まってくれると、木星の細かい模様をじっくり見るときにも見やすいでしょう。


実際の使い心地

使って見て思ったことです。確実にZEROの方が揺れが少ないのは上記映像を見てもわかるのですが、その一方ポルタ経緯台に比べてZEROの方がハンドルが固いです。これはフリーストップの調整ネジとかの問題ではなくて、ある程度強度を保つためにこれくらいの固さが必要だったのではという印象です。また、微動調整つまみをフレキシブルハンドルで回すとき、遊びが少し多いなと思いました。これらは好みかもしれませんが、ポルタとZEROを比べると硬さと遊びに関しては個人的にはポルタに一日の長があると思いました。

おそらく微動の固さに関連すると思うのですが、揺れに対しての感想は反対になります。ポルタだけを使っていた時は、揺れは多少は気になっていましたが比較したわけでないのでそこまでは気づかず、今回ZEROと比べて、初めてはっきりと不満と感じました。

繰り返しになりますが、私が持っているポルタ2は中古で手に入れたものなので、新品の時の性能が出ている保証がありません。ですが、初心者がこの揺れだけを見てメーカーに修理を出す判断をする、もしくは実際に修理を出す気になるとも到底思えず、仮に使っていてヘタったのだとしたら、耐久性という意味で少し考えた方がいいのかもしれません。いずれにせよ、私が持っているポルタ2は一例に過ぎず、当然全てのポルタ2を代表しているわけではありません。その上でのことですが、少なくとも手持ちのものは(ZEROと比べると改めて気づきますが)揺れは結構大きくで、フレキシブルハンドルから手を離して揺れてしまうと、フレキシブルハンドル自身の揺れで視野が揺れてしまうくらいです。


三脚に関して

今回ZEROと比較することにより、これまであまり気にしなかったポルタIIの弱点が見えてきました。なぜポルタがZEROに比べて揺れが出るのか明るいうちに見てみました。2つの原因があるのかと思います。
  • 経緯台の可動部が柔らかく、ハンドルを回すのも軽くて操作しやすい反面、ここでぐらついてしまっている可能性が高い。
  • 根本的に三脚が弱い。
特に三脚に関しては目で見て揺れやすいのがわかるくらいです。動画でその様子を撮影してみました。


わかりますでしょうか?鏡筒を揺らすと、三脚(真ん中手前がわかりやすいです)もつられて揺れてしまっています。わかりにくい場合は、全画面表示などにして見てみてください。一見小さな揺れに思えるかもしれませんが、本来三脚は載っているものを揺らさないような役割をするものです。鏡筒を揺らすだけでこれだけ三脚が揺れてしまうのは、無視できる範囲とは言い難いでしょう。触らなければ揺れないかと思いがちですが、風が吹いた時は致命的ですし、導入時はどうしても触れてしまうので揺れてしまう可能性が高いです。

ちなみに、ZEROをAVX三脚に乗せたときに、同様に鏡筒を揺らしたときの映像も載せておきます。


こちらは拡大しても揺れている様子が全く見えません。揺らしていないように思われるかもしれませんが、音を大きくして聞いてみると途中から鏡筒を叩いているのがわかるかと思います。人間の力なので必ずも同じ状況にはならないですが、基本的に同程度の力で叩いたつもりです。音が小さいと思われるかもしれませんが、やはり揺れていないので記録された音も小さくなっているのかと思われます。

本来三脚は積載物を安定に支えるのが役割なので、揺れないものの方がいいのは当然です。それでもやはりこれも程度問題で、頑丈すぎるものは逆に重くなったりして取り回しに苦労することもあります。ただ、Advanced VX用の三脚程度の重量とZEROの組み合わせでここまで振動が減るのなら、特に惑星などを拡大して見たときには十分に検討する価値があるのではないかと思います。ZEROの販売ページを見ると強化版の三脚を選べるようです。これだと今回使ったAdvanced VX三脚と同等クラスかと思いますので、より揺れを少なくしたい場合はこちらを選ぶのもいいかと思います。

