ほしぞloveログ

天体観測始めました。

カテゴリ: 調整・改造

長く続いてきたSV405CCの評価も佳境になってきました。今回の記事は作例とともに、青ズレの謎に迫ります。さてさて、どこまで解明できるのか?


北アメリカ星雲再び

まずは作例です。今回の一連の記事のその2で出した北アメリカ星雲の再撮影です。

目的は2つ、
  • 前回の撮影は透明度がかなり悪く、階調がほとんど出なかったので、そのリベンジ。
  • 四隅の流れを改善しておきたい。
といったところです。本当はあと一つ、あわよくば青ズレを直す方法が見つかったらと思いましたが、この時点ではそれは叶いませんでした。

まず透明度ですが、今回の撮影では白鳥座の羽の先が見えるくらいよかったです。その影響はかなり大きく、見た目だけなら今回の3分露光の1枚で前回の全スタック分くらいの諧調が出ています。(アップロードの関係でサイズを各辺半分にしています。)

2022-07-02_00-00-47_NGC 7000_180.00s_g120_0.10c_0050_low

依然青ズレは出ていますが、これならインテグレーションしたら階調に関してはかなり期待できそうです。

もう一点、マルチフラットナーを使っているにもかかわらず、前回までバックフォーカス長を適当にとっていたため、SV405CCでもASI294MC PRoでも、いずれの撮影にも関わらず四隅の星像が流れまくりでした。

2022_07_01_01_39_49_M_20_180_00s_g120_0_10c_0034_mosaic
前回までの間違ったバックフォーカスでの四隅の一例。

タカハシの鏡筒はCanonやNikonといった、一眼レフカメラのバックフォーカス長に合わせてアダプターなどの製品を提供しています。今回は手持ちのタカハシ純正のCanon用の一眼レフカメラ用のアダプターを使ってマルチフラットナーのバックフォーカス長に合わせるようにしました。このアダプターに合わせてCMOSカメラを使う場合は、例えばZWOから出ているCMOSカメラとCanon EFマウントに変換するアダプターを使うこと、ほぼ何も考えることなくバックフォーカス長があった状態にしてくれるので楽です。

今回は、かなり前に買ったZWOのCanon EFマウントアダプターを使ってみました。現行モデルはフランジ長が固定ですが、初代のZWOのCanonマウントアダプターはフランジ長を1cm位調整できます。CBPを取り付けたくて、SV405CCに付属の1.1.25インチフィルター用のリングをセンサー部に取り付けたので、ZWOのCanonマウントアダプターは少し手前で固定されるはずです。そのため、マウントアダプターの長さは最短に調整しました。この状態で四隅を見てみると、

2022_07_02_00_00_47_NGC_7000_180_00s_g120_0_10c_0050_mosaic
のように四隅の流れはほぼ無くなりました。

その後、撮影前に少しだけ青ズレを直せないか試したのですが、この日は結局太刀打ちできず、透明度も良くて時間ももったいなかったので、そのまま撮影続行としました。結局天文薄明開始までの午前3時前まで3分露光で72枚撮影しました。前半は雲が通ることも多かったですが、後半はずっと快晴でした。使えたのは雲のない44枚の2時間12分ぶんでした。


画像処理

インテグレーション直後の画像をオートストレッチしたものです。

integration1

一部拡大するとわかりますが、依然青ズレがあります。

integration1_Preview01

もう一つ、今一度上の画像をクリックして拡大して見てもらいたいのですが、微恒星の中心が暗く抜けてしまっています。最初はピントが合っていなかったと思っていたのですが、実際にはかなりピントは気を付けて合わせているにもかかわらず、ほぼ毎回こうなります。また、そーなのかーさんがSV405CCで撮影した画像も同様に中心抜けになっているようなので、どうもこれはピンボケというよりは何か系統的に問題があるような気がしています。

恒星に関しては仕方ないとして、そのまま画像処理を進めます。

途中やはり恒星部分で苦労しました。一番大変だったのは、StarNetのバックグラウンドと恒星部の分離の時に、色ズレのせいかハロの部分がバックグラウンドと認識されてしまい、ここを誤魔化すのが大変で、最後まで不満が残ってしまいました。

Image24_Linear_PCC_ASx2_MS_HT_bg

パッと見はわかりませんが、B画像を抽出してみると同様のハロが他にもたくさん残っていて、あぶり出しとともにたくさんのハロが目立ってきます。

結果


Image24_Linear_PCC_ASx2_MS_HT3_cut_tw
  • 撮影日: 2022年7月2日0時38分-2時53分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI FS-60CB+マルチフラットナー(f370mm)
  • フィルター: SIGHTRON CBP(Comet BandPass filter)
  • 赤道儀: Celestron CGEM II
  • カメラ: SVBONY SV405CC (0℃)
  • ガイド:  f50mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイド
  • 撮影: NINA、Gain 120、露光時間3分x44枚で総露光時間2時間12分
  • Dark: Gain 120、露光時間3分、128枚
  • Flat, Darkflat: Gain 120、露光時間 0.3秒、128枚
  • 画像処理: PixInsight、Photoshop CC

淡いところの階調もかなり出ています。前回の透明度の悪い時より相当良くなっています。庭撮りでここまで出るならまあ満足でしょう。あとはやはり恒星です。

普通ならここでおしまいなのですが、もう少し続きます。ここから大きな進展です


青ズレ検証その後

上の北アメリカ星雲の撮影のあと、もう少し青ズレに関して何かわからないかと思い、後日いろいろ試してみました。ただし雲が多く出ていたので、その隙間でのテストであまり時間をかけることができませんでした。

とりあえず、SharpCapで3分露光を何ショットか撮影しました。最初のショットがやはりこれまでのように暗くなるのが再現され、やはりドライバーレベルで何かやっているのかと思います。この時、雲の動きが速く、雲間が貴重なためにすぐにNINAに移りました(ここで焦っていたのが後で効いてきます)。

NINAでは少し雲が薄くなってきて余裕も出てきたので、じっくり青ズレを見ながら、ASI294MC Proとも交換しながら、何が問題かじっくりみることができました。

一つ疑っていたことがあって、オフセットが40と小さすぎることが原因ではないかということです。SV405CCの場合、オフセットは最大255まで設定でき、今回はわずか40と、最大の6分の1くらいとしています。ちなみにASI294MC Proの場合は最大80で半分の40としています。前回のPedestalの記事であったように、オフセットが低くて輝度の低いところが問題を起こしているのかと思ったわけです。でもオフセットが40の場合でも、120にした場合でも、青ズレに関してはなんら違いが見られませんでした。なので、オフセットは無関係かと思います。

結局、このとき画面を見ながら出した結論は、ASI294MC Proでは何をどうやっても(ゲインやオフセット、露光時間など)青ズレのようなものは出ない、その一方SV405CCでは何をどうやっても(こちらおゲインやオフセット、露光時間など)青ズレを消すことはできない。ということでした。

その後、改めてSV405CCのRAW画像を、RGBで分離して見たり、4つのセグメントごとに見たりしました。
  • SV405CCのBayer パターンがなぜかGRBGであること。ASI294MC ProはRGGB。
  • でもなぜか星雲の濃さから判断するとCF0:G1, CF1:B, CF2:R, CF3:G1のように見えること。
  • CF2の恒星中心部近くに極端に暗くなっている欠損部が多いこと。輝度は周りの1%程度であるが0でないこと。
  • CF1に星の中心部近くに輝度が完全に0のところがあること。CF2ほど欠損の数は多くないこと。
などがわかりました。そーなのかーさんも同様のレポートをしていたので、再現性もあるようです。

結局、この時点ではどうすることもできなくて諦めて、次はNINAで触れないパラメータをいじってみるのかなと思っていました。というのも、CMOSカメラはどこかに設定が保存されていて、例えばSharpCapで触った設定が、FireCaptureを立ち上げるとそのまま引き継がれるというようなことがあるからです。


なんと、原因判明!

そんなことを考えながら昨晩、上の北アメリカ星雲の画像処理を終えて、次回テストの準備をしようと思い、「そういえばSharpCapでSV405CCで撮影した画像があったなあ」と何の気無しに開いてみたら、どこをどう見ても青ズレが見えません。

Capture_00001_20_47_33_RGB_VNG
SV405CCでSharpCapで撮影。青ズレは皆無です。

2022_07_04_21_28_47_NGC_7000_30_00s_g120_10_00c_0084
上の画像の直後にSV405CCでNINAで撮影。明らかに青ズレが出ています。

わかりやすいように拡大して比較して見ます。
ShapCap_NINA_SV405CC
左がSharpCap+SV405CC、右がNINA+SV405CCです。

明らかに違いがわかると思います。ただし、SharpCapでの露光は180秒、NINAでの露光は30秒です。露光時間が逆だったらまだ疑いの余地もありますが、NINAでわずか30秒で青ズレが出てしまっているので、結論は覆らないでしょう。これは明らかにどうやっても青ズレが消えなかったNINAとは、状況が全く違います。

カメラのドライバーはSharpCapでもNINAでも同じ「SVBCameraSDK.dll」を使っています。一応念のために改めて確認しましたが、SVBONYで配布されている1.7.3のカメラドライバーを普通にインストールしたあと、SharpCapは最新版を改めてインストールすると、SVBCameraSDK.dllに置き換わっていました。その一方NINAでは現在の最新版でも、カメラドライバーは最新のものに自動的に置き換わらず
、その前に使っていた1.7.2のままだったので、マニュアルでSharpCapにインストールされていたSVBCameraSDK.dllをNINAの方にコピペして、改めてNINAを立ち上げて1.7.3になったことを確認しています。

ここまでの検証が正しければ、最新版のNINAでの読み出し方の問題ということになります。


よく考えると、SharpCapで撮影した時は雲が流れてたので、時間がなくあせっていて青ズレをきちんと画面で確認していませんでした。そういえばSharpCapで電視観望した時もSV40CCで青ズレが出なくて、彩度もSV405CCとASI294MCで変わりがなかったことを改めて思い出しました。この時は露光時間が短かったからかと思っていましたが、どうもNINAとSharpCapの違いの方が濃厚そうです。

今のところCMOSカメラを使ってのDSOの撮影はShaprCapではディザーガイドがやりにくいなど、NINAやAPTなどに頼らざるを得ません。SV405CCはAPTは対応していないので、実際はほぼNINA一択になるかと思います。NINAでこの青ズレがある状態は致命的です。

というわけで、SVBONYさんの方に今回の結果を報告し、開発陣に連絡してもらうように頼みました。これでキチンとNINAでも対応してくれるように手配してもらえれば、青ズレ問題はとりあえず解決することになりそうです。

今の段階であとやれることは、次に晴れた時に改めてSV405CCを使ってSharpCapで撮影、画像処理までしてみて、(ディザーはやりにくいのでパスするかもしれませんが)青ズレが出ない仕上げ画像まで作ってみることでしょうか。


まとめ

ここまでの結果が正しいのなら、問題はハードではなくてソフトで解決できるということになります。ここが切り分けられるだけでも、かなりSV405CCの未来は明るくなります。その際、彩度がこれまで通り出なくなるのかちょっと気になりますが、まあ優先度としては次の話でしょう。

SV405CCの初期の評価、長かったですがやっと解決につながる道を見つけることができました。やっとあぷらなーとさんにお渡しすることができそうですが、どうもあぷらなーとさん骨折で入院しいるとかで心配です。焦らせてしまっても申し訳ないので、活動できるようになってから渡るようにしたいと思います。


前回の撮影時の記事から少し間が空いてしまいましたが、前回FS-60CBでSV405CCとASI294MC Proで撮影した画像を処理してみました。

 

