ほしぞloveログ

天体観測始めました。

カテゴリ: 観測機器

どうもMEADEの25cmのシュミカセ、LX200-25の星像がボテっとしていて満足できません。


FWHM測定がどうも信用できない

前回のラッキーメージングの記事から随分間が空きましたが、実は連休中も含めて色々やっていて、例えばいろんな状況下で星像のFWHM(半値全幅)の測定もしてみたのですが、これもなかなか微妙です。本来FWHMはゲインに依存しないはずですが、ゲインを上げるとFWHMもなぜか少し大きくなったりします。これは何らかのセンサーでの信号の大きさに依存性がありそうだということを示しています。本来、露光時間を伸ばすとシーイングの影響がより大きく出るためにFWHMが大きくなるのですが、ゲイン依存性があるということは信号が増えたことでFWHMが大きくなったのか、本当にシンチレーションで像が大きくなっているのか、いまいち切り分けができません。

それでもそんなことを差っ引いても、あくまで見た目ですが、MEADE LX-200-25を使ってDSOを撮影しようと長焦点で撮影すると、星像がどうしてもボテっとしてしまいます。


困った時の昼間の試験

どうも埒が明かないので、連休中の昼間に色々試してみました。ターゲットは100mくらい離れたところにあるBSアンテナ。

test
このアンテナの文字や、4つのビスを見ながら検証します。
なお、画像は動画から一枚取り出して、ブログ表示用に上下逆にしています。

SharpCapで映す画像を見ながら、まずは光軸調整です。ここではBSアンテナの文字がどれくらい読めるようになるかと、アンテナの真ん中についている4つのビスが綺麗に見える様に、副鏡の3つのネジを調整します。実際にはいじるのは2本のみ。3本目をいじると副鏡のオフセットをいじる自由度になるので、pitchとyawの2自由度に相当する2本のみというわけです。動画で見るとすごい速さでピョコピョコ揺れている様に見えるのですが、フォーカスを合わせることによりそのピョコピョコが収束していきます。光軸がうまく調整できていないと収束しないので、ネジをいじるのとフォーカスを合わせるのを繰り返しながら、出来るだけ収束する様にしてきます。これは通常の光軸調整に相当するので、まあ問題ないです。



昼間で星でなくてもなぜか揺れる?

ところがです、光軸調整を十分にしてもまだ揺れているように見えるのです。星を見ているのと違って、昼間にたかだか100m先を見ているので、シンチレーションの影響はほとんどないはずです。それでも空気が揺らいで揺れることはありますが、時間はかなり経っているので温度順応は十分できているはずですし、見た目は少なくとも陽炎の様なゆらゆらとした揺れではありません。どうも何らかの外乱が入って揺れていると考えた方が良さそうです。揺れ方としては、上で書いた高速のピョコピョコよりももっとゆっくりした、1秒を切るくらいの間隔で、ピョコン、ピョコンとジャンプする様な感じです。

何でこんなことに気づいたかというと、このテストの間にFC-76も同じ様に見ていたのですが、(FC-76のほうが焦点距離が短いので)同じくらいの画角に拡大しても明らかにFC-76の方が揺れが少ないのです。高速のピョコピョコに関してもそうですし、低速のピョコン、ピョコンに関してもです。高速の方はLX200の方がまだ光軸調整を合わせきれていない、もしくはコマ収差のために全面で合わせきれていないのが原因かと思います。問題は低速。この時点で「あーそうか、地面の揺れが関係しているな」と推測しました。自分が座っている椅子とか動かした時に、像が大きくジャンプすることに気づいたのもここら辺です。


地面の揺れがどう効くのか

軽い鏡筒を赤道儀で支持している場合、共振周波数は高周波側にいきます。逆に重い鏡筒の場合、共振周波数は低くなります。正確には軽い重いというよりは、慣性モーメント(離れたところにどれだけ重いものがあるか)の違いになるのですが、まあここでは軽い重いとしておきましょう。共振で元の揺れが何倍くらい大きくなるか(Quality factor、日本語だと略してQ値とかいいます)は、それぞれのモードのロスに依るのですが、簡単のために全て同じと仮定しましょう。そうすると、一般的に地面振動は周波数の-2乗で落ちていくので、低い周波数に共振があった方がRMS振幅(高周波から低周波まで積分した振幅、要するに全体の揺れ幅のこと)としてはより大きく揺れます。もっと単純にいうと、地面振動起因の揺れに関しては重い鏡筒の方がよく揺れる。言い換えると、この赤道儀では実測13kgの鏡筒を支えるにはまだ剛性が不足しているというわけです。


じゃあ解決策は?