これらのことから、まずポルタIIは少なくとも三脚を改善もしくは丈夫なものに交換するだけでも揺れは相当改善すると思われます。別の言い方をするなら、経緯台として考えるとZERO自身の揺れは相当小さいため、もしZEROの性能を引き出したい場合は、ある程度強度のある三脚を使わないともったいないとも言えます。でもこのことは三脚の重量増加にもつながるので、手軽さという利点を損なう可能性もあるので、ケースバイケースで強度と重量のバランスを考えて選択すればいいのかと思います。

今回はZERO用には相当強度の高い三脚を選択してしまいました。結局のところ、今回の比較は「入門機の標準と言ってもいいポルタIIとの振動に比べて、振動減衰特性を特徴として開発したZEROを使うと、どのくらいまで揺れを改善できるか」という例を示したことになるのかと思います。ポルタIIを改善していって、揺れないものにアップグレードしていくような楽しみ方を見出すこともできるのかと思います。


まとめ

星まつりで何度かプロトタイプには触れたことはあり、ある程度すごいことは知っていましたが、実際に使って見ると、ZEROの振動減衰に関しては驚くほどの結果でした。ポルタIIだけを使っていた時は揺れはここまで意識できていなかったので、例えば初心者がポルタIIを最初に買って普通に使う分には、特に気になるようなことはないでしょう。ただ、もし今使っている経緯台に不満がある場合は、ZEROを検討してみる価値は十分にあるのかと思います。

経緯台単体にそこまでかける価値があるのかというのは、人それぞれかと思います。個人的にはZEROは素晴らしい製品に仕上がっていて、スコープテックさんの努力や熱意を十分に伺うことができるのかと思います。満足です。


ちょっと間が空きましたが、N.I.N.A.の試用記の続編です。



前回の記事を書いてからなかなか晴れなくて、やっと日曜の夜に少しだけ星が見えたのでテストしました。本当は撮影までしたかったのですが、結局曇ってしまいNINAのテストだけで終わってしまいました。

第一回の撮影までに加えて、今回は少し応用編。導入など、撮影の準備に相当する部分になります。撮影までのことなので、本当はこちらを先に説明しても良かったのですが、一度赤道儀で導入して撮影まで進めてしまえば見通しが良くなると思ったからです。


スカイアトラス 

最初に左アイコン群の「スカイアトラス」でターゲットを調べるといいでしょう。左上に対象とする天体を入力します。例えばM57と入力すると、その情報が出てきます。

IMG_0155

その際、「オプション」「一般」タブの「スカイアトラス画像ディレクトリ」を設定しておくといいでしょう。ここはスカイアトラスで画像を表示するために使います。サイトのダウンロードページの一番下にある「Misc」のところの「Sky Atlas Image Repository 」をダウンロード、展開して、「スカイアトラス画像ディレクトリ」で設定したディレクトリに置くと、「スカイアトラス」の「詳細」のところにカタログ画像が表示されるようになります(TKさんに教えてもらいました。ありがとうございました。)。

このスカイアトラスのところで「導入」ボタンを押してしまっても導入はできるのですが、次のフレーミングで導入した方がいいでしょう。


フレーミング

撮影時にPCがインターネットに接続されているなら、フレーミング機能が便利です。デフォルトで縦横3度の視野角を見るようになっていますが、画像を落とすのに結構時間がかかります。今どれくらいダウンロードしたか表示があるとよかったかもしれません。

一旦ダウンロードした画像はキャッシュに保管され、キャッシュを表示することを選べばインターネットがない環境でも確認することができます。撮影時にインターネット環境がないなら、事前に対象天体の検索して画像をダウンロードしておくといいでしょう。

ダウンロードした画像があると、撮影時の画角や位置を確認できます。

IMG_0156

M57を囲んで大きな四角い枠が見えます。これが接続されているカメラと、この画面の「画像の読み込み」の「カメラパラーメーター」の「焦点距離」から計算された、撮影した場合の画角になります。

黄色の丸は、現在赤道儀(望遠鏡)が向いている位置になります。上の写真の場合、M57の中心からは少しずれた位置にいることになります。でもこれは実際に向いている位置とは限らなくて、N.I.N.A.が「赤道儀が向いていると思っている」位置です。この数値は接続した赤道儀から得ています。なので、この状態で撮影しても、黄色の場所が中心なるとは限らず、後のプレートソルブを使い誤差を無くします。