この撮影後、6月13日付の新しいドライバーが発表されましたが、今回の記事はその前の6月11日にメールで送られてきたものを使っています。そのため(おそらくゲイン120以上で)HGCモードに入りますが、さらにゲインが200プラスされた状態で撮影されています。今回はゲイン120としましたが、実質は320と同等と推測され、ダイナミックレンジが犠牲になっていますので、その点ご注意ください。


共通条件

撮影日の透明度がかなり悪かったため、ここでは比較することを主目的とし、仕上げはさらっと軽めに処理するだけにしました。撮影については、後日透明度のいい日にリベンジしたので、最終画像は後で示します。

ASI294MC ProとSV405CCで共通の事情は、
  • 鏡筒はタカハシのFS-60CB。赤道儀はCelestronのCGEM II。
  • マルチフラットナーをつけていますが、1.1.25インチのノーズアダプターをつけているので、バックフォーカスが合ってなくて、四隅が流れてしまっています。
  • 冷却温度は0℃。
  • 光害防止フィルターとしてCBPの1.25インチをノーズアダプターの先に付けています。
  • 120mmのサイトロンのガイド鏡にASI120MMをつけて、PHD2でガイド。
  • 1枚あたりの露光時間は3分で、10枚に制限し、トータル30分の露光時間。
  • ゲインは120ですが、SV405CCはドライバーがまだ改良途中で実質ゲインが320になっていると思われます。
  • 公平を記すために同日の撮影にして、SV405CCで15分、ASO294MC Proで30分、さらにSV405CCで15分撮影した画像を使用しています。
  • 画像処理はPixInsightでWBPPを使いインテグレートまでしたのを、オートストレッチしています。
となります。


ASI294MC Proの画像(参照)

まずはASI294MC Proです。最初の画像処理でフラット画像に問題があることがわかり、フラットを後日再撮影しました。そのためライトフレーム撮影時についていたゴミが、フラット撮影時に取れてしまったようで、ペリカンの目の下あたりと、下辺中央あたりに丸い大きなスポットが残ってしまいました。カメラの評価にはあまり関係ないのでそのままにしておきます。

下の画像がPixInsightでスタックしてSTFとHTでオートストレッチストレッチだけした画像です。あまり主観的な操作が入っていない段階のこれで比較します。

ASI294MCPro_autostretch_180.00s_FILTER-NoFilter_RGB

この時のヒストグラムは、再掲載になりますが

histgram_ASI294MCPro

となります。至極真っ当そうに見えます。


SV405CCの画像

一方今回の評価対象のSV405CCの画像です。同じく、PixInsightでスタックしてSTFとHTでオートストレッチストレッチだけした画像です。

SV405CC _-180.00s_FILTER-NoFilter_RGB

ヒストグラムは

histgram_SV405CC

となります。まだドライバーでおかしなところがあるため、ゲインを120と設定しても実質のゲインが320
となっていると思われ、同じゲイン設定のASI294MC Proのヒストグラムに比べて全体に右にシフトしていています。120と320で10倍違うはずなのですが、平均は4186から7385と2倍にもなっていないので一見おかしいと思うかもしれません。でもオフセットの値込みの平均値なので10倍になっていないのは問題ないです。

おかしなところは2点、
  • 赤のノイズの広がり方が大きすぎること
  • 60000(最大値の65536でないところが不思議)くらいの値のところに大きなピークがあること
です。その後、ドライバーをアップデートすることで、前者の赤のノイズのおかしいところは解決されることがわかっています。ですが、60000のところのピークは最新ドライバー1.7.3でも解決しないことまでは確かめました。

後もう一つ気になるところは、120秒以上の露光でアンプグローがなくなるというSVBONYの説明です。ですが、マスターダークフレームを見る限り、アンプグローは残っているようです。

masterDark_EXPOSURE-180.00s

それでも撮影時に気になることがあって、ほぼ毎回ですが、長時間露光の場合、一連の露光を開始する最初の1枚だけ、画面全体が暗いです。SharpCapでの撮影もNINAでの撮影も同じです。もしかしたら何かしようとはしているのかもしれませんが、ダークフレームでみて上の様になっているので、少なくともまだうまくいっていないようです。次の最新のドライバーでも注目したいと思います。


比較

両画像を比較してみましょう。オートストレッチ後なので一見どちらもよく似ていて、両者それほど変わらないように見えます。両方とも左が明るく、右が暗いような、1次のカブリがあります。これは左が北側に近く、富山の街の明かりが効いているものと思われます。

あえて言うなら、SV405CCの方が少し赤や緑が濃いでしょうか。でも誤差の範囲の気もします。

大きく違う点は、恒星です。中央下の二つの並んだ星を見るとわかりやすいでしょうか。

starspsd
左がASI294MC Pro、右がSV405CC

一見SV405CCの方が彩度が出てると思うかもしれませんが、よくみると明らかな右上方向への青ズレのようなものが出ています。

実はこれ最初は見逃していて、ここまで拡大することなく、遠目で単に色が出てる恒星だなと思っていたくらいでした。SV405CCで北アメリカ星雲をさらに1時間30分撮影したのですが、その画像処理の時に青ズレが出ているのが気になって、最後までどうしても残るので元を辿っていくと、一枚一枚のライトフレームに載っていることがわかりました。

最初、CBPでのゴーストかとも思ったのですが、ASI294MC Proでこれまでも今回もそんなことに困ったことはないのでおそらく関係ないです。FS-60CBの収差かとも思いましたが、それならやはりASI294MC Proでも出てもいいはずです。この青ずれの方向が常に一定なのも気になります。

とりあえず比較はここまでにして、これ以降は透明度の悪い日の高々30分露光の画像で処理を進めても、あまり意味はなさそうなので、次はこれ以降にSV405CCで撮影した1時間半の画像での処理を進めます。


画像処理

次に気になったのが、SV405CCの画像にPCCをかけた時、同パラメータをいじっても背景が青や緑に寄ってしまうことです。。BackgroundNeutralizationでパラメータをかなりいじって試しても同様だったので、画像の方に何か問題がありそうです。いろいろ探っていって、どうやらRのノイズ幅がおかしいことが原因という結論にたどり着きました。上で見せたSV405のRGBのヒストグラムで赤の幅が大きく、山の高さが低いことです。このグラフの縦軸はlogスケールなので、あまり差がないように見えるかもしれませんが、実際にはGBと比べて1/3から1/4ほどです。

histgram_SV405CC

PCCやBackgroundNeutralizationは幅の方は補正してくれますが、高さの補正はしてくれないようです。そのため、今回はLineaFitで高さを合わせました。しかも1回ではまだ合わせきれなかったので2回LineaFitをかけ、その後PCCをかけると、やっと背景もまともな色になりました。この変な赤の振る舞いは、6月13日付のドライバーをインストールした後は出ていません。もし古いドライバーを使って撮影している方は、最新ドライバーにアップデートしたほうがいいでしょう。

PCC後はストレッチなどした後に、Photoshopに受け渡しました。上で述べた青ズレは仕方ないものとして画像処理を進めました。なので、恒星がいまいちなのは気にしないでください。また、透明度が悪かったためにノイズ処理などもしているので、カメラの性能をそのまま見ると言うよりは、SV405CCで少なくともこのくらいまでは出せるという目安くらいに考えてください。

Image94_clone2

透明度がかなり悪い日の撮影にしては、そこそこ色も出ているのではないでしょうか。この後、透明度のいいに日再度同じ画角で撮影しているので、随時画像処理していきます。


まとめ

今回の記事を書くのにものすごく時間がかかりました。理由は青ズレの解明でかなりの時間を使ったからです。

SVBONYさんとも連絡を取りながら、欠点もブログで正直に書いていくということ、そして開発側にフィードバックしてさらに改善していくことを互いに確認しました。ここらへんはメーカーとしての基本方針のようで、かなり好感の持てるところです。SVBONY初の冷却カメラです。ユーザーとしても新たなカメラメーカーが選択肢として出てくるのは大歓迎です。今後の成長も含め、できるだけ協力し、期待したいと思います。

まだ青ズレの原因は完全にはわかっていませんが、今回の一連の記事の中でできるだけ理由に迫ってみたいと思います。

次回の記事から新型ドライバーを適用します。さて、どこまで改善されているのでしょうか?


  1. SV405CCの評価(その1): センサー編 
  2. SV405CCの評価(その2): 撮影編 
  3. SV405CCの評価(その3): 画像比較
  4. SV405CCの評価(その4): 新ドライバーでの画像比較
  5. SV405CCの評価(その5): 青ズレの調査と作例
  6. 番外編1: 階調が出ない時のPedestalの効果
  7. 番外編2: ASI294MC Proでの結露


庶民の味方SVBONYから新しいCMOSカメラ、SV405CCのレビューを頼まれました。天気がなかなか安定せず撮影はまだですが、少し触ってみましたので、一部ですがレポートします。


SVBONYのカメラ

そもそもSVBONYのカメラはSV105から始まります。私は購入していませんが、当時から7千円ほどと圧倒的に格安で、2018年の京都るり渓の「星をもとめて」で少しだけ触らせてもらったことがあります。露光時間が500msにハード的に制限されていたため、惑星などの用途に限られていましたが、その価格は将来のカメラのアプデーとを期待させるものでした。

次のSV205はUSB3.0を採用し、価格も1万円程度で安価という方針は変わらず。IMX179というセンサーで、ピクセルサイズが1.4μmとかなり小さく、電視観望用途では厳しそうだったため、私は触らずじまいでした。

次のSV305はフィルターの有無などでいくつかのバージョンが販売されました。その当時やはり同クラスのカメラでは最安値で2万円程度でした。私はサイトロンからでたSV305SJのプロトタイプを使わせていただきました。オリジナルのSV305が赤外線カットフィルターを内蔵していて、Hα天体を見るためにフィルターを割って使っていた方もいました。当然保証外になってしまうため、SJバージョンではそのフィルターを普通のクリアフィルターにし、UV/IRカットフィルターを添付してHα天体の撮影に対応したものです。そのカメラとEVOGUIDE 50EDを使い、電視観望で2021年のCP+で発表させていただき、かなりの反響を得ることができたのかと思います。

今回のSV405CCは満を辞しての冷却カメラ、しかもセンサーは定評のあるフォーサーズサイズのIMX294です。ここまでくると、DSOなどの本格撮影も視野に入ってくるので、カメラの性能が結果を大きく左右します。そんなカメラのレビューを頼まれましたので、気合を入れて解析です。


SV405CCの到着

もともとゴールデンウィーク頃には届くと聞いてたいのですが、実際の出荷が5月末、自宅には6月初めに到着しました。到着早々からでしょうか、早速各ユーザーからいくつかのレポートが上がってきていています。XRAYさんからは作例としてM8を撮影されていて、SVBONYの公式ページにすでにアップロードされています。

さて、私も少しづつですがテストをしています。他のユーザーと重なる部分もありますが、やっていることを書いていきたいと思います。

まず、梱包ですが、カメラ以外のパーツに至るまで3重、カメラはケースを入れると4重になっているので、かなり安心です。実際一番外の箱は輸送の過程のせいか、かなりへこんでいました。

CCA32F64-5F26-470C-89C7-B7BAA4FC0AAF

カメラケースはしっかりしたものです。
EED93A04-F1C4-421C-A4A0-217FA02A29A6

このケースですが、カメラにピッタリサイズで、個人的にはもう少し深く作っても良かったのかと思います。例えば初期の頃のASI294MC Proでは実際のカメラよりもケースが深く作られていて、1.25インチのノーズアダプターをつけたまましまうことができます。ところが、ASI294MM Proではケースサイズが小さくなってしまっていて、ノーズアダプターを付けるとチャックを占めることができません。SV405CCのケースは残念ながらMMの小さいケースと同じくらいの大きさでした。コストもあるかもしれませんが、こういった付属品などもユーザーよりの目線で考えてもらえるといいのではないかと思います。

関連してですが、1.25インチのノーズアダプターの先につけるキャップは付属されていません。大したものではないかもしれませんが、使い勝手を考えると付属してもらったほうが戸惑わないと思います。

ノーズアダプターはあくまで脇役なので、2インチキャップが付属されていればいいと考えてあるのかもしれません。問題はその2インチのキャップサイズが微妙に大きく、はめてもスカスカですぐに外れてしまいます。私は操作時、保管時含めて、にホコリの付着を防ぐためにセンサー面を下向きにして扱います。ケースに入れるときも当然下向きに入れます。その際にキャップがスカスカだと安心してケース内に入れることができません。このキャップは是非とも再検討して欲しいと思います。

さて、カメラを机の上に置いてみたら、妙に安定するなと思ってよく見たら、カメラ筐体の下面に切り欠きが入れてあるのに気付きました。写真でわかりますでしょうか?

