ほしぞloveログ

天体観測始めました。

カテゴリ: 観測・撮影

ラッキーイメージングを少し始めたのですが、どうも腑に落ちません。トラベジウムの分離がイマイチできていない気がするのです。


星像の大きさについて

もともとは、MEADEの25cmシュミカセで0.1秒と1秒と10秒で星像を比べたのがきっかけです。もしシーイングが悪いせいで揺らぐなら、露光時間が短い場合と長い場合で、星像にあからさまに差がつくはずです。ですが、結果は差はつきますが本当にごくわずか。いろいろ試していたとき気づいたのが、そもそも中心像でもボタっとしていて、星像が大きすぎるのではないかということ。

それでも念の為ですが、M42を高解像度で撮ったと言われている、他の方の、すでに画像処理を施した他とトラペジウム周りを見比べてみると、自分のものはベストではないが、それほど悪いわけでもなさそうです。画像を見比べただけの分離度はそんなに差はありません。

また、もう一つ気づいたことがあって、微恒星がどこまで出るかも一つの指標になりそうです。例えばトラペジウムだけを分離度よく見せかけようとしたら、画像処理でどうにかできてしまいます。でも微恒星が写るかどうかは解像度に結構依っているようで、トラペジウムだけよく分離しているように誤魔化しても微恒星が出てこなくなります。なので、微恒星も同時にみるとどれだけ分解能が出ているかが判別しやすくなります。


目的

と、ここまでが前置きで、今回試したかったのは果たして理屈の上ではどれくらいの分解能があるはずで、実測した分解能とどれくらい乖離があるかを見極めることです。

もともとの目的は、今の手持ちのMEADE25cmおよびC8の性能がきちんと出ているのか、まだ性能が引き出せるい可能性があるのかを探りたいということです。要するにボテっとしている星像はこんなもんで正しいのか、それとももっと改善できるかが知りたいのです。

今回検討したことは4つ。
  1. エアリーディスク(Airy disk)
  2. レイリー限界(Rayleigh criterion)
  3. スポットダイアグラム(spot diagram)
  4. シーイング(seeing)
です。


エアリーディスク

エアリーディスクによる星像がどのようになるかですが、式の上ではエアリーディスク径Da

Da=2.44Fλ

のようになります。ここで、は鏡筒のF値で、λ は波長です。ただ、エアリーディスク径といっても、式だけみると一体どこの径のことを言っているのかよくわかりません。よく調べてみると、上の式の場合は直径を表しているとのことです。それでも直径といってもどこのことなのか?これはなぜこの式が出てきたのかの導出を調べるとわかります。

エアリーディスクの振幅は横軸を星像の半径方向、縦軸を振幅ととると1次ベッセル関数で表すことができます。式としては
2J1(x)/x

となり、半径 の関数である1次ベッセル関数 J1(x) を半径xで割ったような式です。この式の導出自身は平面波仮定した波素を無収差レンズに入れた時に、結像点でどのような振幅になるのかを積分してやるのですが、ここでは式の導出自体は目的ではないので、解説はその他専門の文献に譲ります。

上の式は振幅なの、実際の光強度にするためには2乗してやる必要があります。2乗したものをグラフに表すと、
airydisk

のようになります。エアリーディスク径といっているものは、このグラフで0からみて正負の方向に最初に0になる点の間の距離のことを言います。この点を求めるのはちょっと面倒なのですが、Mathematicaなどがあれば

In[192]:= FindRoot[(2 BesselJ[1, x]/x)^2 == 0, {x, 1, 5}]

Out[192]= {x -> 3.83171}

のように簡単に求めることができます。最初にゼロになるxは+/-3.83程度とわかります。

なんでこんなことをするかというと、実際の星像では強度がゼロになるところなど見えるわけがなく、普通真ん中が明るくて徐々に暗くなっていくような正規分布のような強度を持っているものにはFWHM(Full Width Half Maximam, 半値全幅)といって、最大強度の半分になるところの直径で評価します。

ではエアリーディスクのFWHMはどれくらいでしょうか?先ほどの式を2乗したもので、今度は0ではなく0.5になるようなところを求めればいいということになります。

In[198]:= FindRoot[(2 BesselJ[1, x]/x)^2 == 0.5, {x, 1, 5}]

Out[198]= {x -> 1.61634}

で、xが+/-1.62程度です。上のグラフで見ても実際にそれくらいのところですね。 なので、最初のエアリーディスク径の式を1.62/3.83=0.42倍したものがFWHMでみたエアリーディスクからくる星像と考えることができます。波長は目視の標準的な緑の550nmを選び、例えばC8の場合F10を考えるとエアリーディスク径C8

DC8=2.44Fλ=2.44×10×0.55[um]=13.42[um]

となり、FWHMでみたエアリーディスク径C8, FWHM

C8, FWHM = 13.42 [um] x 0.42 = 5.66 [um]

となります。

これを現在使っているASI294MCProで何ピクセルに相当するかも見たいので、画素ピッチ4.63[um]で割ってやると、1.22[pixel]となりますが、これだけみるとエアリーディスク径とピクセルサイズが大体同じくらいと、ずいぶん小さいことがわかります。

さらに、um(マイクロメーター)単位のものを秒角(arcsec)で表すために、umからarcsecに変換することを考えておきます。式としては

Cumarcsec=tan(12×60×60π180)×2×f×1000

となり、焦点距離 に依存します。基本的にはある焦点距離のレンズを通したものが、ある大きさ[mm]のセンサー面で結像し、そのセンサーの大きさを単位1としたという意味です。tanの中のセンサーの大きさ「1」を2で割っているのは、センサーの真ん中から片側分の大きさで決まるからです。3600で割っているのは秒から度にするため、あと、Excelなどの関数で計算する場合は単位がラジアンなので度からラジアンへの変換係数として180度で割って、πをかけています。最後の1000倍はセンサーの大きさを[mm]単位、エアリーディスクを[um]と考えたための変換係数です。

例えばC8の焦点距離200mmを入れてやると変換係数は9.70[um/arcsec]となりますが、実はエアリーディスクがF値の関数なので、エアリーディスクのF値と変換係数の焦点距離がキャンセルします。そのため、エアリーディスク径は視野角の秒で書くとF値や焦点距離にによらず一定で、FWHMで書いた場合0.584[arcsec]程度となります。


レイリー限界

レイリー限界を考えてみます。これも式は調べるとすぐに出てきます。

DR=127.5D[mm][arcsec]

鏡筒の口径[mm]だけで決まる量で、C8の場合の200mmを考えると、0.638[arcsec]となります。単位が秒角で出てくるので、上で求めた変換係数ををかけてやると、6.18umとなります。ん、FWHMで見たエアリーディスクと結構近いですね。でもこれはある意味当たり前で、レイリー限界が、2つの同じ高さのエアリーディスクを並べた時に、片側の最初の暗いリングの中心が、もう片側の強度のピークと一致する距離と定義したからです。なので結局(元の定義の)エアリーディスク径の半分程度になり、一方FWHMで見た時のエアリーディスクも元の定義の半分くらいになるので、同じような量になるわけです。

というわけで、結論としてはレイリーレンジはエアリーディスクと同じような原因なので、とりあえずここでは考えなくていいでしょう。

でもなんで一方のエアリーディスクは[um]で求めて、もう一方のレイリー限界は[arcsec] で求めるんでしょうね?両方ともarcsecで式を書いておいた方が、F値によらないので楽な気がするのですが。


スポットダイアグラム

だんだん、現実的になってきます。スポットダイアグラムはなかなか評価が難しいのですが、とりあえずC8相当の口径20cm、F10のシュミカセをLensCalでシュミレートしたスポットダイアグラムを元にします。緑の550nm付近が支配するくらいだと下からわかるように、黒い参照円の直径が20umなので、緑の部分は8um程度です。

IMG_6880

緑だけでなく、可視光とされる範囲の波長を考えると40umくらいになってしまいます。

IMG_6881

どの色までを考えるかはなかなか難しいです。実際の色のついた星をある波長依存性を持ったカメラで撮影して像を結んだものが、映った星像となるので、一概にはなかなか言えません。ここでは最大径として可視光を仮定します。

スポットダイアグラムは点光源とみなせる線素が多数入った時に収差によってどれくらいスポットが広がるかを示している図であって、少なくともLensCalではエアリーディスクの効果は入っていないようです。なので、それぞれの線素がエアリーディスク径を持つと仮定すると、スポットダイアグラムの外部にエアリーディスクの半径分の広がりを持つと考えることができます。スポットダイアグラムのFWHMは外周にある線素のエアリーディスクのFWHMだけ考えればいいので、下の手書き図のようにFWFMで考えたエアリーディスクの半径を外周に持つような台形に近い形となり、それをスポットダイアグラムの径と考えていいのかと思います。