さて、画角を示すこの四角は移動することができます。四角の中心が導入したい目的の位置になります。今はM57の中心が四角の中心になっているので、ここで「導入」ボタンを押してみます。すると実際の赤道儀の向きに合わせて、一旦黄色い丸が画面からはみ出し、しばらく待つと

IMG_0160

のように、黄色い丸が画角の中心にきます。

この際、もしガイドをしっぱなしなら、PHD2のオートガイドを外すのを忘れないようにしてください。また、導入が終わったら、撮影前に再びPHD2のオートガイドをオンにするのを忘れないでください。

でもまだ注意です。ここですでに画面中央に目的の天体が導入されたかに見えますが、本当にその向きに向いているかどうかの保証はありません。赤道儀の持っている情報と実際の向きが合っているかは保証がないからです。ここで次のプレートソルブの出番です。


プレートソルブ

プレートソルブは思ったよりはるかに簡単にできました。もともとAPTで「PlateSolve 2」と「All Sky Plate Solver(ASPS)」をインストールしていたからというのもあります。この場合は「オプション」「プレートソルブ」のところでパスを通すだけで使えてしまいました。

IMG_0101

具体的には、撮像ページで右上「ツール」アイコン群の左から3つ目「プレートソルブ」を押してプレートソルブパネルを出します。

IMG_0165

パネルの位置がわかりにくいかも知れません。「画像」パネルの下のところに「プレートソルブ」タブが出ていると思いますので、それを選択します。ここで「同期」が「オン」になっていると、プレートソルブが成功した際の位置情報が赤道儀にフィードバックされ、赤道儀上の一情報が書き換わります。その際「ターゲットの再導入」を「オン」にしておくと「エラー」の値よりも誤差が大きい場合に再度自動で導入し直してくれますが、導入は後で自分でもできるので、とりあえずはオフでいいでしょう。「露出時間」と「ゲイン」なども適当に入れます。準備ができたら、真ん中の三角の再生マークのところの「画像素取得してプレーとソルブ処理します。」を押します。

勝手に撮像が一枚始まって、プレートソルブが始まり、うまく位置が特定できると「成功」のところにチェクマークが出ます。

IMG_0164

フレーミングでM57を中央にしたにもかかわらず、やはり実際に撮影するとずれしまっていて、その誤差を赤道儀側にすでにフィードバックしているので、今一度フレーミングを見てみると、

IMG_0166

のように、黄色い丸がずれているのがわかると思います。横にずれたのはカメラが90度回転しているからです。この状態で再度「導入」を押すと黄色い丸がM57のところに行き、実際に撮影してみると

IMG_0168

のように、今度は本当に赤道儀がM57の方向をきちんと向いていることがわかります。


その他

ASI290MMでLRGB撮影をやってみようと思っていて、かなり前に勝手ずっと使っていなかったZWOのフィルターホイールを繋いでみました。ポイントはEFW用のASCMOドライバーをZWOのページから落としてきてインストールしておくことと、NINAを一度再起動することです。これでNINAの「機材」の「フィルターホイール」からZWOのフィルターホイールとして認識され、選択することができるようになります。

IMG_0162


フォーカスに関して
  • オートフォーカス機能はあるようですが、マニュアルでのフォーカスをサポートするような機能は見当たらない。と思っていたら、撮像の右上のツールのところにありました。今度使ってみます。

まとめ

だいたい試したのはこれくらいでしょうか。2度に渡って使用して、その使い勝手をレポートしましたが、2回目は撮影まではしていないので、まだ説明が不十分なところもあるかもしれません。例えば、フォーカサーとかフラットパネルと接続した撮影の機能もあるみたいで、ここら辺は機材を持っていないので試すことができません。

とりあえず十分すぎるくらいの機能があることもわかって、撮影するには何も不便なところはなく、ベータ版でもすごく安定しています。

前回と今回の記事を読めば導入して撮影するまでできるのではないかと思います。わかりにくいところがあったらコメントしてください。私も全部理解しているわけではないですが、質問に答えがてら理解していきたいと思います。