CD976838-7E4F-4557-A1B8-13B5C385A1E9

水平で安定するのでこれはいいです。惜しいのは、前面と後面についている円盤には切り欠きがされていないため、円筒部の切り欠きの効果がほとんどなくなってしまうことです。あとこの切り欠き、3方向なのですが、できれば4方向がよかったです。4方向にあれば撮影時に切り欠き面に合わせるなどの応用ができそうです。


まずはSharpCap付属のドライバーで触ってみる

最初のテストはSharpCapで行いました。ドライバーはSharpCap標準です。そのためSharpCapは最新バージョンにアップデートしておく必要があります。私が試したのは6月6日更新の4.0.9011.0です。いくつか気づいたことを書いておきます。

露光時間ですが、きりのいいのが設定できない時があります。例えば5msと指定しても4.99msになるとか、6msとしても6.01msとかになってしまいます。これとよく似た状況はSV305SVの時もありました。ゲインを50の倍数の霧の良い数字にしないと何故か1減った数になってしまうとです。入力した値が渡されるときのどこかの計算式が間違っているのかと思います。

ゲインはかなり制限があります。270までしか上げることができません。このゲインというのは0.1dB単位なので、270ということは27dBに当たります。では27dBが何倍かというと、

27db = 30dB - 3dB = (20dB + 10dB) - 3dB = (10 x 3) / sqrt(2) = 約21倍

までしかありません。ちなみに、ZWO社の同じIMX294センサーを使ったASI294MC Proは570まで上げることができます。570は57dBのことで、57 = (60 - 3) [dB] = 1000/sqrt(2) = 707倍になります。おそらく途中400程度からはデジタルゲインなのですが、それでも400ということで100倍までゲインを上げることができます。DSO撮影時にはダイナミックレンジを保つために低ゲインで使うことが多いので問題ないと思いますが、私がよくやる電視観望ではASI294MCで450程度までゲインをあげるので、やはりせめてもう10倍程度ゲインが欲しくなります。ゲインが足りない分は露光時間を上げる必要が出てくるので、反応が遅くリアルタイム性が低くなる代わりに、リードノイズ的には有利になるかと思います。

日曜に少し晴れそうだったので撮影のセットアップしたのですが、天文あるあるなのか、セッティングがほぼ終わった時点で曇ってしまいました。撮影がまで実行できていないので、操作性などはここまでとして、センサーの解析をしてみました。


参照データ: ASI294MC Pro

まずは参照として、ASI294MC Proを常温状態でSharpCapの「センサー解析」機能を使い、測定してみます。

IMG_5693

測定はiPad ProのColor Screenというアプリで画面の明るさと色を調整し、ヒストグラムのRGBがそこそこ重なるようにしています。

結果は以下のようになりました。
ASI294MCPro
結果を見るとわかりますが、ZWOが出しているデータとほぼ一致しているため、測定はそこそこ正しくされていると思われます。

各項目の簡単な説明

データ項目の詳しい内容はここを見て頂くとして、

 

この記事では各項目ついて簡単に解説しておきます。

1. e/ADU
「コンバージョンファクター」とか「システムゲイン」とか、単に「ゲイン」と呼ばれることもあります。基本的には電子の数とADCのカウント数を変換する係数です。横軸の「Gain」が左側の低い時はe/ADUの値が大きく、多くの電子が入ってやっとADCのカウント数が上がる、「Gain」が右側の高い時はe/ADUの値が小さくなり、少ない電子数でADCのカウント数が上がるという意味です。なんでこんな変換係数があるかというと、様々な結果をADCのカウント数だけで比較すると同一条件で比較するのが難しいためです。その代わりに、全てを電子数の「e」と変換してやることで、結果を公平に比較しやすくするためです。

2. Full Well[e]
これは一つのピクセルがどれだけ電荷を貯め込むことができるかという値です。これ以上の電荷をカウントしたらサチって(飽和状態)しまいます。実際のカウントはADCのカウント数の [ADU] でされるのですが、これを上のe/ADUを使って電子数に換算して評価します。横軸Gainが低い時はより多くの電子を貯めることでき、その一方ADUへの変換効率は悪く、横軸Gainが高い時は貯め込む電子の数は減り、その一方ADUへの変換効率はいいということです。面白いのは、SharpCapの測定結果で試しにこのFull Well [e]をe/ADUで割ると、Full Well [ADU]は16384(=2^14)ぴったりになります。これはSharpCapのセンサー解析があくまで簡易的で、横軸Gain0のときのe/ADUを測定して、後は実測のゲインでe/ADUを割って求めているだけということがわかります。

3. Read Noise [e]
日本語では読み出しノイズと呼ばれています。カメラから画像を読み出すたびに必ず発生するノイズです。読み出しで出るノイズなので、露光時間を伸ばして読み出し回数を減らすと、発生回数を減らすことができ有利になります。電子で換算した[e]で見ると、横軸Gainが高くなるにつれて小さくなり、途中からほぼ一定になることがわかります。これはむしろADUで見たほうがわかりやすくて、上記グラフ最下部にADUに換算したものを載せておきました。このグラフを含めて、ほとんどがlog-logで見るとほぼ一直線になります。

4. Dynamic Range
Full Well[e]をRead Noise[e]で割ったものをビット(正確には2の何乗か)で表示したものです。ADCの分解能の14bitの意味ではなく、実質的に表現できるダイナミックレンジとなります。Full WellとRead Noiseの単位がともに同じeであることに注意してください。このように対等に換算するためにe/ADUというシステムゲインが重要になってきて、互いに割ったりできるわけです。

グラフがとちゅうで折れているのは、ここでアナログアンプのゲイン切り替わって上がり、Read Noiseが[e]単位で見ても、[ADU]単位で見ても減っていることがわかります。Full  Wellやe/ADUはゲイン切り替わりの影響を受けていません。その結果、Dynamic Rangeでも切り替えポイント以降で得をしています。切り替え前、切り替え後でも、いずれも実質的なDynamic Rangeが14bitに到達していないので、ADCの持っている14bitという分解性能で事足りるということがわかります。


SV405CC: 初期ドライバー

さて、参照データとグラフの説明はこれくらいにして、今回のSV405CCをまずは常温状態でSharpCapでセンサー解析してみましょう。まずは最初にリリースされたドライバーでの測定です。

IMG_5700

まず測定中に気づいたことは、感度はASI294MC Proより少し高いのではということです。SharpCapでのセンサー解析に使ったiPadの明るさ設定を、SV405CCの方が暗くしなければスタートできませんでした。この時の設定は、iPad ProのColor ScreenというアプリでR13, G5, B12でした。ASI294MCの測定時の設定がR39, G29, B27だったので、数分の1くらいでしょうか、結構暗くしたことになります。この時、露光時間が512ms, Gain0で測定スタートできました。最近のSharpCapのセンサー測定は非常によくできていて、適切な明るさにうまく導いてくれます。

e/ADUを測定するときに、輝度とその分散の関係が直線にならないという報告が一部からなされていましたが、少なくとも私のところでSharpCapで測定している限りはそんなことはなく、ほぼ一直線になっていました。

IMG_5712

測定結果です。
SV405CC_old_driver
  • まずわかることは、データが全て一直線なので、HCGと呼ばれる、アナログアンプのゲイン切り替えがされている様子が見えません。
  • 先にも述べたように横軸のGainも270までしかないのも大きな差(707 \ 21 ≒ 34倍)です。
  • 次に、e/ADUとFull WellがASI294MC Proと比べて小さすぎます。e/ADUが小さいということは、より少ない電子数でADCのカウントが上がるということなので、感度が良いと思ったことと一致します。
  • [e]で見るRead NoiseはASI294MC Proと比べると一見小さく見えますが、[ADU]で見るRead NoiseはHCGが作動するまでの低ゲインではASI294MC Proと同程度で、結局Dynamic RangeもHCGが作動するまでは同等です。
  • ASI294MC ProはHCGが作動した後の高いゲインではRead Noise、Dynamic Rangeも得をしているため、SV405CCとは大きく差がついてしまっていることがわかります。撮影となると、HCGモードがオンになるところが実際かなりおいしいので、まずはここの改善が必要ということがわかります。

SV405CC: 新ドライバー

2022年6月11日の夕方、ここでちょうどSVBONYから新ドライバーがメールで送られてきたので、入れ替えです。HCGモードがオンになるとのことで楽しみです。

ドライバーが送られたのは一部のユーザーだけのようで、もしまだ新ドライバーを手に入れられていない方は、本国SVBONYのサイトからダウンロードする必要があります。

SharpCapの6月13日の最新バージョン4.0.9033.0で

Fix missing temperature, binning info to FITS files saved from cooled SVBony cameras

と書かれているので、最新のドライバーに変わったものかと思われたのですが、その後調べたらSharpCapには(ドライバーの更新日時から判断したところ)最新ドライバーは含まれていない様で、別途自分でインストールする必要があるようです。なので最新のドライバーを試したい方は、本国のSVBONYのページ、

https://www.svbony.com
 

に行き、上のタブの「SUPPORT」 -> 「Software & Driver」 -> 横の「Windos」と進み、「SVBONY Cameras」の最新版(Release date:2022-06-13以降)をダウンロードする必要があります。


ところがexeファイルを実行してインストールしてからも、SharpCapでの測定結果が何も変わっていないので一旦ここで中止して、ドライバーをよく見てみました。まず、ドライバー内のexeファイルは、ファイル名からASCOMドライバーなのかもとも思えますが、説明がないので不明です。わかりにくかったのは、X64もしくはX86の中のファイルを自分でマニュアルでSharpCapやNINAのフォルダにコピーしなければならないことです。これはRead Me.docを読んで初めてわかりました。もし新ドライバーを個別に手に入れた方は、インストール方法に注意です。

改めてSharpCapのインストールディレクトリ直下のSVBCameraSDK.dllを新しいものに自分でコピペして入れ替え、再度センサー解析をしてみます。結果は?
SV405CC_new_driver

ヤッター!見事段ができていて、HCGモードがオンになったのが分かります。FUll Wellの値も増えました。

ところがこの結果、よく見るとまだ色々おかしいです。本来HCGモードがオンになっても、e/ADUやFull Wellは一直線のままに保たれるべきです。Dynamic Rangeを見ても、結局HCGモードがオンになっている領域でも何も得していないのでこれでは意味がありません。

何が問題なのでしょうか?これはSharpCapの出力結果の、実際に測定されたゲインを見るとよくわかります。横軸のゲインと実測のゲインをグラフ化してみまます。

gain

本来設定したゲインに比例した明るさが実測されるはずで、グラフは一直線にならなければなりません。この横軸「ゲインの設定値」を、縦軸「実際のゲイン」に受け渡すところで、ドライバーないで何か間違えて計算してしまっているのかと思われます。

ここが直ればゲインが高く出てしまっている部分はもっと右にずれます。ジャンプした部分を右に120ほどずらしてやると、グラフが一直線になることから、おそらく(ASI294MC ProでHCGモードが発動する)120から240までがすっぽり抜けてしまっている状態かと思われます。

これをきちんと修正すれば、設定できるGainの範囲が少なくとも270+120=390まで広がり、e/ADUは正しく(実測ではなく)計算されるはずです。その結果、[e]で見たRead Noiseだけでなく、[ADU]で見たRead NoiseもHCGモードで得をするはずで、結果Dynamic Rangeも得をすることになるはずです。

ところでこの390という値に見覚えがある方はいらっしゃいますしょうか?ピンときたか方はすごいです。そうです、あぷらなーとさんによると、階調が14bitから13bitに切り替わる所です。デジタルゲインに切り替わるところかもしれません。ASI294MC Proはここから独自のことをやっている可能性があるので、逆にいうとここまではセンサー固有の同じような性能のはずなので、SV405CCも390までは出ていいはずなのかと思うわけです。



あと、ちょっと微妙なのが、Full WellとRead Noiseが明らかにASI294MC Proより2-3割大きいことです。よく見るとe/ADCも微妙に大きいです。ここは次の課題としたいと思います。心当たりはあって、ある程度の測定結果も得ていますが、まだ確証が持てません。次のドライバーでもしかしたら解決するかもしれませんが、残った場合は再度精査して報告したいと思います。


この時点で撮影する場合

梅雨に入ってしまい、なかなか天気が良くなる見込みもなく、まだSV405CCで撮影できていません。でももし今のドライバーを使って撮影するなら、どこのゲインを使えば良いのか?