IMG_6879

計算すると、スポットダイアグラムの広がりの40[um]にFWHMでのエアリーディスク径5.66[um]を足すことになって、45.66[um]。ピクセルに直して、9.86[pixel]です。かなり大きく、C8の場合はスポットダイアグラムが支配的なのがわかります。

ただしスポットダイアグラムを見てもわかるように、実際には端の方ほど密度が少ないので、このモデルは多分正しくなくて、やはりもっと中心が盛り上がったような、FWHMでは測ってももっと径が小さく出るようなモデルにするべきかもしれません。ここら辺は次の課題とします。


実際の星像と比較してみる

さて、実際に撮影した星像を見てみましょう。2019/4/4にC8でASI294MCPro撮影したものです。

IMG_6884


シーイングの影響を少なくするために露光時間250msecで撮影した動画から、一枚だけ抜き出してFWHM測定します。測定はPixInsightを使いました。そのままのRAW画像だとBayer配列なので、PixInsight上でDeBayerをして、測定したい星像を選択します。選ぶのは少なくともサチっていない星。さらにFWHM測定ツールがカラー画像には適用できないので、gray scaleに変換してから測定しています。結果は12.62 [pixel] とのこと。計算の9.86 [pixel] より3割ほど大きいです。

(実測では次に考えるシンチレーションの影響が入っているので、計算値より大きくなった分はシンチレーションの影響と考えていいかと思います。説明は後にして結果だけ書いておくと、露光時間250msecのシンチレーションの影響は1.3秒角となります。)

ただし、例えばトラペジウムのところを3次元の等高線図で見てみると、

IMG_6882

結構尖っていてあまり台形っぽくないので、やはりモデルの方があまり合っていないかもしれません。実際にはスポットダイアグラムも端の方の効果が小さくなる気がするのですが、その一方でそのようにすると形ももう少し尖り、計算上の見積もり径は小さくなるので、結果としてはズレていく方向になってしまいます。

もう一つは観測時に鏡筒のピントや光軸がずれていた可能性があることです。ピントはSharpCapでFWHMが最小になるように合わせたので、それほどずれているとは思えませんが、光軸はあまり自信がないです。露光時間がもっと短ければ、さらに計算値に近づくかもしれません。ここら辺も次回もう少し見直すところでしょうか。


シーイング

やっとシーイングにたどり着きました。シーイングが悪いと、露光時間が増えていけば星像が大きくなるはずです。

ではC8で露光時間を先ほどの100倍の25秒かけて撮影した動画から一枚を取り出したものを見てみます。同様のFWHMを測定してみると結果は19.56pixel。0.25秒の時の倍近くなので、明らかに肥大しています。

IMG_6885

この大きさがシーイングで決まっているとすると、スポットダイアグラムで決まるような径を持った星像がシーイングで揺らされて、ランダムにある範囲内を動き回ると考えられます。スポットダイアグラム径と同程度のゆらぎの場合にはスポットダイアグラムの形や強度も揺らぐと考えられますが、ここではそれはないと仮定します。そのため簡単なモデルとしてはやはり、スポットダイアグラムの時と同様に外周にエアリーディスクの半径が付いた台形型の星像が得られるとします。

モデルからどれくらいのシーイングがあれば星像はどのくらいの大きさになる計算できます。実測が19.56umなので、先に求めたumから秒角への変換係数を用いると、25秒露光ではシーイングにより6.5秒角程度揺らされていることになります。日本では2秒角だと静かな方で、3秒角くらいが平均、ひどいと10秒角くらいになるとのことです。確かにこの日シーイングはひどかったと考えられますが、C8の結果の6.5秒角は10秒角という範囲内で、評価はそれほど間違っていることはなさそうです。


MEADE 25cmで測定した時の場合

以上のことを、前回MEADEの口径25cm、焦点距離1600mmで測定した時の結果とも照らし合わせてみます。MEADEの場合、エアリーディスク系はFWHMで0.85[pixel]とかなり小さくなります。これはF値が小さくなるためです。そのためスポットダイアグラム、シーイングでも外周のエアリーディスク半径自身が小さくなるので、ともに星像の肥大が多少抑えられます。

例えば、前回
  • 0.1秒露光: FWHM = 6.952 pixel
  • 1秒露光: FWHM = 7.333 pixel
  • 10秒露光: FWHM = 8.108 pixel
という結果が得られましたが、これはあくまでスタックされたものです。それでも0.1秒露光の動画から一枚だけ抜き出してきてFWHMを測定しても6.0pixel程度とほとんど変わりません。スタックはそこそこうまくできていることがわかります。また、10秒露光でも肥大がそれほどないことから、この日はシーイングが相当よかったことがわかります。

本当はC8でやったような計算をMEADEの25cmでやりたいのですが、MEADE用のスポットダイアグラムがなかなか計算できない、もしくは見つからないのです。なので、MEADEのスポトダイアグラムは0.1秒露光の星像がシーイングでのブレが0だったと仮定して、スポットダイアグラムがほとんど径を制限しているとすると、スポットダイアグラムの上限は25[um]ほどになります。たとえ0.1秒露光でシーイングがある場合は、スポットダイアグラムが小さくなるセンスです。なのでこれが正しいなら、いずれにせよ中心像に関してはC8よりもMEADEの方がかなり性能がいいことになります。ただし、四隅のコマ収差はF値の2乗に反比例して悪くなっていくので、MEADEの方が(10/6.3)^2=2.5倍くらい大きく出るはずです。コマ補正は必須でしょう。

さらに、10秒露光での星像が長時間露光のためにシーイングで制限されているとすると、その揺れ幅はモデルから1.2秒角程度と計算できますです。C8で測定した時よりもはるかにシーイングの影響が少なく、揺れも少なかったものと考えられます。実際の動画を今更ながら見ても、ほとんど揺れていなかったことがよくわかります。トラペジウムのところで分離が悪いように見えましたが、あからさまにサチっていたので、これは何の評価にもなっていませんでした。

このような日はスポットダイアグラムで支配されるような星像がえられているはずなので、スポットダイアグラムがさらにいい鏡筒を選ぶことで、星像の大きさは改善されるはずですが、逆に言うとラッキイメージングで星像があまり改善されない日ということもできます。



考察

モデル化などまだ不十分な点はありますが、それでも今回のことからいろいろなことがわかります。
  • 露光時間が長くなると星像が肥大化することが確かめられた。
  • 露光時間によって径が変わる範囲では、シーイングによる影響が効いていると思って間違いない。
  • C8で測定した日はシーイングが悪かったようである。
  • このような場合、星像の大きさは現実的に撮影するような1秒以上の時間単位ではシーイングに制限されている。
  • 1秒をはるかに切るような短時間露光では、シーイングの影響のない星像を得ることができる可能性があるが、明るさが足りない、撮影枚数が増える、スタック処理が大変などを考えると、あまり現実的ではない。
  • ラッキーイメージで露光時間を短くすれば星像の改善にそのまま繋がる。
  • MEADEで測定した日はシーイングが良かったようである。
  • 短時間露光のスタック方法も、特に問題ないこともわかった。一枚だけの星像の径と、スタックした後の星像の径を比較すればすぐにわかる。
  • このような日は鏡筒の、特にスポットダイアグラムの性能が効いてくるので、より性能のいい鏡筒が星像を改善する。
  • 逆に言うと、ラッキーイメージでの星像の改善をあまり望めない日でもある。
画像を見ただけでは実際の径は全然わかりません。階調圧縮や拡大でFWHM径は容易にかわってしまいますし、単に画像処理で小さく見せてしまうこともできます。サチらない範囲で星像を撮影して、きちんと測定することが大事です。


課題もまだあります。
  • スポットダイアグラムの中心と端の部分で同じように評価していいのか。端の方が密度が薄くはずなので、実効径はもう少し小さくていいはずである。また、波長によってスポットダイアグラムがちがうので、これも端の方がより密度が低く、実効径はもう少し小さくなるはず。
  • 超短時間で露光した場合は、スポットダイアグラムで支配されるような径に一致するのか?もしそうなら、それがスポットダイアグラムの実測径とすることができそうである。

結論

まず結論の一つとして言えることは、実際の撮影では、短時間露光の動画を見て、明らかに揺れている場合は露光時間を短くとるといいということでしょう。短時間露光の動画を見て、あまり揺れていなければ露光時間を延ばしてリードノイズの効きを緩和していった方が有利です。

それでは今回の元々の目的の、C8やMEADEで撮影した星像はおかしいのでしょうか?それとも正しかったのでしょうか?計算してみると、シーイングにかなり左右されますが、少なくとも説明できる範囲内には入っているようで、光軸など多少の改善の余地はあるものの、性能としておかしなことが出ていると言うことではないようです。