最近話題のNINAを試してみました。すごくいいです。試したのはVISACでM13を撮影したときです。


N.I.N.A.を使ってみた

そもそもAPTをまともに使い始めたばかりなのに、なんでNINAを使ってみたかというと、APTで少し不満があったからです。
  • Live viewの映像がうまくストレッチできない。
  • ピント合わせで拡大できない。
  • 撮影ごとのログが残らない。fitsに特化しているので、各ファイルの中に情報は含まれてますが、いちいちヘッダを見なくてはならないのが少し不満です。
  • 撮影中の設定が結構制限される。例えばカメラのカラーバランスやストレッチの設定など、撮影中も触りたいのにできない。(でも、撮影中に弄れたことも一度だけあるのですが、再現性無しです。不思議です。)
と言っても、上のように細かいことだけで、普通に撮影するだけならAPTは十分な機能を持っています。「今回の撮影は前と同じM13で、余裕があるので失敗してもいいからNINA試してみようか」くらいの気分でした。しかもNINAで上記不満が解決されたかというと、実はそうでもなく、せいぜいLive Viewがマシになったくらいでしょうか。

でもそれ以外にいい所がかなりあり、極めて順調に撮影までできたので、この記事を書いています。


N.I.N.A.のインストール

ダウンロードはここからです。

2020年5月13日現在、最新の安定バージョンは1.9ですが、事前情報から日本語を使うためにはベータバージョンを使う必要があり、Version 1.10 BETA002(5月16日の今日、アクセスしてみたらすでにBETA004になっています)をダウンロードしました。

Windows版のみ存在し、MacやLinux版はないようです。32ビット版と64ビット版がありますので、各自の環境に合わせて選択します。自分のWindowsが32ビットか64ビットか分からない場合はここなどを参考にして確認して下さい。

今回は64ビット版を使ってみましたが、注意事項が書いてあって、もしNINAの64ビット版を使う場合はASCOMも64ビット版を使う必要があるそうです。いくつかのASCOMドライバーは未だ32ビットのままなので、その場合は32ビット版を使うか、64ビット版のドライバーの開発を促してくれとか書いてあります。とりあえず今回の使用(一通りセットアップして、plate solvingして導入、長時間撮影とかするくらいまで)では64ビット版で困ることはありませんでしたが、たくさんの機器を繋いで本格的に稼働させるとかの人は32ビット版の方がいいのかも知れません。

インストールは普通にやれば特に困ることはないでしょう。


最初の設定

インストール後、起動して一番最初にやるべきことは左端アイコン群の一番下「オプション」の「一般」の設定でしょう。そもそも日本語になってないと「Options」の「Genaral」になっています。まずは、そこの「Language」を「Japanese(Japan)」に変えます。変えた瞬間に日本語に切り替わるのが素晴らしいです。でも後から再起動して気づいたのですが、細かいところ、例えば先ほどの「Japanese(Japan)」は再起動して初めて「日本語(日本)」に切り替わるので、全ての項目が瞬時に切り替わるわけではないようです。一応言語を切り替えたら、一旦終了して立ち上げ直した方がいいでしょう。

同じページで「天文測定学」(ちょっと訳が微妙ですが)で緯度、経度を写真のように「137.12」などという形式で「度と分だけを小数点で区切った形」で入れておくといいでしょう。後の「スカイアトラス」のところで正しく表示されるようになり、撮影時間などの目安を立てやすくなります。


IMG_0090

「オプション」「撮像」「画像ファイルパス」で、撮影した画像を保存する場所を指定できます。好みの適当なところにしておくといいでしょう。


機材の接続

最低限の設定がとりあえず終わったら、次は「機材」ページです。この時点で、必要な機器はケーブルなどで実際に接続しておいた方がいいでしょう。今回設定したものはカメラ、望遠鏡(赤道儀のこと)、ガイダーです。これら3つは接続すると縦に並ぶアイコン群の右下に小さな電源マークが出るので、何が接続されているのか一目で分かります。