上に書いたように、ちょうど旨味のある本来のGain120から240あたりがすっぽり抜けていて、今のところユーザーではそこに設定することができません。明るい天体、もしくは長時間露光でGain0を狙うのはありなのかと思います。今の「設定Gain」を上げると120以降では実際は+130されていると考えるべきで、あまり高ゲインにすることはDynamic Rangeを損なうので注意した方がいいと思います。高いゲインを狙う場合は、無理をせずに新ドライバーを待つべきかと思います。


次の課題

できたら撮影を敢行したいと思います。センサー解析の結果と、撮影画像は必ずしも一致するわけではなく、ノイズの種類によってはDynamic Rangeの不利を回避できるかもしれません。

また、冷却関連も試したいと思います。一部既に試していますので、近いうちにレポートできるかと思います。

実は今私のところにあるこのSV405CC、どうも聞くところによると、次にあぷらなーとさんのところに行くことになっているようです。SVBONYさんからは期限は問わないと聞いていたので結構のんびりしていたのですが、あぷらなーとさんの見解も早く聞きたいのでこれは急がなければと、急ピッチで進めています。あぷらなーとさんからは「じっくり試してください」と言ってもらっていますが、早く晴れてくれないか、撮影だけはやろうと思っています。


まとめ
 
まだドライバーは完全とは言えず、本当はもう少し改善されてから撮影を含めて本格的に試したいと思いますが、あまりのんびりもしていられないようです。実際もう少し試したいアイデアもありますが、どこまで時間をかけられるかが勝負になってきました。

今回の結果は全てSVBONYさんにお伝えし、既にエンジニアの方にフィードバックされたと聞いています。ある意味SVBONY初の、本格DSO撮影用のカメラです。まだまだカメラメーカーとしては経験不足のところもあるかとは思いますが、レスポンスの速さなどからSVBONYの本気度が伺えます。ぜひともきちんとドライバーを作り込み、ユーザーの選択肢の一つとして成長することを願っています。やっぱり冷却でIMX294でこの値段は魅力なのだと思います。



  1. SV405CCの評価(その1): センサー編 
  2. SV405CCの評価(その2): 撮影編 
  3. SV405CCの評価(その3): 画像比較
  4. SV405CCの評価(その4): 新ドライバーでの画像比較
  5. SV405CCの評価(その5): 青ズレの調査と作例
  6. 番外編1: 階調が出ない時のPedestalの効果
  7. 番外編2: ASI294MC Proでの結露

今回の記事は悪いことをしているので真似しないでください(笑)。

冗談はさておき、撮影の準備をどこまで短縮できるか考えてるのですが、最近大きな進歩があったので書いておきます。


赤道儀のセットアップ

私は普段は自宅での撮影なので、赤道儀が玄関に置いてあります。全部CelestronでAdanced VXとCGEM IIとCGX-Lと、3つあります。

97E8C9BD-8951-454B-9A68-774EBC1A07FA
  • AVXは軽いので、組み上がったまま、ウェイトも鏡筒もつけたまま(クランプは緩めて)運びます。ケーブルまで含めて組み上がっているので楽です。
  • CGEM IIは三脚と赤道儀をまとめて運びます。これで運べるギリギリの重さで、ウェイトや鏡筒が載っているととてもじゃないけど運べません。でもケーブルとかは赤道儀までは接続されているので、まだ楽です。
  • CGX-Lは赤道義単体だけでもすごく重いです。ウェイトバーはまだつけたまま運びますが、毎回三脚から切り離して運びます。三脚も上二つとは段違いにゴツくて、三脚単体で運ぶのだけでも大変です。固定するのはM10のキャップネジ3本なので、載せて固定するのに六角レンチが毎回いるのでちょっと面倒です。ケーブル類も当然毎回接続し直しです。

でも今日の話はこんなことではありません。この後の話です。

三脚、赤道義、ウェイト、鏡筒がそろった段階からは共通で、
  1. 赤道儀についている水準器を使って水平をとる。
  2. SharpCapで極軸を合わせる。
  3. 鏡筒をホームポジションに合わせる。
  4. 赤道儀の電源を入れる。
  5. ワンスターアラインメントで初期導入をする。
  6. ガイドカメラの映像をSharpCap上で大まかにあっていることを確認する。
  7. メイン鏡筒のカメラをSharpCapで見て中心に持っていく。
この中から二つの大きなステップを省きます。この二つはペアなので、片方だけやるとまずいかもしれません。思いついた順で時系列で書きます。


省ける操作1

まず一つは、赤道儀の自動導入は私の場合ワンスターアラインメントなのですが、鏡筒の移動が終わった後に星が視野に入ったことを何も確認しません。その代わりにSharpCapのプレートソルブでズレを確認し、赤道義側にフィードバックすることで自動導入の精度を担保します。プレートソルブで、目的の天体をほぼ視野(例えば焦点距離1300mmでセンサーはフォーサーズサイズくらいの視野でも)の真ん中に入れてくれます。

その際気をつけることは、Celestronのコントローラーの場合、ワンスターアラインメントで導入して、星が入っていない段階で、「Enter」ボタンと「Alignment」ボタンを押して、アラインメントを終了させておくことです。これができてないと、プレートソルブで赤道儀を返そうとするとエラーになります。あと当然ですが、赤道儀に誤差を返すためSharpCap上であらかじめ赤道儀に接続しておく必要があります。

これだけで時間にしてうまくいくと5分程度時間が短縮できます。


省ける操作2

最近思いついたもう一つの省ける点ですが、水準器で赤道儀の水平をとることをしません。私は長らく「赤道儀の水平をとることはものすごく重要で、ここをサボると精度が出ない」と主張してきました。基本的な考えは変わってませんが、そもそもなぜ赤道儀の水平をとる必要があるか、よく考えてみると疑問が出てきました。

通常の場合、水平出しの一番の目的は、初期アラインメントの時にきちんとガイド鏡もしくは主鏡の視野に天体が入っていくることです。でもこの条件は、既に上のようにプレートソルブに任せてしまったので、必須条件になっていません。

あともう少し条件があります。極軸が十分な精度でとれていることです。SharpCapだと極軸を1分角以下の精度で余裕で合わせることができるので、これくらいきちんと合わせてあれば、水平が合っているかどうかに関わらず、十分な追尾ができます。極端なことを言うと、極軸さえあって入れば、自動導入でもマニュアル導入でも、水平がとってあってもなくても、追尾精度は同じでですよね。自動導入があると便利というだけです。

あと水平が出ていないと、初期導入時の誤差が大きくなるので、繰り返しになりますが、プレートソルブは必須(少なくとも合った方が楽でしょう)です。極軸の精度が出ていない場合、プレートソルブがない場合は、真面目に水平をとった方がいいのはこれまでとなんら変わりはありません。

この水平出しを止めることでも、うまくいくと5分程度時間を短縮することができます。


実際の感想

5月末のこの季節、21時近くに天文薄明が終了します。大体20時半近くに、玄関からCGX-Lをえっちらおっちら運び始めて準備を始めます。トラブルがなければ実質30分以内に準備が済んで、21時には撮影を開始できます。準備の30分のうち、5分とか10分とか時間を短縮できるのは無視できないくらいの効果があり、精神的にもかなり楽です。

プレートソルブを使った初期アラインメントの簡略化はかなり前からやっていましたが、水平出しを無視するのは最近始めました。既に3度ほど撮影していますが、今のところ精度が落ちたようなことはありません。といっても、いつも同じような場所に置くので、実際にはものすごく水平からズレるということはあまりないです。水平を確認しないだけで、そこそこの水平度は出ているので、極端に大きくずれているというのは検証していませんが、まあ原理的には大丈夫なはずです。

あ、あと私は(極軸の精度は十分出しているので)ワンスターアラインメントしかしませんが、ツースターとかスリースターアラインメントをすると追尾中に赤緯も動かす可能性があるので、もしかしたら上の話は成り立たないかもしれません。


まとめ

とまあ、今回はやってはいけないことシリーズとなります(笑)。もし試す場合はくれぐれも自己責任でお願いします。これで精度が出なくて写真がうまく撮れなかったとか言われても、私は何の責任も取ることができません。



CGEM IIの限界

SCA260を耐荷重ギリギリのCGEM IIに載せた時の振動問題。いろいろ対策はしてきましたが、この間ちょっと小さめのM100を撮影してみると、どうしても揺れが目立ってしまい、やはり限界を感じてきました。M100の画像処理はまた別記事にするとして、これまで作例として出してきたM33馬頭星雲など、ある程度画面いっぱいに広がるものは多少のごまかしが効きます。でもNGC253とか、もっと小さな銀河を目指そうとすると1分露光くらいが限界で、それ以上ではどうしても揺れが目立ってきてしまいます。


サイトロン本社にて

今後の長期的なことも考えて、もっと頑丈な赤道儀、例えばEQ8を念頭に色々考えていました。そんな折、CP+の収録でサイトロン本社に立ち寄る機会があって、昨年購入させて頂いたSCA260の結果共々、振動のこととを話していると「EQ8でいいのがありますよ」という話になったわけです。実際に展示してあったEQ8Rを触らせてもらいましたが、ちょうどSCA260が搭載されていて、触ってみても揺れそうな気配が全然なく、もう羨ましい限りでした。でも内情はというとサイトロン訪問の数日前に雪道で車で事故を起こしてしまい、車を買い替えなくてはならなくなり、妻からは「しばらく天文機材禁止」とのお達しが出てしまっていたのです。なのでEQ8などしばらくは夢のまた夢です。

そんな恥ずかしい話をしていると「CGX-Lはどうですか?」という話になりました。皆さんご存知の通り、サイトロンは長い間セレストロンの代理店でした。その当時の展示品の一つか何かで、以前から故障していて使えるかどうかもわからないものだそうです。ジャンクとして自分で直して使うのなら格安で譲ってくれるというのです。

少しだけ動かしてもらうと、何やらエラーは出ていますが、モーターは一応回転します。エラーをスキップして初期アラインメントを試しても何か動きはします。聞くと「エンコーダーを交換したり色々やってみたが、それでも直らないのでもう使う予定はない」とのこと。「物としては大きく場所もとっているので、もし自分で直してみる気があるなら...」ということなので、速攻で「やってみます」と返事をしました。そもそも、自作で大型のイギリス型の赤道儀でも作るしかないかと思っていたくらいです。動けばラッキー、ダメでも基本構造はそのまま使えるでしょうという目論見です。


どデカい箱が到着!