シーイングがいい時にはこの鏡筒の性能に制限されることもありますが、シーイングが悪い時には性能は何ら問題ではないということがわかります。ただし、ラッキーイメージングでシーイングの影響を除いていく時に、鏡筒の性能で制限される時がくることがあるはずです。それでも現実の1秒程度の露光時間でもまだシーイングが効いている(星像が揺れている)時には鏡筒はこのままで十分でしょう。ただしこれはあくまで中心像のみの話で、周辺像の例えばコマ収差が効いてくるような場合はシーイングの影響よりもスポットダイアグラムで見た径が効いてくるので、この補正をきちんとするなりする必要があります。四隅の短時間露光映像もきちんと見て、全然揺れていなければラッキーイメージの効果はあまりなく、むしろ鏡筒の性能を改善した方がいいということです。

いずれも、結論としては短時間露光の動画を見てスポットが動くならラッキーイメージングで鏡筒の性能に迫る努力をする、動かないなら鏡筒の性能で制限されていると判断して差し支えないと思います。


まとめ

色々長々と書きましたが、計算量は大したことはありません。これだけの検討でかなりのことが納得できました。ラッキーイメージングで露光時間をどれくらいにすれば価値があるのかもだいぶんわかってきました。次回以降、実際の撮影で試していきたいと思います。

 

週末の金曜日、夕方から天気がだんだん良くなってきたので久しぶりに牛岳に向かいました。実際には自宅でラッキーイメージを試すのか迷っていたのですが、星仲間のかんたろうさんから電話で「どこか富山で星見スポットに行きましょう」とのことです。牛岳がもう雪もないと聞いているのと、Twitterで学生さんたちも観望会かもという情報もあったので、牛岳に向かうことが決定。夕食後午後8時頃に出発しました。

私は21時前に到着しましたが、この日は半月前の月が出ていたのでまだこの時間では明るすぎるのか、誰もいません。空は6割ほどが雲で覆われていたのと、少し眠かったので車で仮眠をとっていました。21時半を過ぎた頃でしょうか、起きてみると学生らしき人影が見えます。空もすっかり晴れ上がっています。「こんばんは」と挨拶をすると富山県立大の学生たちでした。 少し話していると、星を見始めて星座のことになったので、星座望遠鏡を渡してみました。星座望遠鏡のことは知らなかったようで、実際に見える星の数が増えるのが実感できたみたいで、すごく喜んでくれました。早速スマホで購入できるか調べていたみたいです。

下の方に歩いて降りていくと、いつもの県天のメンバーがすでに何人か撮影準備をしていました。Oさんと、Kさんです。OさんはOrionの結構大きい鏡筒でオメガ星団狙いだそうです。程なくしてかんたろうさんから電話があり「今着いた」とのことです。すぐ目の前の車の中から電話をかけていたみたいで、そのまま無事に落ち合うことができました。かんたろうさんは富山に引っ越してきたばかりなので、牛岳の場所もよく知らなくて、牛岳を最初宇奈月の方かと勘違いしていたそうです。いやいや、八尾の上ですと説明し、無事に到着。確かにこの場所も、知らないとたどり着くのは夜だと大変かもしれません。この日はY君も途中から到着。Y君は先々週もも牛岳に来たそうです。Y君もかんたろうさんも県天に入会しそうな雰囲気です。仲間が増えていくのは嬉しいことです。

再び上のエリアに行くと、県立大の学生の数が増えています。それでもこの時点でまだ10人くらい。すごいのはここからです。富山大の天文同好会の学生がどんどんやってきて、最終的に車10台ほど、総勢40人程の、多分新歓観望会でしょうか、すごい人数になっていました。県天のK会長も上に銀次を出して観望と撮影。私も牛岳にこんなに人が集まっているのは初めて見ました。

この日は月が沈むのが午前1時頃。私は次の日太陽の黒点を撮りたかったので早めに退散するために撮影は諦めて、この日は電視観望のみです。学生さんにも少し見てもらいたいと思い、導入がてら月から初めました。

IMG_6886

ここで実際の月と向きが違うと指摘され、適当にカメラをセットしたことがバレバレです。気を取り直して向きを整えます。それでも月を拡大すると大気の揺らぎも見えることにびっくりしていたみたいです。

次に獅子座の三つ子銀河。

IMG_6887


うーん、なぜか粗いです。どうやら細部が出ない感じ。ここで勘太郎さんからフィルターのせいではとの指摘。と言うわけで常時つけていたQBPを外したらきれいに出ました。きれいに出た画面を撮り忘れてしまったのですが、どうも系外銀河などはQBPでは情報を落とすことがあるのかもしれません。恒星の集まりと考えたら白色光に近いので、正しい気もします。と言うわけで、これ以降はQBP無しでの電視観望です。QBP無しの三つ子銀河を学生たちに見せたら「実は今日これが見たかったんです。でも望遠鏡で見てたんですがなかなか見えなくて。こんなにきれいに見えるんですね。見れて良かったです。」と、いたく喜ばれました。その中の一人と話していると、なんと出身地が同じで中学校も同じ、小学校は隣だと判明しました。世間は広いようで狭いです。でも私が中学校にいたのはもう30年も昔のこと。今の大学生が中学にいたのはわずか5年ほと前なので、もうずいぶん様変わりしているはずです。それでも地物とのあの地域のガラの悪さはいまだに変わらないみたいで、妙に意気投合してししまいました。

もう一つQBPで面白かったのが、QBPを外してから月を見たときです。明らかに締まりがなくなっています。眠い感じです。もしかしたら明るいものはQBPを入れることでコントラストを上げるとかの効果を期待できるかもしれません。いずれ検証したいと思います。

他に見たのはM51子持ち銀河です。スタックさえしてしまえば結構きれいに見えます。これも学生たちに見せたら感激してくれていたようです。学生の中には大学に入ってから天文を始める人もたくさんいます。銀河を見たことがないことも多いので、やはりインパクトがあるようです。でも、4年生クラスでも電視観望を見たことがある学生はいなかったので「いやー、楽しいですねえー!」と電視観望の楽しさが少し伝わったみたいで嬉しかったです。

IMG_6889


あと、見たのはM13とかくらいでしょうか。意外にダラダラと話しながらなので、観望というよりは雰囲気を楽しんだ感じでした。

再び下に降りると、県天のYamayoさんも来ていて、さらにSさんも到着。Y君も撮影を始めていて、アンタレス狙いだそうです。かんたろうさんと私はオメガ星団観察。かんたろうさんは星景写真にオメガ星団を入れて、私は双眼鏡で。でも双眼鏡は自分で導入できず。かんたろうさんに入れてもらいました。流石に40mmの双眼鏡だとボヤーっと薄く、導入してもらってど真ん中だと言われてやっとわかりました。自分だと全然導入できないはずです。Oさんの撮影したオメガ星団も見せてもらいました。この日は低空の透明度が良く、オメガ星団が狙い目だったようです。かく言う私も、オメガ星団を見たのは生まれて初めてで、最大の球状星団の姿を楽しむことができました。いつか撮影してみたいと思います。

ここではYamayoさんの導入トラブルをかんたろうさんが解決。YamayoさんはタカハシのEM11をINDI経由で操作しています。LX200モードをタカハシで対応するうように内部で変換させているらしいのですが、自動導入時鏡筒がどうしても反対方向に行ってしまうとのこと。以前はうまくいっていたとのことですが、私が「もしかして何かバージョンアップしたのでは?」と聞いてみるとINDIをちょっと前にアップデートしたとのこと。もしかしたらそこで変わったのかもしれません。結局かんたろうさんの指摘で、初期位置の違いが決め手でした。タカハシの初期位置の鏡筒を天頂に向けるのではなく、Celestronのようなシンタ系のように鏡筒を極軸側に向けることで解決。さすがかんたろうさん、以前赤道儀の水平出しで議論して色々教えてくれたように、経験豊富です。

午前1時位に、再び上にあがるともう富山大の大所帯は退散していて、再び静かになっていました。途中K会長の知り合いで八尾に住んでいると言う女性の方が二人きて、片付けがてら少し話していました。最後、県立大の学生と少し話して、私も今日は早めに退散です。

でもこの日、自宅に着いて改めて思ったのですが、ものすごく透明度が良くて、しかもほとんど星の瞬きもないくらいシーイングが良さそうでした。なんと街中なのに低空の星がきちんと見えています。あー、やっぱり撮影しておけば良かったかなと少し後悔したのですが、次の日太陽がきちんと撮影できたので、まあ良しとします。


先日撮影した、ジェットが出ていた活動領域が表面に出てきて、今週は黒点が見えています。平日はなかなか撮影はできないので、週末の土曜日、天気は昨晩からものすごい快晴。雲一つなく、透明度もかなり高い絶好の太陽撮影日和となりました。