IMG_0087

それぞれのページの一番上で接続したい機器を選択し、その右の電源マークのアイコンを押して「接続」します。例えばカメラなら、すでにカメラが接続されていれば上の写真のように「ZWO ASI294MC Pro」という選択肢が出てきます。カメラが繋がれていないとASCOMとかN.I.N.A.のシミュレーターカメラとかしか出てこないので注意です。もしきちんとカメラにケーブルをつないでいても、つないだカメラ名が出てこない場合は、接続アイコンの左の矢印が回っている「デバイスの再スキャン」を押すと再認識されて、選択肢として出てくることがあります。

うまくカメラが接続できると温度制御やゲインの設定などができるようになります。冷却は設定温度を決めて、右横の雪の結晶マークのアイコンを押すだけです。撮影終了時の昇温は下の炎マークのアイコンを押します。オフセットはダークファイルのオフセットより大きな値が入っていればいいのかと思います。通常数十とかでしょうか。ゲインは後の「撮像」のところで改めて設定するので、適当でいいです。


適当な天体の導入と、PHD2でオートガイド

とりあえず、赤道儀での自動導入でも、マニュアル導入でもいいので、撮影したい適当な天体を導入します。最初はテスト撮影だと思って下さい。NINA自身の導入機能「フレーミング」については次回の記事で説明します。

一旦撮影したい天体が導入できたら、PHD2を起動してオートガイドを始めます。その際ですが、PHD2で赤道儀に接続した時に出てくる4方向ボタンのの小さな画面が後で導入すうる時に便利になるので、できればボタンを押してきちんと赤道儀が反応するか確かめておくといいでしょう、

きちんとオートガイドされていることが確認できたら、「オプション」「ガイダー」で、PHD2に接続して下さい。もしかしたら自動的に認識されて、すでに接続された状態になっているかも知れません。もし選択肢にPHD2が出てこなかったら、「オプション」「機材」の右下の「ガイダー設定」できちんと「PHD2パス」が設定されているか確認してみて下さい。私は先にPHD2を動かしていて、うまく動いている状態でNINAを立ち上げたので、特に何も設定する必要はなかったですが、うまくいかない場合はここが設定画面になるはずです。

IMG_0096

うまくPH2Dが接続されると、ガイドされているグラフが「機材」「ガイダー」のところに表示されます。PHD2の制御情報がそのままNINAで表示されるのがすごいです。左の方の選択で、y軸、x軸の表示設定とともに、誤差の単位を変えることができます。下の写真ではピクセル単位にしています。概ね0.5ピクセル以内に収まっているでしょうか。

IMG_0089

ついでにここで、NINA上でも赤道儀との接続も済ませておきましょう。PHD2がうまく動いているなら、すでに赤道儀はPCと接続されているはずです。NINAの「オプション」「望遠鏡」で自分の赤道儀のドライバーを選択し、右の「接続ボタン」で接続します。

IMG_0088



撮像

次はNINA画面の左端アイコンの下から二番目「撮像」ページです。ここは盛り沢山で混乱しますが、最初は最低限の機能から試します。

IMG_0094

まずは右上の「撮像」パネルのところのシャッターマークの「露光開始」ボタンを押して一枚テスト撮影して見て下さい。その際、「露出時間」は適当に10秒くらい、「ビニング」は1x1、「ゲイン」は200から400くらいいいでしょう。これらの設定はテスト撮影の時のみ有効で、本撮影では別の設定項目があり、そことは独立に設定ができます。撮影中は左下に「撮像:露出中」とか出て、時間バーが動いていきます。一枚撮影すると画像が出てくるはずです。望遠鏡の蓋がきちんと外れていて、ピントも合っていて、何かターゲットが入っているはずなのに真っ暗な画面しか出てこない場合は、撮影画面の上の右側にあるアイコン群の真ん中の棒のようなマークの「画像の自動オートストレッチをトグルスイッチでオン/オフする(表示のみ)」を押して、ボタンが明るくなるのを確認して下さい。同時にオートストレッチが効いて撮影画面も明るくなり、星などが見えてくると思います。