その後何度かやりとりをし、保証も修理もサポートもできないけれどという約束で、本当に格安で送ってもらうことになり、待つこと数週間。3月26日の土曜日の朝、とうとう自宅に届きました。配送のお兄ちゃんは力もありそうでしたが、それでも流石に大変そうなくらい大きな段ボール箱なので、一緒に手伝いながら家の中へ運びます。大きな箱が2つと、小さくて重い箱がひとつ。赤道儀、三脚、ウェイトでしょうか。

94F0B160-97DA-404C-BE7E-B54BD68D951A

靴と一緒に撮りましたが、そのとんでもない大きさがわかるかと思います。

一番大きな箱から開けてみます。
A28A9022-A5DA-4ABC-B4F3-CED52C5C1FF0
どうやら三脚のようです。それにしてもでかい。これまでのAVXやCGEM IIのものと違い、内側に開き具合を制限するフレームが付いているのと、3本の脚をまとめるベルトのようなものが付いています。

広げて玄関に置いてみます。
58CE54E7-C0C1-4F3C-BB05-1193D187B72C
脚の太さは5cmから7cmに変わっただけとのことですが、とてつもなくゴツく見えます。

もう一つの大きな箱の赤道儀も出してみます。
10540A8C-947C-445C-BF05-07A266A6D1A2
テーブルの上に置いてみましたが、隣のMacBook Proと比べてもその大きさがわかるかと思います。ただ、持ち運びに関しては取っ手が上下についていてバランスよくしっかりつかむことができるので、実際の重さと比べても幾分楽になります。また、このようにテーブルの上にまっすぐ置くことができるのもありがたくて、メンテナンスが楽になります。普通は赤道儀の下は平ではなく、メンテナンスで稼働させようとすると結局三脚の上に乗せる必要があったりします。

6581C0FF-F44F-4BC8-A415-ACC49C02DA85

細かく工夫されているのは、水平調整のネジの先端が丸くなっていることでしょうか。
F8E16538-C97C-4BFD-8D29-D1777695797B
CGEMIIの水平調整ネジも先端はある程度加工していますが平な部分がわかります。一方、CGX-Lのほうは完全に球面になっています。

三脚と赤道儀を取り出した空箱ですが、うまく入れ込むと赤道儀の大きな箱と中身、ウェイトの小さい箱がちょうど丸々三脚の箱の中に入ります。赤道儀の二重箱の外側の箱は入らないので畳んで上に置くなどする必要がありますが、かなりコンパクトになります。

3C0119B8-99F1-497B-9CED-37DEF802B467
と言っても、一つでもまだ大きいことには違いありません。

さて、赤道儀を実際に三脚に載せてみます。赤道儀の固定は横三方向から付属のM8ネジで止めることになります。その際、手で回すだけではガタついてしまうので、毎回六角レンチで締める必要があり、ちょっと手間です。
97E8C9BD-8951-454B-9A68-774EBC1A07FA
こうやって3台並べると、今回のCGX-Lがあからさまに大きいことがよく分かります。3台同じメーカーで並べると壮観で、さながら展示場みたいでしょうか(笑)。その後、まだ繋がっていないハンドコントローラーと、電源ケーブルを電源と繋ぎ、動作確認となります。


動作チェック

ここからは賭けになります。動けば以前のPSTジャンクみたいに超ラッキー、動かなければ大きな置き物にもなり兼ねません。

まず電源を入れると、早速エラーメッセージが。写真はDecですが、何度か試すと、RAの時もあります。
951A9801-C64B-42D3-B978-353AD354AC8E

これをそのまま進めると、DECの回転が始まり、矢印ボタンで止めたりしない限り、ずーっと動き続けます。RAの時も同様で、何かしない限りは止まりません。どうもこの機能、電源を入れたら自動的にホームポジションに移動するという、CGX以上で搭載されている目玉の機能のようです。この機能があるために、赤経も赤緯も初期位置を示す三角マークとかが見当たりません。自動でホームポジション状態になるので、そのようなマークは必要ないということみたいです。

とりあえずBackボタンでスキップできるようなので、何度かBackボタンとEnterを押して次に進みます。するとCGEM IIの初期画面と同じになります。ここからさらに進め、(昼間の確認なのでまだ確実ではないですが)ベテルギウスで初期アラインメントを取ってみると、どうやらそれらしい方向を向くようです。その後、耳を澄ますとジーッという音がしているので、追尾も一応動いているようです。

この時点でエラーが出るのはエンコーダに問題があるのではと推測しました。そこで、Stellariumで赤道儀と接続して信号がどう出ているのかチェックしてみることに。初期アラインメントで赤道儀はすでにベテルギウスらしい方向を向いています。この状態でStellariumを赤道儀に接続すると、なんとStellarium上では既にベテルギウスにいると指し示しているではないですか!これは明らかにエンコーダーは生きていることを示しています。ここから考えるに、どうもエンコーダの故障とかではなく、CGX以上では初期位置確認のセンサーが独立にあって、今回はこれがなんらかの理由で働いていないようです。

言い換えると、エンコーダも動いているので、最初のホームポジションへ行くのさえ手動でやってしまえば、あとはガイドやプレートソルブさえも動くかもしれません!


トラブルシューティングの一例

ここで一旦動作確認を終えて、電源を入れ直しエラーについてもう少し把握することにします。まず、ハンディーコントローラーに問題がないか試します。

同じメーカーの機器を使い続けることの利点の一つが、共通の部品を使えることです。今回は、コントローラーが計3つあるので、CGEM IIのものとAdvanced VXのものに順に交換してみました。コントローラーによってはなぜか赤緯モーターが回らないことがありましたが、エラーメッセージはどのコントローラーでも出るので、コントローラーが原因とは考えにくく、CGX-L本体からエラーが発生している可能性が高いという結論を出すことができます。

何度か電源を入れると、たまにCGX-Lと認識されずに、機種がわからないか、オリジナルのGTとして認識されることがありました。この時はCGX-Lのバージョンなども不明と出てしまうようです。これは電源を入れ直すことでCGX-Lと認識されたのと、頻発するようではないので、まあ放っておくことにしました。

さて、こういった時のトラブルの際の解決方法の例ですが、まずは表示を日本語から英語にします。出てきたエラーメッセージをGoogleなどで検索すると、日本語のページでは引っかかりませんでしたが、海外には同じような状況になっている人が何人かいるようです。その中で、Cloudy Nightsにドライバーのアップデートで解決したというのがまず見つかりました。そのため、CelestronのFirmware Managerを使いハンドコントローラーとCGX-Lのドライバーを最新のものにアップデートします。

3B3DD55F-BA9B-47EA-A13C-AB8D88996229
この時少し失敗して、もともとどのバージョンが入っていたか確認するのを忘れてしまいましたが、とにかく繋がっている機器(今回の場合はハンドコントローラーとCGX-L)のファームを最新のものに置き換えてくれるようです。アップデートが終わると、更新された様子が表示されます。
5D66B512-D414-494C-AE9B-9C1D52888454
ただしこれ、ハンドコントローラーで確認すると違う数字が出るのですが、まあ気にしないでおきましょう。
D38FBA48-AFE6-4D90-9451-4CC75168F955

少なくともFirmware Managerで出てきたバージョンはCloudy Nightsで示されたものより新しいので、大丈夫でしょう。

さてこれで再度電源を入れ直します。結果はというと、やはりまだ同じエラーメッセージが出ます。念のため工場設定に初期化することなどもやってみましたが、それでもダメです。

どうもファームのせいではなさそうと判断し、もう少し探ります。すると、ケーブルが抜けているのが原因だったという投稿がCloudy Nightsに見つかりました。構造的にケーブルがねじれて抜けるか切れるかする可能性があるとのことです。さらにそのリンク先を辿っていくと、CGXの全バラ写真が大量に投稿されているページに行き着きます。CGXとCGX-Lは三脚の違いが主なので、このページはかなり助かります。

どうやら一部分解してケーブルのチェックをすることで何とかなりそうな目処がついてきました。実際の分解は次回時間がある時にやるとして、この時点で天気が良さそうなので外に出して実際に設置してみて、できれば撮影まで試してみることにしました。


外に出してみる

まず移動ですが、少なくともCGEM IIのように赤道儀と三脚を一度に運ぶことは到底できません。重さもそうですが、大きすぎて赤道儀があると三脚を掴むところまで手が届きません。運ぶときは3つのネジを六角レンチで緩めて一旦外し、別々に運んでまた組み上げてネジを締める必要があります。両手で持てる2つの取っ手がついていることと、赤道儀の下面が平らなので、そこら辺に置くことができるので、運搬に関しては思ったより苦にはなりません。

その上にSCA260を載せてみました。これまでのCGEM IIよりもかなり位置が高くなるのですが、鏡筒にも取っ手をつけているのと、同時に下側のアルミプレートの先端を持つと斜めに傾けながら持ち上げることができるので、そこまで無理することなく赤道儀に取り付けることができます。標準で10kgのウェイトが付属しているのですが、かなり端の方に固定するとこのウェイト一つでバランスを取ることができました。また、鏡筒を載せた状態で脚の一本を持ち上げ、水平を撮るために脚を伸ばしたりすることもできました。とりあえず、思ったより持ち運びと設置は大変ではなく、遠征に持って行くのも無理ではないなとの感想です。

263774C7-C69F-4C5E-A8F6-7ED6A85F6AA4

SCA260を乗せた後に、実際に突っついて揺らしてみました。明らかに揺れが小さいです。全く揺れないわけではないのですが、共振周波数が高くて揺れがすぐに収束します。もしうまく動いてくれるならですが、これは期待できそうです


極軸調整

暗くなってきたので、次はガイド鏡を取り付けてのSharpCapでの極軸調整です。ほとんどの過程は問題なかったのですが、最後に固定ネジを締めると角度がずれてしまうことがわかりました。垂直は2つのネジを手で締めて固定、水平は4つのネジを六角レンチで締めて固定します。この時、最後の最後のキュっと締めるときにどうしてもずれてしまいます。そのため、そこそこ極軸が合ってきたらある程度ネジを締めてしまい、最後はあまりきつく締めすぎないようにそこそこ固定することで、ズレを抑えて極軸を合った状態に保ちました。


実際に天体を入れてみる

その後、あらかじめ赤経赤緯ともにホームポジション付近に固定してから、赤道儀の電源を入れます。昼間に試したようにポジションエラーをスキップして、あとはこれまでのCGEM IIと同様にワンスターアラインメントでベテルギウスを導入、自動追尾といきます。少なくともみている限り特に問題はないようです!

ハンドコントローラーのUSB端子とPCを接続して、SharpCapでプレートソルブも試しましたが、全く問題なく赤道儀に信号を返して位置補正までしてくれました!