撮影器材

昨晩牛岳に行っていて、結局寝たのが午前4時と遅かったにもかかわらず、太陽が気になって結局8時には起きてしまいました。朝ごはんもそこそこにさっそく撮影準備です。いつもの太陽器材ですが、一応記録の意味も兼ねて書いておきます。
  • 鏡筒: 国際光器マゼラン102M、口径102mm、焦点距離1000mm、F10 アクロマート
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM
  • 撮影ソフト: SharpCap 3.2 (64bit)
  • 撮影時間: 2019/4/13 8:45頃から10時00分頃まで、モノクロ16ビットのser形式で15本、それぞれ10ms x 1000フレーム x 12本, 10ms x 5000フレーム x 1本, 5ms x 1000フレーム x 1本, 5ms x 5000フレーム x 1本、ゲインはそれぞれサチらない範囲で最大 
  • 画像処理: AS3にてスタック。ImPPGで細部だし、PhotoshopCCで疑似カラー化と後処理。

この器材だと、準備から撮影開始まで30分程度で、もう手慣れたものです。

太陽黒点

準備完了後さっそくPCの画面で確認すると、黒点がすぐに目に飛び込んできます。ざっと回るとプロミネンスも少し出ていましたが、今日はまずは黒点です。以前も小さな黒点は撮影していますが、こんなにはっきり大きく出ているのは初めて見ます。

撮影も滞りなくうまくいって、処理をしたらモノクロ段階でも結構すごい細かい模様が出てきてちょっと興奮気味でした。疑似カラー化した完成画像をとりあえず示します。

Capture_09_09_59__09_09_59_lapl5_ap2548_IP_cut

端の方のエタロンがうまく働いていない、ボケてしまっているところはトリミングしています。それでも黒点周りは口径10cmの解像度がいかんなく発揮できていて、かなりの分解能で撮影できています。

今回撮影で特に気を使ったことは、露光時間5msecで5000枚撮影して、そのうち上位20%を使用したこと。予備で10ms、1000枚、上位40%などの設定でも10ショットくらい撮影したのですが、明らかに差が出ました。特に、5msecにしたのは効いていて、10msec、5000枚、上位20%としたのと比べても明らかな差が出ました。

両者を比較してみます。ともにImPPGでの処理を終えた段階です。

Capture_09_09_59__09_09_59_lapl5_ap2548_IP
露光時間5ミリ秒、5000枚、うち20%を使用。


Capture_08_54_54__08_54_54_lapl5_ap2514_IP
露光時間10ミリ秒、5000枚、うち20%を使用。

AS3!の設定は全く同じ、ImPPGの設定はストレッチで明るさをそれぞれ同じくらいにしたこと以外は全く同じです。時間をおいてなので、エタロンの角度は少し違うかもしれません。それを除いても、露光時間が変わるだけで解像度にかなりの違いがあることがわかると思います。実際にはずっと10msecで撮っていたのですが、最後に一応5msecで撮っておこうとしたのが吉と出ました。

また、最初のカラー写真と比べることでどれくらいトリミングしているかもわかるかと思います。


プロミネンス

蛇足になるかもしれませんが、プロミネンスも少し出ていたので載せておきます。まず西側にたくさんプロミネンスが出ています。今回は結構薄いのまであぶりだしてみました。

Capture_09_05_34__09_05_34_lapl5_ap2294_IP_cut

南東にも一本。

Capture_09_07_17__09_07_17_lapl5_ap1725_IP_cut


短時間の撮影でしたが、黒点とプロミネンスでもうおなかいっぱいの気分です。


まとめ

昨年から始めた太陽撮影で、とうとう今回は念願だった大きな黒点を撮影することができ、かなり満足です。立山を見るとすごくよく見えたので透明度もよかったのかと思います。停滞期はもう終わるはずなので、これからは太陽活動が活発になってくれると嬉しいです。

次はいよいよ、あのいわくつきの20cm太陽望遠鏡を復活させることでしょうか。



今回の太陽GIFアニメ制作の過程で太陽画像を大量に処理したので、処理方法がだいぶん確立しました。

昨年まだ太陽を始めた頃に、一度画像処理方法をまとめましたが、あれから随分経ち手法もかなり変わってきたので、ここらで一度メモがわりにまとめておきます。

ネット上で得られた情報を元に、自分で実際に試してみて有効だと思った方法です。自分自身でもいくつか発見した方法も織り交ぜています。有益なソフトを開発してくれた作者様、ネットで各種手法を公開していただいている方々に感謝いたします。


画像スタックと細部出し

AutoStakkert3

太陽を撮影した動画(RAWフォーマットのser形式推奨)ファイルをAutoStakkert3でスタックします。

1.  「1)Opne」を押してファイルをオープン後、「Image Stabilization」で「Surface」を選択。
2. 画像が見える画面で、緑の枠をコントロールキーを押しながら移動。光球面のきわと背景の境目とか、プロミネンスがはっきり見えているところとか、黒点やプラージュの周りとかの構造がはっきりわかる部分を選択。
3. 後のパラーメータはあまり影響はないので適当に、私は下の写真の通り。「2)Analysis」を押す。
IMG_6870

4. 解析終了後、画像の方に移り「Min Bright」を調整して、光球面のみAPでおおわれるように。APの大きさは小さいほうが精度が出るが、小さすぎると出来上がった画像が破綻する。破綻がない程度に小さく。
IMG_6872


5. 「Stak Options」では「TIF」を選択して保存。「Sharpend」はオフに。
6. 「3) Stack」を押してスタック開始。


ImPPG

ImPPGで細部を抽出。パラメータの一例を下に示しておく。
IMG_6873

1. スタックしたtifファイルを開く
2. 上の方のアイコンの、左から4つ目の曲線グラフアイコンをオンにしてトーンカーブ調整エディタを表示。
3. 背景の一部と光球面の一部が四角い枠で選択された状態で、トーンカーブ調整エディタの「stretch」を押す。
4. 「gamma」は出来上がり画像の傾向を見るために使う。まずチェックボックをオンにして、ガンマを調整。光球面を出したいときはガンマの値を0.6くらいまで落とし、プロミネンスを出したいときは1.5-2.0程度までガンマを挙げる。
5. ここから模様出し。「Prevent ringing」はオンに。
6. 「Iterations」は大きい方がいいが、大きすぎると逆にリンギングが目立つ時がある。
7. 「Adaptive」はほとんど使っていない。
8.  画像保存時にはガンマのチェックボックスをオフにする。->後でPhotoshopで同様の処理をするため。画像を16bit tiffで保存。


Photoshopにてフラット補正と疑似カラー化

光球面の切り出し

光球面とプロミネンスをどの様に合成させるかが難しいです。以下に示した方法はあくまで一例です。

1. Photoshop CCにおいて、上で作成した画像を開く。
2. 「イメージ」->「モード」->「RGBカラー」でカラーモードに変換。
3. 背景を全選択して、コピー、ペーストする。光球面処理用レイヤーとする。
4. ペーストで作られた光球面レイヤーを選択してから、画面で「マグネット選択ツール」で光球面とプロミネンスの境、光球面が枠の縁に接しているところをなぞり、光球面のみ選択。
5. 「選択範囲」->「選択範囲を変更」->「境界をぼかす」で4ピクセルほどぼかす。
6. 「選択範囲」->「選択範囲を反転」で光球面以外を選択された状態にし、DELキーなどで削除。光球面のみが残る。これが光球面レイヤーとなる。


フラット補正

次に、光球面のフラット補正。光球面はエタロンの影響で減光が大きいので、フラット補正をした方がいいです。以下に示したフラットフレームの作り方は、境界がボケるのでもっといい方法があるかもしれません。

1. 背景を全選択して、コピーする。ペーストを2回する。一枚はプロミネンス処理用レイヤー、もう一枚はフラット補正レイヤーとする。
2. フラット補正レイヤーを選択し、「フィルター」「ぼかし」「ぼかし(ガウス)」で半径を20ピクセルほどにして適用。フラット画面を作る。念の為もう一度同じガウスぼかしを適用してさらにフラットに。
3. このレイヤーのかぶせ方を「通常」から「除算」に変更。この時点でかなり明るく飛ぶ。
4. 「レイヤー」->「 新規調整レイヤー」->「レベル補正」でできたレイヤーを右クリックして「クリッピングマスクを作成」をクリック。
5. 調整レイヤーのレベル補正のハイライト側をヒストグラムが盛り上がっているところまで下げる。

IMG_6867

(2019/4/13 追記: 上記4、5の方法だと、プラージュなど白い領域が飛んでしまうことがわかりましたので訂正しておきます。明るい領域の諧調を保つためにも、やり方も簡単になることも含め、下に書いた方法のほうがよさそうです。)