赤道儀を簡単に代えるわけにはいかないのですが、原因がわかれば解決策は色々あります。一番手っ取り早いのは防振でしょう。試しに三脚の下にゴムのシートを挟み込みました。たかだかゴムシートなので、共振周波数もそれほど低くなく、低周波の防振には役に立たないでしょう。それでもピョコンピョコンといったインパルス的な振動は高周波成分も含むので、かなり抑えられるはずです。

画面で見ると、明らかに動きは小さくなっている様に見えます。ただ、動画を見てもどの周波数に注目すればいいかなかなかわかりにくいので、わかりやすい結果として、10秒間の動画をゴムシート無しと有りで撮影し、アンテナのビスの部分を拡大し、それぞれの動画を静止画に落として、黒丸のところを見るために比較「暗」合成したものを載せます。

まずはゴムシートなしの、露光時間2.5msの一コマ分だけを示します。
test1_001
ゴムシートなし、1コマ2.5ms。

これを13FPSで撮った約10秒分、139コマを比較暗合成するとかなり像が肥大します。
no_rubber
ゴムシートなし、10秒比較暗合成


次に、ゴムシートをつけた場合の1コマ分。短時間なのでゴムシートなしと比べてそれほど差はありません。
test2_001
ゴムシートあり、1コマ2.5ms。


これを10秒分比較暗合成すると、像は肥大しますがゴムシートなしと比べるとかなりマシです。
with_rubber
ゴムシートあり、10秒比較暗合成。

これだけ見ても、もう明らかにゴムシート有りの方が揺れが少ないのがよくわかります。ビスの円形で考えてしまいがちなので、それほど大きな違いに見えないかもしれせんが、実際の星像は微恒星になるほど点になっていくので、示した画像のビスの黒線の「太さ」がどれくらい地面の揺れで成長するかを比べるべき、というところに注目すると、その効果の違いが実感できるかと思います。


定量的な評価

もう少し定量的に評価しましょう。いま、画像の揺れから計算すると揺れ幅は十秒間で15秒角くらい。一般的に地面振動は周波数密度で書くと1e-7/f^2 [sqrt(Hz)] 程度、街中なので一桁くらい大きいかも。ざっくり、1秒間で1μm、10秒間で3μm揺れるくらいの大きさです。地面振動の回転成分はよくわからないので、とりあえず赤道儀が地面震度で上記程度に揺らされて、中心で支えられている長さ50cm程度の鏡筒の前端と後端が同程度にランダムに揺れる様な回転成分になると仮定します。そうすると地面振動のみの揺れでも10秒間で

3e-6/0.5[rad]

くらい揺れることになって、角度に直すのに180/πをかけて、秒各に直すのに3600をかけてやると、

3e-6/0.5 x 180/pi x 3600 = 1.2[秒角]

共振でQ値が10程度と仮定すると12秒角となってしまい、もうすぐに画像で見たものと同じオーダーになってしまいます。普通、よく共振がダンプ(ロスに依る減衰)されたものでQ値が3-4程度なので、Q値が10というのはそれほどおかしい値でもないと思います。

結論としてはフルサイズ換算で焦点距離数千mmとかなってしまうようなDSOの撮影では地面振動が星像に影響してくると思っていいということでしょう。



驚くべきFC-76の結果

参考に、FC-76のものも載せます。MEADEの後に試したので、ゴムシートはすでに敷いてある状態です。ただし、焦点距離が短い分、画像が小さく画像が荒くなるので、上の画像と横幅が同じになるように拡大しています。なので3倍ほど荒いですが、同じ様な画角を見ていることになります。露光時間は(夕方で暗くなってきたので)長くなっていて5msです。

test_001L
ゴムシートあり、1コマ5ms。

output_compL
ゴムシートあり、10秒比較暗合成。

MEADEに比べて10秒たっても像の肥大が少ないことがわかります。これはやはり鏡筒の重さの影響だと考えられます。ちなにみ、10秒の方に見えている黒いポツポツは虫です。MEADEでは写らなかったのですが、FC-76の方がきちんと写っていたみたいです。