右上の「撮像」パネルのカメラマークの「ライブビュー」も同様です。「露出時間」を1秒とかにして「オートストレッチ」をうまく使って、リアルタイムで連続してみることができます。ただ、この「ライブビュー」うまくいかないことが何度かありました。「ライブビュー」ボタンを押して「露光開始」を押してうまくいったときもあれば、画面の拡大率を変えてうまく行った時もあります。同様のことをしてエラーが出たこともあります。ライブビューはまだ少し不安定な気がします。

ちなみに、この撮像画面のパネル、入れ替えとかしてぐちゃぐちゃになってしまったら、「オプション」の「撮像」タブにいき、右下の「画面配置のリセット」でデフォルトの設定に戻すことができます。


シーケンス設定

次にNINA画面左のアイコン群の「シーケンス」を押します。撮影計画をここで設定します。最低限
  • トータル#
  • 時間
  • ゲイン
  • オフセット
  • デザリング
だけ設定すればいいでしょう。デザリングはデフォルトでオンになっているようですが(下の写真はオフになっています。この場合ボタンを押して「オン」と表示されるようにしてください。)、PHD2が動いていてサーバーモードになっていれば、これだけでデザリングもできてしまいます。

IMG_0097

ちなみに、ディザー量などは「オプション」「機材」の右下の「ガイダー設定」で設定します。

シーケンス画面の左上の「対象」のところの「ターゲット名称」のところに希望の天体名を打ち込むと候補が出てきます。例えば「M13」と入れると「Herucles Globular Cluster」と出てくるので、それをクリックします。すると何時頃が撮影どきかとかも知らせてくれます。これと関連して、NINA画面左のアイコン群の「スカイアトラス」でも同じようなことができます。

IMG_0098

これらの画面にある「ガイド開始」「対象の導入」「ターゲットをセンタリング」「シーケンスの対象として設定」「導入」などのボタンはまだ試していません。ここら辺を駆使すれば、時間がくれば自動的に導入して撮影を始めるとかができるのかと思います。ドームでの撮影などでは便利なのかも知れません。


いよいよ撮影開始

さて、最低限の撮影準備が整ったと思います。いよいよ本撮影です。

IMG_0094


左端アイコンの下から二番目「撮像」ページに戻り、右側真ん中の「シーケンス」パネルの三角の再生マーク「シーケンスを開始します」を押して下さい。撮影が開始され、順次右下の「画像履歴」パネルに撮影された画像が溜まっていくと思います。Windowsのエクスプローラで実際に保存先フォルダを見て、ファイルがきちんと保存されているか確かめて見ましょう。私は一番最初だけエラーメッセージが出て、ファイルが保存できないと言われました。これは撮影中に保存先を変更してしまったことなどが原因かと思われます。最初の一度きりで、それ以降はこのようなエラーはなく安定して撮影できました。

撮影時の注意事項ですがが、あえてシーケンスの「リセット」ボタンを押さないと、途中枚数からの撮影が続行されてしまいます。テスト撮影で止めてしまった時など、必要枚数に達しなくなる時があるので、本撮影を始める時は必ず「リセット」を忘れないようにします。左端アイコン「シーケンス」に行って、左下のアイコン群の左から三番目の矢印が回っているマークのアイコンを押すとまた0枚に戻ります。

とりあえずここまでで、最低限のディザーの撮影までできるかと思います。


使っての感想など

うーん、NINAかなりいいです。もちろんどのソフトがいいかは機能だけでなく、インターフェースとかの好みはあるでしょうし、安定性なども大きなファクターです。NINAはまだまだ開発がどんどん進んでいる段階で、しかも今回はベータ版にもかかわらず、一度も落ちることはありませんでした。実は立ち上げてから一度も終了することなく撮影までできてしまうくらい分かりやすいインターフェースでした。オープンソースでこれだけのものができるのは、開発者の方々にただただ感謝です。

ベータ版ですが、すでに日本語が選択できるところもありがたいです。日本語訳もおかしなところはほとんどありません。どなたか日本人の貢献者がいらっしゃるのかと思います。感謝いたします。