4. フラット補正レイヤーを「イメージ」「色調補正」「トーンカーブ」で調整します。トーンカーブで真ん中らへんを一点選んで上下し、明るさが適当になるように調整。
5. 光球面のみのレイヤー、フラット補正レイヤーの2つを選んで、右クリックで「レイヤーを結合」してフラット補正が完了。
6. フラット補正された光球面レイヤーを一番上に持っていく。境が自然になっていることを確認。


プロミネンスレイヤーを疑似カラー化

1. 一番上の光球面レイヤーの目のマークをクリックして非表示に、プロミネンスレイヤーを選択。
2. 「イメージ」->「色調補正」->「レベル補正」を選んでダーク側の三角をヒストグラムが下側の山(背景の暗い部分に相当)になっているところのピーク付近まで持ち上げ、真ん中の三角を下のほうまでもっていき、できるだけプロミネンスを出す。ここでいったん「OK」。
3. 再度「イメージ」->「色調補正」->「レベル補正」を選んで、「チャンネル」の「レッド」を選択。真ん中の三角を左端の山の際くらいまでもっていく。
4. 「チャンネル」の「ブルー」を選択。真ん中の三角を右端くらいまでもっていく。
5. 「チャンネル」の「グリーン」を選択。真ん中の三角を少しだけ右にもっていって赤っぽくなるように調整。
6. もし背景に赤いノイズが残っていたら、Nik collectionのDfine 2が有効。さらに背景を少し暗くするため、「イメージ」->「色調補正」->「トーンカーブ」を選んで補正。


光球面レイヤーを疑似カラー化

1. 一番上の光球面レイヤーの目のマークをクリックして表示させ、選択。
2. 「イメージ」->「色調補正」->「レベル補正」を選んで、「チャンネル」の「レッド」を選択。真ん中の三角を左端の山の際くらいまでもっていく。
3. 「チャンネル」の「ブルー」を選択。真ん中の三角を右端くらいまでもっていく。
4. 「イメージ」->「色調補正」->「トーンカーブ」を選んで、50%のところを選んで少しだけ下げ、模様を強調。これはImPPGのガンマ補正で数値を上げたことに相当する。

IMG_6869


これで完成です。あとは適当に荒れた縁の方をトリミングして、画像を保存するなどしてください。


太陽観測のススメ

他のソフトや、細かい工夫などの方法はまだまだあるかと思いますが、画像処理の基本はこんなところかと思います。太陽の隠れた面が見えてくるのはとても楽しです。あなたも太陽観測試してみませんか?

と気楽に呼びかけているのですが、太陽の一番のハードルはやはり観測機器の値段でしょうか。太陽観測に必須のエタロンは精度が必要な光学部品なので、どうしても価格が上がってしまいます。入門用のCORONADOのP.S.T.でも簡単に10万円越え。これでも口径40mmなので解像度に不満が出るかもしれません。P.S.T.より上級機ではCORONADOのSolar MaxやLUNTなど、口径60mmクラスでBFの径にもよりますが数10万円から50万円コース、口径80mm越えだと50万円からなんと100万円以上のものもあります。

この値段がネックなのか、海外などでは比較的安価に手に入るP.S.T.の改良記事もたくさん見受けられます。このブログでも改造記事を紹介していますが、くれぐれも太陽観測は安全に気をつけて、改造するにしても自己責任で、繰り返しになりますが本当に安全に気をつけながら楽しんでください。


2019/4/6: 15:01頃、太陽の北東10時方向に広がっている活動領域から、突如ジェット(最初フレアのようなものと書いていましたが、ジェットというみたいです)のような筋が一本伸び始めました。筋の成長していく様子をなんとか捉えることができました。自分的にはこんなのは初めて見るので、もう大興奮です。

all3_amime_cut
GIFアニメです。動かない場合はクリックしてみて下さい。
何かが飛び出しているようにも見えます。
長さだけでも地球数個分です。
数分単位で伸びていくのがわかるので、
分速数千kmとものすごいスピードであることがわかります。


all4_anime_cut_small
それぞれの動画から一枚だけ抜き出して速攻でアニメを作って、
速報で17時頃にTwitterに流したアニメです。
画像処理もほとんどしていないのと位置合わせも適当なので粗いです。
この時は上下逆転しているのを忘れていました。
上のように画像処理をすると相当見栄えが良くなることがわかると思います。



今年2度目の太陽観測
 
ずーっと静かだった太陽活動も、今年に入って少しづつ動きが見えてきたと各所で報告が上がっています。私も3月9日に観測をして以来、昨日4月6日は久しぶりに休日で昼間快晴だったので太陽観測をしました。

と言っても、朝も結構のんびり起きて、その後はラッキーイメージングのことで頭がいっぱいで、グダグダしていまいした。実は木曜日に少しラッキーイメージング試したのですが、撮影したものだけではあまり成果がなかったので、のんびり解析やらアイデアやら、PixInsightなど各種ソフトを触りながらいたらあっという間に午後になってしまいました。あー、そろそろ太陽見ておかないと午後から曇るんだっけ?と思いながら、セットアップです。


機材、条件など

いつもの太陽セットです。ASI294MCを使った全景はなかなかうまくいかないので、今日はASI290MMの拡大のみにしました。

  • 鏡筒: 国際光器マゼラン102M、口径102mm、焦点距離1000mm、F10 アクロマート
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM
  • 撮影ソフト: SharpCap 3.2 (64bit)
  • 撮影時間: 2019/4/6 14:50頃から15時40分頃まで、モノクロ16ビットのser形式で31本、それぞれ10ms x 500フレーム x 15本, 10ms x 1000フレーム x 15本, 10ms x 5000フレーム x 1本、ゲインはそれぞれサチらない範囲で最大 
  • 画像処理: AS3にてスタック。全て上位50%使用。ImPPGおよびPhotoshopCCで後処理。


実際の撮影

最初はいつも通り、太陽光球面をぐるっと見渡します。この日は北西方向にプラージュがありました。リングを形成しているプロミネンスも同じ方向に出ていたので、一つの画角に収めました。黒点は無いようでした(でも他の方の報告を見ると小さな黒点が観測されたそうでうす)が、これだけでも十分堪能できます。

_15_14_08__15_14_08_lapl5_ap377_IP_l_cut

その後、西側少し南寄りに3つのプロミネンスと下の方にスピキュール?らしきトゲトゲ(おそらく)活動領域を真横から見ているような領域を見つけて撮影。こちらも一番大きなプロミネンスはリングを形成しているように見えます。

_14_59_02__14_59_02_lapl5_ap241_IP_l_cut

その後、南東のところにも低く広がった活動領域があるので、15時01分にワンショット撮っておきました。

_15_01_49__15_01_49_lapl5_ap332_IP_l2b_cut

その後、他の場所をぐるぐる回って9分後、15時10分に再び南東のところに帰ってくると、なんか筋のような線が見えています。あまりにまっすぐだったので最初何か変な光でも入ったのではないかと思いました。それでもとりあえずおもしろそうだったので1ショット撮っておきました。

_15_10_38__15_10_38_lapl5_ap294_IP_l2a_cut

しばらく見ていたのですが、変な光とかではないようなので、どうやら本当に太陽で起こった何かみたいです。流石に9分間でこの変化はすごいと思い、その後12ショットを15時34分まで撮影しました。画面で見た限りもうほとんど動いていないと思い込んでしまったことと、曇り始めていたのでここでストップして解析に入りました。でも並べてみた結果を見てみるともう少し撮り続けておいても良かったと思いました。12ショットのうち画角的に使えない1ショットを除いてアニメにしたのが上のものです。

でも正直言うと、撮影中はあまり変化がわからなかったので、時々他の場所に行っては撮影を続けていて、時間的には結構飛び飛びになってしまっています。飛び飛びになった時間は一枚の表示時間を長くするなどして、実時間の流れ方に合わせてあります。1分を0.2秒にしたので、300倍の速度です。

アニメにしている過程で、何も写っていないと思っていた1枚目にもわずかに飛び出ている痕跡があるのがわかりました。上の画像でもその痕跡を確認できます。その次のショットまでの時間が9分間と少し空いてしまっていますが、一応かなり初期の段階から撮影できたことになります。


今回はかなりすごいのが撮れたと、撮影終了後かなり興奮していて家族にも見せびらかしたのですが、下のSukeは「これの何がすごいんけ?」と、どうも反応が冷たいです。妻からは「あー、よかったねぇ。いい子、いい子。」みたいな扱いです。それではと速攻でアニメにしてTwitterで報告したのですが、やはりなぜか自分が思っていたのより反応が薄いです。唯一特徴的だったのが、フォロワーとかでは無い海外の方がリツートしてくれたことでした。NASAとかのニュースを中心にリツートしている方みたいです。これはちょっと嬉しかったです。