また、PHD2を使ってオートガイドも試してみました。ここで一つ問題発覚です。どうも赤経方向に周期的に揺れが出ます。
93190212-31D4-47AB-8763-22C2BCBA1114
上の写真のグラフの横軸は全部で400秒ですが、左から真ん中にかけてに10秒くらいの周期で大きな揺れが出ているのがわかると思います。(追記: その後調べましたが、CGXでちょくちょくこの現象出てくるようです。赤経のみで赤緯での報告は見つかりませんでした。なにか根本的に理由があるのかもしれません。)その結果として、右の同心円グラフでみても横方向に大きな幅が出ているのがわかります。その時の撮影画像が下になりますが、やはり一方向に伸びているのがわかります。この方向は赤経方向に一致します。

_2022_03_27_20_56_00_NGC_2237_LIGHT__10_00C_600_00s_G150

ここで露光時間を1秒から0.2秒することで周期的な揺れを抑えることができました。上のPHD2の画面の途中で変えたので、グラフの半分くらいから右側で周期的な揺れが減った様子がわかるかと思います。

その後、いくつか設定を変えて続けてみたのが下の写真になります。露光時間以外もいじっているのがわかるかと思います。
E311AB18-0B34-43E1-AE89-B4BF8A78A20A
結果として、同心円でみても縦横のバランスが取れた状態になったことがわかります。


フルサイズでの四隅の状態

その後カメラにフルサイズセンサーの借り物のASI2400MCを使い、バラ星雲を導入し撮影まで試してみました。揺れの影響を見るために、3分、5分、10分と撮影しました。

3分露光。
_2022_03_27_21_23_35_NGC_2237_LIGHT__9_90C_180_00s_G150

5分露光。
_2022_03_27_21_31_48_NGC_2237_LIGHT__9_90C_300_00s_G150

10分露光。
_2022_03_27_21_47_18_NGC_2237_LIGHT__10_10C_600_00s_G150

なんと、驚くことに10分でも4隅までほぼ真円を保っています。思わずヤッターと叫んでしまいました。これはもう十分すぎるほど満足な結果です。これまでの苦労が何だったのかというくらいです。でもだんだん改善されていく様子はものすごく楽しかったですし、またこれまでの苦労があったからこそ、このありがたみが実感できるのかと思います。

もう少し見てみます。3分と10分を比べると、3分の方が星像が鋭いこともわかります。これはシンチレーションなども合わせた揺れが積分されたため、長い時間の露光の方が大きくなってしまったのかと思われます。


いよいよオフアキを本格稼働か

その後、もう一つ気づいたことがありました。上で喜んだ後、三つ子銀河を導入し、実際に長時間撮影を試み何枚か撮影していると、途中から複数枚にまたがって斜めに大きく流れはじめたことに気づきました。

_2022_03_27_23_25_02_M_66_LIGHT_10_00C_600_00s_G150
_2022_03_27_23_25_02_M_66_LIGHT__10_00C_600_00s_G150_mosaic

このフレームの少し前に子午線を越えてしまっていて、それが原因なのかわかりませんが、PHD2で見ても流れていないので、何らかのたわみが発生し始めたのかと思います。赤道儀を反転したらこの流れは無くなりました。今のところはっきりとした原因は不明ですが、もしたわみだとしたらいよいよオフアキの出番となります。


今後

とりあえず今回はここまで。初期ホームポジションの移動以外はすでに実用的にも問題なく、十分振動が抑えられてかなり満足なのですが、やはりきっちり直したいので、次は分解してエラーメッセージが出なくなるか試してみます。


最近太陽撮影でよくコメントをくれるhiroさんが、Lusol-Guideという太陽撮影でオートガイドを実現するソフトを見つけたと教えてくれました。私も試してみたので記事にしておきます。


なぜ太陽撮影にオートガイド?

太陽撮影は基本明るいので短時間で終わるためにオートガイドする必要はないのですが、プロミネンスの動きなどタイムラプス映像をするときにはオートガイドが欲しくなってしまいます。一番の理由はPSTなどの入門用太陽望遠鏡の場合、エタロンの精度があまりよくないため、画面内でHαの出方にムラができてまうことです。そのため撮影の位置がずれると後のタイムラプスの一コマ一コマで画像処理が一様にならなくて、動画の見栄えが悪くなってしまいます。

ところが、太陽のオートガイドはあまりいいのが無くて、例えばFireCaptureには撮影した画像にある物の形を認識してそれを保つように赤道儀に返すような機能もありますが、やはりどうしても途中で飛び跳ねたりして安定度がいまいちです。ここら辺の基本的な考え方や、hiroさんとのやり取りはこのページ

や、そこのコメント欄を追ってもらえるとわかるかと思います。


LuSol-Guide

さて、今回hiroさんによって発掘されたLuSol-Guideですが、2016年くらいに開発されたものでしょうか、もう結構古いもので、その後の開発は止まってしまっているようです。すでにhiroさんから同ページのコメント欄で結構うまくガイドできているとの報告がありますが、私も実際に使ってみました。

マニュアルがここにあります。


多少の癖があったり、使わないとわかりにくいところもありますので実際使用して気づいたことを書いておきます。


実際の使用記

まずガイド鏡を用意します。普通の夜の撮影で使うガイド今日で構いませんが、太陽光を軽減するフィルターを必ずつけてください。そうしないとカメラセンサーが焼けてしまうなどのダメージがあるので気をつけてください。

カメラですが、私は撮影用にASI290MM、ガイド様にもASI290MMを使いましたが、どうも同じカメラが2つというのは想定していない様で、Lusol-GuideかSharpCapのどちらかでカメラを動かすと、どちらかが止まってしまうという状況でした。仕方ないのでガイド用カメラをASI120MM miniにすると、すんなりと両方とも動ようになりました。

キャプチャ4


さて、操作手順です。
  1. 左下の「Camera」ところでガイドに使うカメラを選択し「Start」を押すと、ガイド鏡で映した画像が出てきます。横の「Setting」で適当なパラメータを設定してください。後で説明しますが、サチるくらいに明るくしたほうが安定するようです。
  2. 次に右上「Mount」のところの「Connect」で赤道儀に接続します。ASCOM platformと各自の赤道儀にあったドライバーなどはあらかじめインストールしておいてください。
  3. 右下の「Calibration」ボタンでキャリブレーションを始めます。ガイドカメラの縦横の向きは出来れば撮影カメラの縦横と合わせておいた方がいいでしょう。
  4. 1-2分待つとキャリブレーションが終わます。
これでガイド準備可能となりますがその後のパラメータがわかりにくいです。

  1. まずD.Minですが、これはこの値以下のピクセルのずれはガイドしないという意味のようです。言い換えるとPHD2のように、恒星の強度分布からピクセル以下の位置を推測する様な高度なことはしていなくて、1ピクセル単位のガイドが最も精度が良いということになります。なのでここの値は「0」が一番精度がいいです。撮影鏡筒の焦点距離が2000mm、ガイド鏡の焦点距離が120mmなので、2000/120 = 17と、ガイド鏡が1ピクセルずれるだけで撮影画像は17ピクセルと大きなずれになります。D.Minの値を「1」にすると、上下左右1ピクセルずれていても何もしないようなので、撮影画像では最高でも2ピクセル分の34ピクセルの精度になってしまいます。
  2. D.Maxはその値以上はガイドしないというだけなので、適当な値例えば50とか100で構わないようです。
  3. Agressivenessはデフォルトの5でいいみたいです。増やしすぎると発振することがありました。
  4. Thresholdがまたわかりにくいです。これは太陽の位置認識の感度のようです。小さくすると小さな円で、大きくすると大きな円でフィッティングするようです。明るさで判断しているので、この値を中途半端にすると少し明るさが変わっただけで円の大きさが大きく変わります。位置もそれに引きずられてブレるので、ブレの範囲を小さくするためには、カメラの設定を太陽がサチるくらい露光時間を長めかゲインを高めにしておいたほうがいいいみたいです。 
hiroさんがThresholdの値を高めに設定した方が安定すると書いてくれていたのは上のような理由からで、明るさの変化にあまり依存しないように、最大径でフィッティングした方が誤差が少ないからだろうと思われます。


実際のガイド精度

あとは特に説明しなくてもなんとかなるでしょう。ただ、上にも書いた通りもっとも精度が良くても撮影画像で17ピクセルの誤差があるので、かなり揺れます。風とかあるとガイドカメラでも数ピクセルずれることはあるので、撮影画像で50ピクセルくらいずれることはよくあります。それでもFireCaputureでのオートガイドとかよりはマシで、少なくとも飛んでいってしまう様なことはあまりありません。雲や電線など、ガイドカメラの像が不安定だと大きく揺れてしまいますが、それは仕方ないでしょう。


まとめと今後

とりあえず最低限の実用性はありそうです。もう少し精度を良くするためには、ガイド鏡の焦点距離を長くすることですが、太陽全体を見る必要があるのでより大きなセンサーサイズが必要になってきます。もしくはピクセルサイズのできるだけ小さいカメラをガイドカメラに使っても精度は上がりますが、ASI290MMもそこまで大きなピクセルサイズではないため、ピクセルサイズ側で大きく精度を向上させるのは難しそうです。

タイムラプスのための画像の位置合わせについては次回以降の記事で書くことにします。
 

今回は赤道儀CGEM IIのメンテナンスです。以前Advanced VXのガタとりをしたことがありますが、CGEM IIではどうなのでしょうか?




CGEM IIのメンテナンス

もともと結構前から気になっていたのが、ウェイトバーの端を触ると赤経体がカタカタすることでした。ただ、ウェイトをつけるとほとんど揺れなくなるようなので、ずっと放っておいていました。つい最近、さらに赤緯体も注意深く触ってみると、少しですがカタカタします。CGEM IIを手に入れてからまもなく4年が経ちます。少し見直してみるにはちょうどいい時期です。


ガタのチェック

まずは赤経体のガタですが、結論だけ言うと赤経体自身のガタはありませんでした。ウェイトバーのねじに対して、赤道儀側に切ってあるネジ穴がかなりゆるくて、ネジを締め切ってもまだ少しカタカタしてしまうというのが原因でした。クランプをきちんと締めた上で、ウィエイトバーと独立に赤経体のみで揺らしてみても、ピクリとも動かないのを確認できました。実際の撮影時にはウェイトに重力がかかりウェイトバーが常に一方向に力を受けるためカタカタ動くようなことは無く、例えガイドとかでちょこちょこ前後にモーターが動いたとしても、まず問題にならないと判断しました。

むしろ問題は赤緯体の方でした。こちらはクランプを締めたとしても、赤緯体を揺すると明らかに回転方向にカタカタします。回転方向にのみ遊びがあるのは大抵の場合ウォームとウォームホイールがうまくあたっていない場合がほとんどです。


調整方法の模索

楽しそうなので、まずは何も資料など見ずに簡単にネジを外せるところを外して内部を理解しようとしました。あるところまで行ってシャフトを外すのが大変そうなので途中でストップ。それでも外している過程でなんと無くどこをいじればいいかわかってきました。これ、コストとか、メンテナンス性とかも含めてうまく考えて作ってますね。感心してしまいます。

さて、ここからネットなどでいろいろ調べていくと、どうもCelestronのCGEM IIを含むCGEM系と、EQ6、EQ6 Pro、EQ6-R、EQ6-R ProなどのEQ6系列はかなり似たような構造になっているようです。バックラッシュ調整に関しては日本語のページを含めていくつか見つかりますが、メンテナンスに関してはこのページ

が一番詳しかったです。

特に今回はウォームギヤのガタとりなので、その中のこのページになります。


要するに、ウォームとウォームホイールは特に分解などする必要もなく、外から簡単に調整できるというわけです。


実際に調整してみる

さて実際の調整です。

1. まず赤緯体の根本にある4つのM5のキャップスクリューを緩めます。
5B99BF97-93BC-4CC5-8B40-3A0CDAB2B6F7
ネジが3つ見えていると思います。
4つ目は向こう側にあるので見えていません。

2. 赤緯体の前後にある小さな穴の中のM2のいもねじを回転します。今回はウォームとウォームホイールをちかづけるほうこうなので、まずは後ろ(南)側のネジを緩めます。ここでは緩める量を例えば30度とか決めておくといいです。
7BD18404-78DF-4242-BAB7-9D135863091E
緩めるのは一番上の穴の中のいもねじです。

3. 赤緯体の前(北)側にある小さな穴の中のM2のいもねじを2で緩めたのと同量分だけ締めます。
153F7C33-4EFC-45F1-A442-B0FF8AB677F2