まとめ

これらの結果を見るとちょっと嫌になってきます。

鏡筒の揺れの影響で星像が制限されるので、、口径76mmが口径254mmに分解能で勝ってしまうという逆転現象が起きます。FC-76で撮影したときにカメラ上での解像度が荒く出るのは、焦点距離だけの問題なので、FC-76にバローを入れて焦点距離をMEADEに合わせてしまうと、より分解能よく撮影できてしまうという結果になってしまいます。まあ、光量では口径が大きい方がまだいいのは当たり前なのですが。

残念ですが、今の現状では事実なのでしょう。


CATに行った後にまだ少し時間があったので、FC-76を整備する目的で秋葉原に移り少しショップを回りました。

スターベース 


IMG_7110

まず寄ったのが、いつもの秋葉原のスターベース。目的は前回名古屋スターベースで手に入れた、ジャンクFC-76の新型フラットナー用のリングを買うことです。撮影までするかはまだ未定ですが、4隅の点像がどこまで出るかを確かめておきたいからです。到着して、いつも相談に乗ってくれS君はいなかったのですが、店長さんが「S君もうすぐ帰ってくるよ」と教えてくれたので、少し待つことにしました。10分も経たないうちに遅めの昼食を携えてS君が戻ってきました。まず目的のFC-76用リング。大した値段ではないので、テスト目的でも気軽に買うことができます。リングだけで各機種に対応できる新型フラットナーはずいぶんコストパフォーマンスがいいと思います。

今回は買い物だけでなく、情報として得るものが多かったです。S君がこのブログを読んでくれていたので話が早く、まずタカハシでFC-76の清掃をまだ受けつけているということを教えてくれました。実際にタカハシ工場でするもので、これには分解、清掃、組み立て、光軸調整が含まれるらしいです。問題は清掃がどこまでになるかはスターベースでもわからないようなのです。まず、白濁の具合によって完全に綺麗にならない場合があること。これはもちろん了承です。傷とかついていればそれは無理でしょうし、劣化がコーティングだけでなく、レンズ基材にまで食い込んでいたらそれも厳しいでしょう。でも実際の清掃というのが、ただ掃除するだけなのか、コーティングを剥がすのか、はたまた再コートまで(流石に値段的にはないと思いますが)してくれるのか、それはどうも職人さん判断の様で、店舗ではわからないという意味だと理解しました。

見積もりも見せてもらいましたが、タカハシの清掃、調整でも値段は全然許容範囲。鏡筒を特価で買った値段より安いです。また、タカハシの調整だけでなく、TOMITAさんでの清掃、調整もスターベース店舗で受け付けてくれるとのことです。TOMITAさんの方はさらにリーズナブルな値段でした。いずれにせよ、タカハシで清掃を受け付けてくれるとわかったことは大きいです。でもまだ自分で分解して屈折の光軸調整の方法を学びたいというのもあるので、もう少し様子見です。

一緒に店頭にあるFC-76DCを見ていると、現行機種がずいぶん細くなっているのを思い知らされます。筒の部分はFS-60CBと同じ太さです。私が手に入れた旧機種のFC-76は現行のFSQ-85EDPと同じ太さです。現行のFC-76DCのフードを外してみてみると、対物レンズ枠の外径が筒の径ギリギリまできていて、かなり頑張った構造になっているのがわかります。と、ここまでが前置きで、面白かったのがS君がフードをはめるときでした。ねじ込み式なので回転させながらはめるのですが、なぜか逆回転ではめようとしています。最初間違っているのか思い「回転逆では」と聞いてみたとこと、わざと逆に回転させて、ねじ込みの最初の位置を探しているとのことです。うまく垂直にフードを当てて逆回転で探っていくと、カタッと入り込むところがあり、そこから反転して通常の向きに回していくと、噛んだりすることなくきちんとはまっていくとのこと。私はこれまでそんなことに気を使ってこなかったので、目から鱗でした。さすがタカハシです。ものを長く大切に持たせる術を知っていて、きちんと店員にまでその教育が行き届いています。