でもやっとここで思い出しました。そういえばこのブログでも太陽の記事はいまいちというか、かなり反応薄いんです。PVを見ててもはっきりとわかるくらいです。まあ、太陽をやっている人は天文ファンの中でもさらにごく一部の人ですから仕方ないかもしれません。

みなさーん、太陽面白いですよ。昼夜本当に寝る間がなくなるくらい天文沼を楽しめますよー。


(追記: 少し落ち着いて色々調べてみました。NASAのSDO( Solar Dynamics Observatory)の付近の時刻の画像を見ると、同じような位置に一本筋が出ているのがわかります。SDOはこういった画像を撮り続けていて、太陽の活動をアニメにしています。これを見ると太陽活動の凄まじさを改めて実感することができます。最初スピキュールと書いたものはどうやら活動領域をちょうど真横から見たもの、また最初筋のことをフレアと書きましたが、フレアはもっと大爆発なのでこれは言い過ぎでした。ジェットというようです。さすがに衛星から撮った画像に勝つことはできませんが、太陽活動の一環を直にその場で見ることができたのは、それでもやはりとてもいい経験でした。)




ラッキーイメージング事始め

以前から興味があったラッキーイメージングを始めようと思っています。必要そうなものは大口径の鏡筒、感度のいいCMOSカメラでしょうか。

とりあえず手持ちのMEADEの25cmのシュミカセと、新カメラASI294MC Proを投入します。初めての冷却カメラは、実はこのためでした。ターゲットは明るい星雲など。目的はどれだけシンチレーションを回避でき、微細構造を出せるかです。

今回はシンプルなテストで、ラッキーイメージングがどれくらい効果を期待できそうなのか、自分の環境でメリットはあるかなどを、まずはざっくりと知りたいと思います。


機材

今回使った機材です。
  • 鏡筒: MEADE LX-200-25 (口径254mm、焦点距離1600mm、F6.3)
  • 赤道儀: Celestron CGEM II
  • センサー:  ZWO ASI294MC Pro (ただし冷却機のは使用せず)
  • 電子ファインダー: ASI178MC + 50mm, f1.2ノーブランドレンズ
  • 対象: オリオン座 M42、トラベジウム周辺
  • 撮影ソフト: SharpCap 3.2 (64bit)
ラッキーイメージングは短時間撮影が特徴の一つなので、オートガイドもディザーも当然無し。ケーブルもカメラとPCを繋ぐだけのシンプルなものです。

MEADE25cmを出すのは久しぶりだったので、少し手入れしました。一番の懸念は赤道儀との固定で、これまでビクセン規格の細いアリガタを使っていたのですが、以前スターベースでLosmady規格の幅広のありがたを手に入れたので、これを新たに取り付けました。実際、CGEM IIに取り付けると、ずいぶんと楽に取り付けができ、位置調整もスムーズに行うことができました。やはり流石にこのクラスだと幅広の方が安定していて、調整している最中も安心感があります。

IMG_6762
Losmandyの幅広を初めて使いました。

夕方に鏡筒を赤道儀に設置して、暗くなるのを待ちます。極軸はASI178MCを使って50mmの焦点距離で、SharpCapのPolar Alignment機能で合わせただけです。自動導入も適当だったので、電子ファインダーがわりのASI178MCを使ってマニュアルでM42を入れました。極軸があっているのでとりあえず入りさえすれば、あとはほとんどずれることもなく、なんとかなります。

準備をしていると、ちょうどピント出しをしているくらいにかんたろうさんがやってきました。 長野から富山への移動の途中で寄ってくれたみたいです。そこからずっと一緒に試していました。


撮影条件

今回はSharpCapを使い、3つの条件で撮影しました。画素数はASI294MC Proの最大サイズの4414x2822ピクセルになります。露光時間、ゲイン、撮影枚数は以下の通り
  1. 露光時間: 0.1秒、gain: 570(max)、撮影枚数5000枚
  2. 露光時間: 1秒、gain: 370(maxの10分の1)、撮影枚数500枚
  3. 露光時間: 10秒、gain: 170(maxの100分の1)、撮影枚数50枚
露光時間をそれぞれ10倍づつ変えていって、出来上がりの明るさを同じになるようにするため、ゲインで10分の1づつなるように調整しています。1番のゲイン570はあぷらなーとさんの解析によると高すぎてデータが欠落するようなので、損をしているはずですが、最初のテストなのでとりあえず一枚あたりの明るさが同じになることを優先しました。

撮影枚数はトータル時間が同じになるようにこれも10分の1づつ調整します。ちなみに、5000枚のファイルは114GBと凄い大きさになりました。これでもトータル時間わずか500秒、10分いかない程度です。10FPS程度出ていたので、実際の撮影時間はほぼそう露光時間と同じ500秒程度でした。

撮影中Darkだけはリアルタイムで補正しました、0.1秒露光のものは64枚、1秒のものは16枚、10秒のものは8枚のdarkフレームをスタックしてSharpCap上で撮影時に補正しています。

保存形式は16bit RAWのserの動画ファイルとなります。

当日のシンチレーションですが、目で見ても恒星が瞬いて見えたため、決していい方ではないです。透明度はそこそこ良かったです。


画像処理

まだあまりよくわかっていないので、とりあえずAutoStakkert3でスタックし、上位40%を使用しました。この40%については、今の所なんの根拠もありません。

さすがに0.1秒露光の5000枚の処理は1時間近くかかりました。惑星の時にはこんなにかからないので、やはり画素数が多くなると途端に処理が大変になります。

トラベジウムの比較


スタックして出来上がった画像のトラベジウム部分を、まずはなんの処理もせずそのまま拡大してみます。

0.1秒露光:
Capture_20_24_09__20_24_09_lapl5_ap21_Preview011

1秒露光:
Capture_20_36_54__20_36_54_lapl5_ap21_Preview01

10秒露光:
Capture_20_51_32__20_51_32_lapl5_ap21_Preview01


トラペジウムをよーく見比べると、一応ですが、露光時間が短い方が恒星間の隙間の距離が大きくなっています。でも「え、わずかこれだけ?」というレベルです。ラッキーイメージのシンチレーションを軽減するだけの価値がないレベルの結果です。どうやらいろいろ試す以前に、そもそも中心部での星像がどれだけ点像になるかの議論が必要そうです。

ピントの合い具合にもよるでしょうし、光軸調整もあまりしていなかったので、それも問題でしょう。さらに、シュミカセで副鏡があるために中心部分が遮蔽されMTFが落ちてしまうのも避けられません。また、画像処理している途中で気づいたのですが、撮影時すでにトラベジウムの恒星の中心部分がが0.999とほぼサチってしまっています。これだとそもそもの径を定義するのさえ、うまくできなくなってしまいます。MEADE以外にC8もあるので、鏡筒を変えて比較するという手も考えられます。

もう一つは、スタックするときにうまく恒星が最小になるようにする方法を考える必要があるかもしれません。AS3のパラメータをいじるだけで済むのか?他のソフトを使うべきなのか?それともそもそもあまり改善しないのか?

露光時間で比較する以前に、こういった部分でまずは中心部の星像をできるだけシャープにして、うまくスタックする方法を検討することが先決だと実感しました。これがわかったことだけでも、今回のテストの価値があったということでしょうか。


背景の比較

さて、スタックした画像をPixInsightで開いて、それぞれSTFでオートストレッチしてみました。

0.1秒露光: ノイズが相当ひどいです。ダーク処理をし忘れたかと思いましたが、きちんとしていました。ゲインが高いので、ダイナミックレンジが小さく、また読み出しノイズが効いてきます。露光時間が短いと流石にこれくらいのノイズは仕方ないのでしょうか?
Capture_20_24_09__20_24_09_lapl5_ap2_str

1秒露光: あまり目立たないですが、下の10秒露光と比べるとまだなめらかさが足りないです。
Capture_20_36_54__20_36_54_lapl5_ap2_str

10秒露光: かなりなめらかになります。そのかわり、やはり星像は多少大きく見えてきます。
Capture_20_51_32__20_51_32_lapl5_ap2_str



解像度に関して

星像の大きさについて少し掘り下げます。トラベジウムはサチっていたために、きちんと比較するのは難しかったのですが、それならば他にサチっていない部分を探せば、露光時間によってその星像の大きさが違うのかをきちんと評価できるはずです。