4. 2と3をガタがなくなるまで何度か繰り返します

今回は前後のいもねじネジを90度回転させるとガタは完全に無くなりました。

2022/3/8 追記: 赤緯のモーターを回しても、動かないことがわかりました。きつく締めすぎたようで、半分程度緩めたら普通に動くようになりました。調整後は必ずモーターが回るかどうか確認した方が良さそうです。


まとめ

ガタとりは非常に簡単です。Advanced VXでも同様のガタ取りをしましたが、それよりもはるかに簡単な機構です。ホントよく考えてあります。

もうしばらくしたらグリス交換なども含めてフルメンテナンスが必要でしょうか。その際にも今回参照したサイトを見ながらやれば、問題なくできそうです。
 

3月3日の木曜の晩、新月期でとうとう晴れてくれました。SCA260で撮影がてらいくつかのことを確認したいと思います。


目的と対象天体

今回のSCA260での目的はいくつかあって、
  1. ナローバンドフィルターの枠を取り換えたことで周辺減光が緩和されたかどうか確認すること。
  2. 副鏡をきちんと固定したため、鏡筒の向きを変えても光軸がずれないことを確認すること。
  3. 3分露光で星像が丸になることを確認すること。
です。これらの効果を見るだけならどこでもいいので星空を1枚撮影すればいいのですが、せっかくなのできちんとターゲット天体を定めて枚数を撮影して作例としたいと思います。

ターゲット天体ですが、2つの可能性を考えました。まず一つはもともとSCA260は春の銀河まつり参戦の意味合いが強いので、星像がピシッと出るかどうを確かめたいこと。特に、焦点距離が1300mmとそれほど長いわけではないので、
  1. バローを入れて高分解能を目指す
  2. 以前タカsiさんが言ってくれたように、ASI294MMの1binを使って高分解能を目指す
  3. もしくはバローと1binの両方を使う
の3択でどれが一番良いかを確かめてみたいと思っています。ただし銀河なので基本はRGB撮影です。

もう一つは、ナローバンドの周辺減光を確かめるためにHα、OIIIなどで見える輝線星雲を狙うことです。現在次期フィルターホイールをどの方向でいくか迷っているので、今回はナローバンドフィルターの周辺減光を確認することを優先し、輝線星雲を撮影対象とします。ただ、この春になりかけの時期はだんだん銀河がメインになってくるので適した輝線星雲があまりありません。さらに、星像を他の方の結果と比較してみたいので比較的メジャーな天体がいいのかと思っています。

いろいろ迷って、一度撮ってみたかった馬頭星雲の拡大像にすることにしました。


撮影

オリオン座はもう西に行こうとしているので早めの撮影になります。なのでまだ明るいうちから準備を始め、天文薄明終了後すぐに撮影にはいります。これまでのSCA260での撮影と違うのは、繰り返しになりますがナローバンドフィルターのフィルター枠を1mmほど内円の径が大きいものにしたことと、もう一つはガイドをオフアキから120mm+ASI290MMに変えたことです。オフアキの方が精度が出るはずなのですが、ASI120MM miniの感度があまり良くないこともあり、見ることができる星の数が数個のオーダーで少なすぎるので、マルチスターガイドができません。もともとSCA260の焦点距離が1300mmとそこまで長くないので、今回はマルチスターガイドを狙い普通のガイド鏡を使うことにしました。

撮影は最初順調に進みましたが、10枚撮ったところで曇ってしまい、その後も待ちましたが晴れることはなく撤収となりました。


結果画像

Hαフィルターで撮影した10枚の中で、比較的よく撮れた1枚撮りです。PixInsightでオートストレッチだけしています。
2022-03-02_21-21-53_IC 432_LIGHT_HA_-10.00C_180.00s_G120_0010
これを見る限り、ナローバンドフィルターの周辺減光は許容範囲内と言っていいでしょう。なので、手持ちのフィルターを活用すると言う意味でも、少なくともフォーサーズのASI294MM Proに対してはフィルターホイールは31.7mm用のもので十分で、まずは今の5枚入るものから8枚入るものにアップグレードします。

星像ですが、拡大図です。
2022_03_02_21_21_53_IC_432_LIGHT_HA_10_00C_180_00s_G120_0010_cut
それほど悪くなく十分に真円に近くて、私的には十分許容範囲です。副鏡をきちんと固定した効果はあったようで、光軸ずれももうほとんど起きないと言っていいでしょう。3分露光でもしこのレベルが安定して出せるなら十分です...が、

上の画像はかなりいい方のものです。比較のために、撮影したうちの画像処理に回せるレベルのものを5枚ピックアップして中心部を拡大したものをgifにしてみました。位置合わせまでしてあるので、星の位置は変わりません。
Blink
こうやって比べてみると、やはり真円かと言うとまだ程遠くて、細長くなったりしています。伸びる方向はランダムなので、これは赤道儀のせいというよりはシンチレーションでしょうか?

念のため、10枚撮影したうちの落とした悪い方5枚をみてみます。こちらは位置合わせができてないので、星の位置が動きますがご容赦ください。
Blink
何かの拍子に揺れてしまい(ほとんどがガイドのon/offで飛んだものかと思われます)こちらも方向はランダムです。赤道儀起因で揺れているとしたらですが、今回の撮影では赤経の揺れが垂直方向、赤緯の揺れが水平方向になるように合わせています。なので赤経のみとか、赤緯のみとかの特定のモードが出ているようなことはなさそうで、突発的な揺れ、もしくはシンチレーションなどの常時のランダムな揺れが支配的なのかと推測されます。風は比較的穏やかでしたが、風や地面の揺れの可能性もあるかと思います。ただ、やはり手で鏡筒を触ると揺れると言う事実は変わりないので、もう少し頑丈な赤道がは欲しいところではあります。

さて撮影ですが、3月2日に続いて、その後の3月3日と4日も馬頭星雲を撮影できたたので、なんとか仕上げるくらいの枚数にはなりました。それでも両日とも暗くなった後に晴れてきて、そこからオリオン座が西に沈む手前までなので、雲がかかったものやブレたやつとかを除いたら、初日の分も合わせてもトータルわずか1時間半ほどでした。こちらは画像処理が済んだらまた別の記事に書きます。


まとめ

SCA260がやっと3分露光でまともに撮影ができるようになってきました。ただしそれでも使えるのは高々3分露光で撮影したものの50%くらいと、まだ実用レベルと言うにはちょっと厳しいです。さらに長時間露光にしたら採択率も下がるでしょう。もっと頑丈な赤道儀があるといいのですが、もう少し我慢です。

前々回前回のトール兜星雲画像処理の時に、ライトフレームやフラットフレームを見ていて、いろいろ問題があることがわかりました。

 
 

問題点は以下の通りで
  1. Hα、OIIIのナローバンドのみ周辺減光が大きい、RGBはそれほどでもなく許容範囲。
  2. センサーの埃がひどすぎる。
  3. OIIIのフラットがムラだらけ。
とかいうものです。一つづつ見ていきます。


なぜナローとRGBで周辺減光に差があるのか?

同じバーダーのフィルターを使っているのに、撮影画像を見るとナローとRGBに明らかに差があります。

例えばR画像です。
Capture_00001 15_27_36_WithDisplayStretch
四隅も欠けて見えますが、かなり炙り出して見ているので、実際の撮影でフラット補正してしまえばほとんど気にならないレベルになります。GもBもRと同様です。

次にHα画像です。
Capture_00001 15_31_36_WithDisplayStretch
明らかにHαの方が欠けている部分が明らかに大きいのが分かると思います。ホコリのリングがあまりはっきり見えていないことから分かるように、たいして炙り出しもできていません。R画像と比べるても見た目以上に周辺減光が大きいことが推測できます。さすがにこのレベルだとフラット補正でも補正しきれなくて、画像処理の時に無視できないレベルで四隅は結構な範囲でクロップするしかなく、少しもったいないです。

何故こんな違いが出るのか、ナローバンドフィルターとRGBフィルターをよく見比べてみると、リングが結構違います。下の写真のホイールの裏から見た場合ですが、左側がHαフィルターで、右がBフィルターです。
IMG_4405

左のナローの方の内側のフィルターの受け皿の内径が明らかに小さいです。どうやらここが周辺減光の原因になっているようです。

とりあえず、ナローフィルターのフィルターだけをホイールに直接載せればいいかと思いました。

まずはHαフィルターをリングから外します。外したフィルターをフィルターホイールの穴に直接載せてホイールに付属のフィルム型のリングでとめようと考えました。ところがところが、フィルターをホイールの穴に置こうとしたらなんとそのまま通り抜けてしまい、センサーのところまで落ちていってしまいました。どうやらフィルター径の方が穴の径よりも小さいようです。

気を取り直してフィルターのリングはとりあえず使うことにしますが、さてどうしましょうか?

手持ちの機材をいろいろ漁ってみると、昔星まつりでジャンク価格で買った古いORIONのオレンジとかバイオレットとかの、さすがに使いそうにないフィルターがあり、そのリングが今回使えそうなことがわかりました。内径は少なくとも今のナローバンドのリングよりも小さそうです。
IMG_4408
IMG_4410
左がORIIONのOrangeフィルター、右がバーダーのHα

フィルターのリングを取り替えて、ホイールに再び取り付けます。さて再度カメラで見てみると...
Capture_00001 16_15_11_WithDisplayStretch

おお!周辺減光が明らかに改善しています。

OIIIも同様に変更しておきます。


センサーのゴミ

前回の記事で見せたマスターフラットです。

masterFlat_BIN_2_FILTER_HA_Mono_integration_ABE

ABEを4次で欠けてさらにフラット化しているので相当強調されていますが、流石にあまりにひどい汚れです。どこが原因か探ってみます。

まず鏡筒に対して接眼部全体を回転させてもホコリの位置がかわらないので、接眼部が原因です。さらにホイールに対してカメラのみ回転させてもホコリの位置が変わらないので、カメラで確定です。ホコリのリングの大きさかが全て同じなのと、その大きさから言って、センサー面ではなく少し離れた保護ガラス面に乗っかったホコリでしょう。

でも目で保護ガラス面を見ても全く汚れているようには見えません。おそらく相当細かいホコリか何かです。

とりあえずよくわかりませんが、保護カバー面を以前買ったセンサー掃除用のスワブを使いました。



持っているのは6Dのためのフルサイズ用でしたが、スワブの短辺が、フォーサーズセンサーの長辺と同じくらいなので、そのまま使うことができました。

一度拭っただけで効果は的面で、9割方のホコリをとることができました。
Capture_00001 16_53_05_WithDisplayStretch

欲を出して同じスワブでもう2−3度拭き取りましたが、逆にたくさんのホコリが乗っかってしまいました。えっ!と思いましたが、冷静になってブロアーで吹き飛ばすと、今度は完璧で、見る限りホコリは全て取れたと思います。
Capture_00001 17_02_03_WithDisplayStretch


ムラ

次にOIIIフラット画像のムラについてです。まずはOIIIのフラット画像を見てみます。少しホコリが乗っかってしまっていますが、これはブロアで吹き飛ばせるものです。
Capture_00001 17_01_02_WithDisplayStretch

でもこれ、左右で明るさの差はありますが、ムラには見えません。どうやら前回の画像処理の時にすでに勘違いしていたみたいで、改めて今回見るとOIIIはほぼムラはなく、逆にHαに同じような形のムラがあります。

おそらくですがこれはNINAの問題で、一旦シーケンスを走らせて、途中で止めてフィルターを別のものに入れ替えてから、シーケンスを再開するとフィルターが変わったことを認識せずに、そのままその時のフィルターで初めてしまうことがあるようです。フォルダ名やファイル名にフィルター名を書いておいても、実際に使っているフィルターでなく、最初にシーケンスで指定したフィルター名のままになってしまいます。

OIIIで撮ったと思っていたのが実際にはHαで撮影していてためにムラが出たしまったのかと思いますが、少し腑に落ちないところもあります。まあ、今回はとりあえずムラが見えているHαフィルターについて考えます。

Hαフィルターでのフラット画像をリアルタイムで見ながら、いろいろやってみました。例えば明るさやゲインを変えてみたりしましたが、暗いと見えにくくことはあっても消えるようなことはありません。形はカタカナの「コ」の字のようです。RGB、OIIIのいずれにもこんな模様は見えませんが、Hαには再現性を含めて存在しそうです。フィルターを回転させても模様は変わりません。

ここで、バーダーのHαフィルター自体に問題があるのではと思い、もう一枚持っていたサイトロン製の同じ7nmのHαフィルターに交換してみました。同じ7nmと言っても、見た目でフィルターの色が違うので、少なくとも特性が全く同じとは思えません。その結果が以下です。

Capture_00001 17_23_51_WithDisplayStretch

ホコリは無視するとして、ムラの形が相変わらずカタカナの「コ」でほとんど変わっていないのです。

これは何を意味するのでしょうか?