感想など、細かいところをいくつか。
  • オンオフボタンがわかりにくいです。オンとオフどちらを押してもスイッチが切り替わってしまいます。どうやらボタンのところに「オン」と出ていたら「現在はオンの状態」、「オフ」と出ていたら「現在はオフの状態」という意味のようです。
  • ライブスタックはSharpCapと比べると流石にまだまだですが、APTよりははるかにマシです。多少不安定なところもありましたが、最低限操作の通りには動いてくれます。
  • 結局撮影ごとのログは残せませんでした。全体のログは残せるがトラブル時以外はあまり有用ではなさそうです。
  • 撮影中もほとんどの設定を変更できるところがいい。
  • 非力なStickPCで試さなかったので、重いかどうかがわかりません。でもホームページには2GBで動くと書いてあるので、意外に軽いのかも知れません。

とりあえず今回はここまで。次回はもう少し応用編として、「プレーとソルブ」と「フレーミング」などについて解説します。実はもう試してはいて、プレートソルブは簡単だったのですが、フレーミングに少し手間取りました。お楽しみに。

縞ノイズが出る理由の一つとして、ガイド時における鏡筒とガイド鏡の相対的なたわみが考えられます。TSA-120用にガイド鏡を取り付けることを考えていましたが、できるだけ撓が少なくなるように、市販の部品を使ってガイド鏡の固定を補強することにしました。


ガイド鏡について

ガイド鏡は昨年の胎内星まつりでBlac Pandaさんのところで先行販売されていたこれ。焦点距離128mmです。最近シュミットさんで販売が始まったようですが、星まつりだったので当時特価で購入できました。

IMG_7908


レンズ部分が筒部分と同じ長さだけあるので、すごく引き出せます。そのためカメラ位置の範囲にかなり余裕ができるため、台座兼アイピースホルダーを外しても焦点を合わせることができるなど、随分と応用範囲が広いです。

IMG_9840

この台座ですが、一本持ちなので少し心許ないです。今回のように撓みをできるだけ無くしたい場合は、できるだけ高さを低くすること、2点支持した方がよさそうです。


どうやって固定するか

もう一本、同じような台座を探してもいいのですが、なかなかいいのがありません。なのでこれを外してしまい、もう少し低くできる固定方法を模索しました。実際、台座部分を外してもネジ径が同じで、ASIカメラのアダプターの径と同じを直接取り付けることができます。

IMG_9845

カメラをねじ込みにすると、回転方向を任意に調整できないと困ることがありそうです。問題はガイド鏡を任意に回転させることができつつ、この円筒部分をどうやって固定して、TSA-120につけたアルカスイスプレートに固定するために、アルカスイスクランプにどうやって持っていくか。

今回はアマゾンでこんなパーツを見つけました。バイク部品のようですが、かなり頑丈で直径54mmまでのパイプに取り付けられるようです。ガイド鏡の円筒部分の外径が45.5mmなのでちょうどいいくらいです。Lサイズが2個1組なのですが、最初LサイズとMサイズが一つづつ届きました。でも、そのことを販売店に知らせたらすぐに対応してくれて、多分最速で新しいものを送ってくれました。間違って配送されたものも、配達員がそのまま引き取ってくれたので楽でした。

それと、安価な120mm幅のアルカスイス互換のクランプです。

IMG_9846

注意する点は、アルカスイ互換スクランプの裏側からネジ止めをするために、丸ネジや通常のキャップネジだと頭が出過ぎてプレートに取り付ける時にぶつかってしまいます。そのため今回は6角の皿ネジを一緒に注文しました。長さは12mmでぴったりでした。

これで加工なしで固定できます。

IMG_9848

裏から見るとこんな風になっています。

IMG_9849


鏡筒に取り付けてみる

鏡筒側にアルカスイス プレートをつけてあるので、直接取り付けることができます。実際TSA-120につけてみるとこんな風になります。プレートも長いので、ある程度前後させることもできます。

IMG_9850

うーん、かっこいい。(自己)満足です。

実際揺らしてみてもほとんど動きません。これで相当頑丈になったはずです。

次回晴れたらテストしてみます。

このページのトップヘ