画像をぱっと見るだけだと、輝度によって半径が見かけ上大きく変わるので、全然判断できません。なので評価はFWHMでします。今回はPixInsightを使いました。それぞれの露光時間の画像からPreview機能ででサチっていない恒星を切り抜き、Previewタブを右クリックして「Make Image」で独立した画像にします。これを一旦「IMAGE」「Color Spaces」「Convert to Grayscale」で白黒画像にしてから、「SCRIPT」「Image Analysis」「FWHMEccentricity」で半値全幅を見積もります。写真に撮った画像はすでにSTFでオートストレッチをかけて見かけ上サチっているように見えますが、実際の解析はスタックしたての画像で解析しています。そうしないと、多分輝度が圧縮されて半径も変わってきてしまうからです。

0.1秒露光: FWHM = 6.952 pixel
IMG_6771

1秒露光: FWHM = 7.333 pixel
IMG_6772

10秒露光: FWHM = 8.108 pixel
IMG_6774


となるので、確かに露光時間が短いほど星像は小さくなっていることがわかります。ただし100倍露光時間が変わって、わずか15%ほどの改善です。それでもこれは解像度に直結するはずで、実際2割解像度が変わると見た目にはっきり分かるくらい改善されます。

ここで元の画像をRegistaxでWavelet変換して細部を出してみます。0.1秒露光と10秒露光の画像を見比べます。Wavelet変換のパラメータは全く一緒にしてあります。ホワイトバランスは合わせていませんが、輝度のみ比較しやすいように、少しだけ変えています。

0.1秒露光
Capture_20_24_09__20_24_09_lapl5_ap2_RS_PS

10秒露光
Capture_20_51_32__20_51_32_lapl5_ap2_RS_PS

0.1秒露光の方がノイジーなのは変わらないとして、やはり多少細部まで出ていることがわかります。この部分をこれからいかに引き出すか、ノイズをいかに減らすかが今後の課題になってくるのかと思います。


一応仕上げ

せっかく撮影したので、少しだけ仕上げます。ただし、使ったのは10秒露光の画像です。流石に0.1秒露光の画像を仕上げても、ノイズが多すぎで全く使い物になりませんでした。むしろ、光害や露光時間不足で撮影がうまくいかなかった時の画像処理の苦労を彷彿とさせ、ものすごい無理をしてあぶり出す時の感じだったので、早々と諦めました。

Capture_20_51_32__20_51_32_lapl5_ap2_RS_finalize2

仕上がりを見ると、
  • コマ補正がまだ十分でない
  • 明る恒星がサチっているため不自然(RegistaxでのWavelet変換でエッジが強調されてしまった)
などの反省点がありますが、今回はまだテスト撮影なのであまり気合を入れずにこれくらいにしておきます。


課題と今後

もう一つ反省するところがあります。ダーク補正についてです。ダークフレームのノイズが0.1秒露光のものに一番残っている可能性が高いことに気づきました。やはりダークノイズの枚数も撮影枚数と比例させるべきでした。例えば0.1秒露光のものは1000枚、1秒露光のものは100枚、10秒露光のものは10枚とかです。今回の場合0.1秒露光のものが一番ノイジーだったのですが、単に相対的に少ない枚数で作ったダークフレームが、スタックした画像に比べてまだノイジーで、ダーク補正の時にノイズを新たに加えてしまっている可能性があります。


さて、課題をまとめておきます。
  • 光軸調整をきちんとする
  • トラベジウムがすでにサチっていたので、もっとゲインを落として比較すべき
  • ダークをきちんと考えて枚数を撮る
  • C8とも比べてみる
  • 冷却に挑戦する
といったところです。これらを踏まえて、もう少し検証したいと思います。


まとめ

今回は、ラッキーイメージングを試してみました。まずはテストでしたが、結構面白い結果が得られました。

  • 露光時間が短くなるにつれて星像の大きさは改善される。
  • 同時に解像度も改善されるようである。
  • ただし、その効果を生かすためには光学系の設定を詰める必要がある。

冷却でも改善されそうなので、まだまだ楽しみです。長焦点のキリッとした画像をいつか撮影したいです。


21時過ぎ、かなり寒くなってきたのでかんたろうさんと一緒に一旦自宅に退散。子供達、特にSukeがかんたろうさんと遊びたそうでしたが、次の日もかんたろうさんも私も仕事なので、あまり遅くまでダラダラしているわけにはいきません。子供達は春休みなので気楽なもんです。「泊まってっていいよ」とかふざけたことを言っていました。22時頃かんたろうさんが帰る時に外に出ると、空はすっかり曇っていました。ほんの少しのチャンスだったようです。また晴れ間を見つけて試します。


珍しく朝目が覚めて天の川撮影。でも起きるのが10分遅かったです。薄明が始まってしまっていました。


朝目が覚めると

昨日の観望会
の記事を書き終え寝てしまったのですが、明け方目が覚めてふと外を見るとすごい星。窓越しなので普段あまり星は見えないのですが、この日は「あれ、星ってこんなに明るかった?」というくらい綺麗でした。そういえば昨日の夕方立山がものすごく綺麗だったことを思い出し、パッと撮影に行くことにしました。ただ時間が薄明までギリギリ、一瞬で着替えと用意をして車を出します。場所は少し走った田んぼの中の山が見渡せる所。午前4時51分に目が覚めて、ファイルの時刻を見たら14分後の午前5時5分には撮影を開始していました。でも多分10分遅かったです。わずかですが薄明が始まってしまっていました。撮影している最中もどんどん明るくなってきます。

本当は東向きの立山方面を狙いたかったのですが、結局少し南向きのまだ暗い部分がちょうど天の川中心となり、なんとか炙り出せるくらいの暗さを保っていました。その結果がこれです。

「薄明時の天の川」
20190317-IMG_3329_PS
撮影地: 富山県富山市上大久保, 2019年3月17日5時7分
EOS 6D(HKIR改造, ISO3200, JPG), 露出15秒、固定撮影
SAMYANG 14mm, F4/2.8  IF ED UMC
Lightroom、PhotoShop CCで画像処理 

最近星景写真の処理はLightroomが多いです。刻一刻と明るさが変わるので、1枚どりです。薄明と天の川を両立するのは結構大変でした。本当にあともう少し早く起きればよかった。

ついでに薄明を少しだけ撮りました。上の写真からわずか15分後ですが、すっかり明るくなっています。

20190317-IMG_3340



エピローグ


かなり寒くて、大した防寒もしていなかったので我慢できなくなってきてそのままとんぼ返り、眠れなくてしばらく画像処理をしてたのですが、やっぱり途中から眠たくなって朝8時頃からまた寝てしまいました。次に起きたら11時。

寝てる間にAさんから電話がかかっていたみたいで、起きてご飯を食べている間にまた電話がかかってきました。アパートが決まって富山にお引越しだそうです。でも聞いたら昨日から伊豆でオフ会。そのまま荷物を持って富山まで移動。相変わらず足の軽い方ですが、引越し当日まで遠征なんて、天文マニアはやっぱり変な人が多いですね。

 

先週土曜に引き続き、今日も富山市科学博物館の観望会に参加してきました。いやあ、とても楽しかったです。やはり観望会はいろんな人との交流のきっかけになるので、星趣味の中では撮影とか機材ネタに並んで、結構な楽しみの一つです。


今日は朝から雨。先週撮ったM42の画像処理をしながらGPVを見ていると、ちょうど夕方から雨雲が全部関東方面に行ってしまうみたいです。上弦の月は超えているので、撮影するにはやはり明るすぎる月です。結局、今週も観望会に参加することに決めました。

機材の準備をして、夕方17時くらいからくら寿司で家族と待ち合わせ。今回は私一人の観望会参加なので、適当にお腹が膨ふくれたら、18時前にはそのまま一人だけ科学博物館に向かいました。

現場に着くと先週と同じように、MEADEの25cmとタカハシのFS-78、大型双眼鏡がすでに出ています。県天のメンバーも何人か機材を出していました。私の機材も先週とほぼ同じで、FS-60CB+ASI294MC ProをAZ-GTiに載せて電視観望。さらにSCOPETECHを子供達に自由に触ってもらいました。今日の観望会のテーマは月ということです。見やすいように双眼鏡も一つ三脚に載せて出しましたが、月が天頂付近にあり、体勢的にかなり見にく、結局双眼鏡では赤い火星やスバルなどを導入して見てもらいました。

電視観望ですが、最初のうちはテーマの月を導入。SCOPETECHも子供達に自分で月を導入してもらいます。そのうちオリオン座を星座望遠鏡で見比べながら、電視観望でM42を見たりもしました。今回は新/旧WideBino28、星座望遠鏡の2眼/単眼に加え、昨年の「星もと」で購入したcokinの手作りの星座望遠鏡をもう一つ追加して、5台体制で星を見てもらいました。相変わらず星座望遠鏡の類は大人気です。特にcokinのは径が大きいので見やすく、ピントを合わせる機構がないのが逆にシンプルで一番人気でした。