ふと立ち止まってしばらく落ち着いて考えていましたが、結局結論としてはセンサー面の個々のピクセルがこの波長に対して感度差があるのではということくらいしか思いつきません。可視光に対してはメーカーも感度ムラをきちんと検証していても、赤外に近いHαについては検証し切れていないのかもしれません。もしこれが正しいなら、ある程度仕方ないので、フラット補正を木tんとするということくらいしか対策はありません。次回、本当にきちんと補正ができるかなど、気を付けて見てみたいと思います。

あと、最後の画像でついたホコリについてです。できるだけセンサーを逆さにしながらフィルターを取り替えたりしましたが、結構なホコリが付くことがわかります。原因は、ネジを締める時の金属粉、指を使って閉める時に爪が少し削れた粉、空気中にあるホコリがフィルターを外した時についてしまうなどです。フラット補正で多少のホコリは問題ないことは分かっていますが、やはりあまり気分の良いものではないので、フィルター交換時などはできるだけ気をつけたいと思います。


まとめ

周辺減光もホコリ取りも十分な効果がありました。また、ムラはおそらく赤外に近い波長に対するセンサーそのものの感度ムラの可能性が高そうなことがわかりました。

今わかっている問題に対しては、手持ちの機材でできることはだいたいこれで対応し尽くした気がします。これ以上は赤道儀を大型化するとか、フィルターを大きくするとかしかないのかと思います。まずはこの状態で次の天体を撮影し、効果の程をみたいと思います。


次期フィルターホイール

RGB撮影と、AOO撮影は試したので、次はSAOとかに挑戦したいと思っています。その場合、今の5枚装着できるフィルターホイールでは不足です。かと言って、フラットがずれることや、今回わかったホコリが入ることなどから、フィルターをその場で入れ替えての撮影は避けたいと思います。

今フィルターは31.7mmですが、次期フィルターホイールをそのまま31.7mmで枚数だけ増やすか、36mmか、さらに2インチにいくべきか迷っています。将来的なことを考えたら2インチにしておくべきなのかもしれませんが、とにかくフィルターが高い!ナローバンド3枚で波長幅にもよりますが10万円から20万円コースです。36mmならZWOでグッと安いのがあり、とりあえずこちらにすべきか?

予算だけ考えるとまずは31.7mmの8枚ホイールだけを買うことになりそうですが...。

前回のSCA260でのトール兜星雲の撮影で、赤道儀を反転させると星像が大きく崩れてしまいました。



日曜の昼間をかけて光軸ズレの原因を探っていました。なかなか大変でしたがなんとか解決しました。


光軸の確認と副鏡の調整

天気は雪だったり曇りだったり時に晴れたりでコロコロ変わり、赤道儀を外に出すのは憚られたので 、少し狭いですが玄関で作業です。

まずは先日起きたことの再現です。

1. 鏡筒が西側に来て水平になるように、赤道儀を回転させます。接眼部にコリメータをつけて覗いてみると、そこそこセンターにいますが、少しだけズレています。
01_West_initial

2. 次に赤道儀を反転させ、今度は鏡筒が東側に来て水平になるようにします。再びコリメータを覗いてみると大きくズレています。縦方向にマーカーが下に落ちたようなずれかたです。これだけずれているなら、前回の赤道儀を反転させた時の星像のずれも十分説明ができるのかと思います。
02_West_low

3. 赤道儀を再反転し鏡筒を西側に戻し、再現性があるかどうかを確認します。マーカーがセンターにそこそこ来ることを確認し、反転時のズレよりはたいしたことないことがわかったので、十分再現性があると言っていいでしょう。
02_West_2nd

4. ここで、接眼部にガタがあることに気づきました。持ち上げるとカタンとずれます。原因は接眼部根本の回転部の3本のネジが緩かったことです。回転の滑り具合を調整し易くするために、元あったイモネジからキャップネジに変えています。その際、3本の固定ネジも調整したのですがゆる過ぎたようです。実際には接眼部を持ち上げてガタを取った時のズレが下の写真くらいです。これは反転したときに比べても大したズレではないので、無視して3本のネジをもう少し締めてガタをなくし、先に進みます。
04_West_2nd_focuser

5. ここで一度、大したズレではないですが一応副鏡を触って中心のマーカーがセンターで同心円になるようにします。 
05_West_center

6. 次に、何がずれているか確かめるために、鏡筒を東側にして、マーカーがズレた状態で副鏡二つのネジを90°程回して大きく調整し、センターに持ってきます。副鏡調整でマーカーをセンターにすることが可能だとわかったので、この時点でなんらかの理由で副鏡がずれていると判断しました。
IMG_4314
IMG_4315

IMG_4316
IMG_4318

06_East_centering

7. 主鏡が少しズレているようなので(上の写真の一番黒いリングが、外のリングと同心円になっていない)、主鏡のネジを2つそれぞれ90°程度回転し、調整します。ですが、主鏡のズレはそれほど重要でないことが後でわかりました。

IMG_4322
IMG_4323

IMG_4324
IMG_4325

IMG_4326


上部アルミプレートを外したことの影響

次は、一番怪しいと思った上部プレートを取り付けて同じようなことを繰り返します。

1. この時点では上の一番最後の写真のように、鏡筒が東側にあって、マーカーがセンターに来ている状態です。

2. 作業しやすいように鏡筒をホームポジション(鏡筒が真上に来ていて北を向いている状態)に戻し、自分で取り付けた2つのハンドルを外し、もともとあったアルミのプレートを鏡筒上部に取り付けます。

3. 再び鏡筒を東側にして水平を取りますが、マーカーはほとんどずれていません。
IMG_4328
11_East_after_upperplate

4. 次に赤道儀を反転させ鏡筒を西側にしてコリメータを見てみます。これでズレてなければプレートを外したことが原因で鏡筒のたわみを引き起こし、副鏡がズレたことになります。果たして...ズレは???

12_West_after_upperplate

なんと、前回見た時と同じくマーカーが下に落ちたような状態でした。ズレ幅もほとんど変わりません。ということは、上のプレートは関係ない?言い換えると、鏡筒のたわみとかではない???


じゃあ原因は?

うーん、この時点で一時中断。いろいろ考えます。鏡筒を西側、東側どちらにおいて合わせても、反転するとマーカーが下に行く。ということは重力が関わっている可能性が高いです。

いろいろ考えながら鏡筒を見たり触ったりしていると、副鏡を触ったときに「カタッ」と音がなりました。鏡筒内に手を突っ込み、副鏡を下から持ち上げるようにするとなんとカタカタ動くではありませんか!どうやら副鏡周りのネジが緩んでいるようです。

ところが、副鏡調整の3本のネジを締めても、中央のネジをかなり締めてもまだ同じようにカタカタ動きます。副鏡がどうやって取り付けられているのかわからなかったので一旦外そうと試みますが、SCA260の副鏡はかなり大きくて、スパイダーの隙間から出てきそうにありません。スパイダーごと外すか迷ってネジに手をかけて緩めようとしてふと立ち止まりました。

もしやと思って、手をつっこんで副鏡を回転させてみると、なんと副鏡をネジを締める方向に回すとうまく固定できるではありませんか!実際、一回転以上の緩みとなっていて無視できないような量でした。

この緩みが最初からあったのか、途中からあったのかわわかりませんが、副鏡が緩んでガタつくことがあり得るということは心に留めておいた方が良さそうです。ちなみのこの副鏡のガタ、少し触ってくらいでは多分気づきません。鏡筒内に手を突っ込んで副鏡全体を手でつかんでわかるくらいです。


一難去って、また一難、真の原因は?

これで問題解決のはずなので、嬉々として鏡筒を東側と西側でそれぞれ水平にして念のためマーカの位置を確認します。さて、結果はというと....

13_submirror_screw

え、え、え???

ズレの量は3分の1くらいにはなりましたが、まだ有意にズレが残るようです。

念のため副鏡を揺らしてみると、それでもまだ少しカタカタ揺れるではありませんか!!!

もう副鏡はきちんとねじ込んであるのでしっかり固定されています。それでも微妙にどこかがカタカタ揺れるのです。

いろいろ触っていてわかったのですが、結論としては二方向あるスパイダーの片方の張り具合が十分ではありませんでした。鏡筒外側の大きなマイナスネジを両側で締め込み、十分なテンションを持たせることで、やっと揺すってもガタガタいうことは無くなりました。

IMG_4334

この時点で再び東西でマーカー位置を比べると、やっとどちら向きにしてもセンターに止まり、動かなくなりました!!!

おそらくですが、このスパイダーの緩みは上部プレートを外したことによって引き起こされた可能性が高いと思っています。上部プレートはそこそこの強度を保っていますが、スパイダーの張力と釣り合っていたはずで、プレートを外した瞬間にバランスが崩れたるんだのかと推測しています。この場合は完全に自己責任ですね。


結局プレートを外してもOK

その後、上部アルミプレートを再び外し、ハンドルに取り付け元に戻します。ここでも一応東西でマーカーのズレがないことを確認し、作業終了です。

プレートが原因でないことはかなり助かりました。プレートを再び取り付けなければならないとなると、また慣性モーメント激増で、揺れとの戦いに戻るからです。


まとめ

実際の原因は、予測したものと全然違っていました。むしろ予測よりもっと単純なものでした。でもこんなのでさえ、見つけるのは結構大変なんですよね。

今回2つの問題がありました。
  • 一つは、副鏡が回転してしまっていてきちんと固定されていなかったこと。
  • スパイダーの張りが十分でなかったこと。
これらがいつ発生したかは不明です。後者はおそらくプレートを外した時ですが、前者は一回転以上とかだったので、後から緩んだ量としてはちょっと多すぎるかと思います。M33とかでも赤道儀反転はしていましたが、天頂付近だったことと、まだ揺れとの戦いの最中だったので気づかなかったのかもしれません。実際、トール兜の一夜目の時もシーイングが悪いとこんなもんかと思っていました。

いずれにせよ、今回きちんと原因が確定して解決の方法もわかったので、今後SCA260での南天時の赤道儀反転も心置きなくできます。今後同様な問題が再び出たとしても、ここら辺を疑うことで回避できるのかと思います。

今回のように、マニア向けの天文機材の場合、問題が起きた場合や普段の調整なども含めて、ある程度自分で解決することが必要となります。これを不満と感じてしまうか、楽しいと感じるかは人それぞれかと思いますが、少なくとも私はこういったトラブル解決や改良などが楽しくてたまらなくて、天体趣味の大きな動機になっています。

次回撮影でどんな成果がでるか、とても楽しみです。


このページのトップヘ