天リフさんとあっかさんに言われたように、「これどこで手に入りますか?」と聞かれた時には、今回はAmazonで売っていますときちんと答えました。多分先週も北方だと思うのですが、「東京のKYOEIというところで売っていますか?」と聞いてくる方もいたので、「多分在庫あると思います。」と答えたものもありましたが、「Amazonの方が楽ですよ」と付け加えておきました。でも私がWideBino28を買ったのも東京のKYOEIなんですよね。こういったやりとりで、先週から続けてきている方が何人かいることもわかりました。この観望会は昨年11月から続けているらしいのですが、常連の方がすでにできているようです。

今週面白かったことの一つは、SCOPETECHで頑張って月の写真を撮っていた小学4年生の男の子でしょう。子供も何人かいいたので随時SCOPETECHで自分で導入してもらっていたのですが、一人コンデジを持っている子がいて「よかったら写真撮ってみる?」とか聞くと、自分で月を導入してカメラをアイピースに近づけて頑張って撮ろうとしていました。でもオート露光とオートフォーカスが邪魔をしてなかなか上手く撮ることができません。科学博物館の学芸員の方が親切にマニュアル露光のことを説明しながら、もうずーっと、多分30分以上ですが、ひたすら月を撮影していました。最後の最後にクレーターも含めて綺麗に撮れていたので、とても喜んでいたみたいです。

もう一人面白い女の子がいました。途中からどこかかから「英語、英語!」と声が聞こえてきたので、どうやら外国から来たみたいです。私も近づいていき話してみました。トラベジウムが導入されているMEADEの説明がなかなか通じなかったみたいで、それをきっかけに色々話してみました。中国から来たという若い女の子で、一人旅だそうです。今回日本に初めて来て、昨日は金沢を周り、電車でたまたま綺麗に見えた富山に降りて、そのままホテルをとって、今回の観望会に参加したそうです。

今日は透明度がすごく良くて、年に何日かのレベルの立山がものすごく綺麗に見えました。その子もちょうど夕日に染まった立山を見たようで「ピンク色に染まった立山がすごく綺麗だった」とか言っていました。「今日は本当に珍しいくらい山が綺麗だったよ」とか話すとすごく喜んでいて、英語でキャーキャー言っていました。

IMG_6465
星座望遠鏡で見ている右側の女の子が中国からたまたま来てくれた子。
中央の白いSCOPETECH鏡筒の所に座り込んでいる男の子が、ずっと月を撮影していた子です。
机の左の青い鏡筒で電視観望、机の上のPCで見ています。
机の上には星座望遠鏡がたくさん転がっています。 

その子は、月をカメラで撮影している男の子にも興味があるみたいで、何をしているか説明してあげると感心していたみたいです。

その女の子が星雲も見たいというので、電視観望でまたM42を見たり、最後の方ではバラ星雲や馬頭星雲と燃える木をみました。他のお客さんも含めて、星雲を初めて見たという方も何人かいて、結構盛り上がりました。スバルも入れたのですが、流石にこの街中でメローペまで見ることはできませんでした。獅子座のトリプレットも見ようとしたのですが、まだ高度が低いせいかあまり銀河と認識できませんでした。

IMG_6466

IMG_6467


その女の子には最後の片付けまで手伝ってもらいました。明日が日本で最後の日で富山を観光するということなので、楽しい思い出を作ってもらえたらと思います。でもあいにく観光のメッカの立山方面はまだ雪のために行くことができません。黒部のことも聞かれましたが、トロッコ電車もまだだと思います。富山の冬の観光は車がないと難しいですね。

最後は科学博物館の機材の片付けも手伝って、少し職員さんたちと話してから帰宅しました。昨日の天気もダメ、今日は夕方から晴れましたが、多分明日もダメです。たまたま観望会の時間だけ晴れたようなもので、とても充実していました。また時間がある時に参加したいと思います。


太陽に久しぶりに小さな黒点がでて、少し活発になってきているそうです。休日で珍しく晴れたので、久しぶりに太陽機材を引っ張り出してきて、撮影を楽しみました。


セットアップ

金曜の晩、とても晴れていてオリオンを撮影していたのですが、あまりに疲れていて0時過ぎにギブアップ。その代わり朝は休日にしては早めに目覚めて、館山がすごく綺麗に見えていたので、9時すぎくらいからのんびりセットアップを初めました。太陽撮影は久しぶりなので、色々忘れていて戸惑うことも結構ありました。太陽撮影はHαを見るために特殊なエタロンフィルターを使います。そのための魔改造機のPST+10cmアクロマートを使います。これをCGEMIIに載せてCMOSカメラで撮影します。
  • 鏡筒: 国際光器マゼラン102M、口径102mm、焦点距離1000mm、F10 アクロマート
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM, ASI294MC Pro
  • 撮影ソフト: SharpCap 3.2 (64bit)
  • 撮影時間: 2019/3/9 AM10:29-11:36
  • 画像処理: AS3にてスタック。500フレーム中30%を使用。ImPPGおよびPhotoshopCCで後処理。
ASI290MMでの撮影はモノクロカメラなのでHα線もよく見えて比較的迷うことはないのですが、全体像を撮影するASI294MC Proでだいぶん手こずりました。そもそも焦点距離が1000mmもあり、BF(Blocking Filter)が5mm径のため、太陽全体を見るのがギリギリの範囲で結構大変なのです。しかもPSTのエタロンの精度はあまりよくないので、全体の3割程度しかいい波長域に入りません。さらに撮影時はRAW16モードでカラーなので、さらにHα線が画面で見にくくなります。そのため今回は全体像は光球面こそそこそこ撮影できましたが、プロミネンスを一度に撮影することができず、合成を諦めました。


撮影結果 

さて結果です。撮影した順序とは逆になるのですが、まずは294で撮影した全体像です。

Capture_11_20_04__11_20_04_lapl5_ap1_R_IP2_cut


プロミネンスは一応撮影したのですが、エタロンの調整がうまくいかなくて右側のみ少し映っただけで、片側だけ合成するとものすごくわざとらしくなるので、今回は光球面のみで諦めました。いずれにせよ、全体でHαを出すのは厳しいので、分割でうまく合成する方法を編み出す必要がありそうです。

次に、黒点です。小さいですが、久しぶりの活動領域です。

Capture_10_40_55__10_40_55_lapl5_ap449_IP_cut


もう一つの少し下の活動領域。こちらはさらに小さいものです。

Capture_10_43_45__10_43_45_lapl5_ap173_IP_cut


最後はプロミネンスです。

Capture_10_32_52__10_32_52_lapl5_ap509_IPlow_cut


この時間はほぼこの2時の方向のみ見ることができました。なんでも、午後にフレアがあったようで、見逃してしまいました。というのも、この日午前中ずっと外で撮影していたら何日か前からムズムズしていた花粉症がものすごいことになってしまい、 午後はおとなしく家の中にいたためです。といっても夕方から前回の記事で書いた富山市科学博物館での観望会には行ったのですが。

もう一つ、さらに前の晩のオリオン座の画像処理が残っています。こちらはAZ-GTiの赤道儀モードで2軸制御をしてみた話です。画像処理が終わったらまた記事にします。

 

FS-60CBで色々試してきましたが、だいたい落ち着いたので、またエクステンダーをつけて焦点距離600mmのFS-60Qに戻しました。火曜日に引き続き、水曜日も晴れていたので、2夜連続の撮影になります。ターゲットはクラゲ星雲です。


機材セットアップ

  • 鏡筒: タカハシ FS-60Q (口径60mm, 焦点距離600mm)
  • 赤道儀: Celestron CGEM II
  • センサー: Canon EOS 6D(HKIR改造)、ISO3200、露光時間5分x28枚、計2時間20分
  • ガイド: ASI178MC + 50mm Cマウントレンズ、PHD2 + BackyardEOSでガイド+ディザー撮影
  • フィルターサイトロン Quad BP フィルター(クアッド バンドパス フィルター、 以下QBP)
  • 撮影場所: 富山県富山市下大久保
  • 日時: 2019年2月6日、20時50分から
  • 月齢: 1.6
撮影と画像処理

久しぶりのFS-60Qなので、画面が相当暗く感じました。当然ISOも3200と高くしていますが、それでも5分という露光時間をもう少し延ばしてもよかったかもしれません。そのせいでしょうか、仕上がりに透明感がないというか、ちょっとのっぺりしてしまっています。ヒストグラムのピーク位置が4から5分の1くらいだったので、おそらく階調不足だったのかと思います。

画像処理もいつもの通り、PixInsightでSaturationまでやって、その後はPhotoshopです。出来上がった画像です。

light_DBE1_PCC_stretched_sat_ps_denose_ps2a


次はFS-60Qの状態でAZ-GTiに戻り、赤道儀モードで2軸ガイドのリベンジです。成功率80%以上を目指したいです。



 

このページのトップヘ