あと、S君から白濁に関して面白い提案がありました。月を見てみると白濁の影響がよくわかるのでは?というのです。確かにうまくいくと(悪くすると?)コントラストが悪くなりそうです。早速帰ったら試してみようと思いました。

もう一つ、FC-76の鏡筒バンドを頑張ってK-ASTECのものにするか、もう少し安価なMOREBLUEのものにするか迷っていたのですが、スターベースでMOREBLUEの鏡筒バンドの扱いを始めたようです。ただし、今の所は鏡筒とのセット販売のみ。単体であれば買っていたかもしれません。


KYOEI

IMG_7112


さて次はKYOEIです。ところがいつも相談に乗ってくれるMさんは不在とのこと。KYOEIさんはK-ASTECの鏡筒バンドを扱っているのですが、事前のネット販売の方では大阪店には在庫があるけれど、東京店には在庫はないとの情報でした。それでも一応FC-76の旧型にあう95mmのものがあるか聞いてみると、たまたま一つだけ在庫があるとのこと。ついでにと思って、斜めに取り付けることができるとってもあるか聞いてみたら、こちらもたまたま一つだけあるとのこと。これも縁と思い、対応する上下プレートも合わせて購入してしまいました。でも鏡筒を買った価格より、鏡筒バンドの方が高価です。うーん、だんだん本末転倒になってきました。


戦利品

今回の戦利品です。斜めハンドルがポイントでしょうか。

IMG_7120


実際にFC-76と組んでみました。上部のハンドルの間にアルカスイスプレートをつけました。これは電子ファインダー用にCMOSカメラを取り付けるためです。あと下のプレートのさらに下に、手持ちのアリガタを取り付けました。

IMG_7136
うーん、かっこよくなってきました。

ちょっと重くなったので、後日もう少し軽量化するかもしれません。

注意ですが、鏡筒バンドには低頭ネジの長いのが4本、短いのが4本ついてきます。上下にプレートをつけるのですが、長いネジはもう少し厚い板用に用意されたものか、K-ASTECのプレートには長すぎて途中までしか入っていきません。短いネジを別途用意しておいた方がいいのですが、低頭ネジでないとはみ出てしまうので、あらかじめどこかで見つけて購入しておいた方がいいでしょう。私は手持ちで2本だけあったので、とりあえずトップは4カ所でなく2カ所で止めています。



FC-76ファーストライト

富山に帰ってから、FC-76の対物レンズの白濁の影響を検証するために、実際に月を見てみました。単体だとわかりにくいので、FS-60CBとVixenのポルタの80mmとも見比べてみます。アイピースは相変わらずポルタに付属の20mmです。倍率も低いので分解能の比較は難しいです。

まあ、はっきりいうと差は見えましたが、正直言ってごくわずかでほとんど気にならない程度でした。コントラストでいうと
ポルタ => FS-60CB > FC-76

と言ったところでしょうか。地球照が見えるかどうかで比較したので、ポルタの口径が大きいのが効いている気がします。それでもFC-76が口径の割にコントラストは低かったのは、やはり白濁のせいでしょう。よく比べると、FC-76で少し顔を動かして接眼レンズと目の相対位置を変えてみると、コントラストが少し変わるのがわかりました。これは白濁の酷さが局所的に違いがあるからだと思います。

でも何度か見比べて初めてわかるくらいのもので、単体でFC-76を覗いただけだったら、先入観なしでは、少なくとも眼視の経験があまりない私は白濁があるとは気づけないと思います。でも経験豊かな人はすぐにわかるかもしれません。

結論としては撮影に使わなければ、とりあえず十分です。値段が値段だったので、私としては満足です。はっきり言って撮影でも使えそうな気もしています。でも付属品の方が高くついてくるのは、まあ仕方ないですね。

次は電視観望で試してみます。

先日、名古屋に帰省したときに生えてきたFC-76を、自宅に帰ってから実際に試してみました。

FC-76はフローライトレンズを使った口径76mm、焦点距離600mmのアポクロマート鏡筒です。往年のタカハシの作り込み感が半端なく、質実剛健、細部ものすごく丁寧、高級感に溢れていて、持っているだけでも満足感が満たされます。レンズキャップが鋳造物で、重いので下を向けると落ちてしまうと購入時に注意を受けました。キャップだけみても今では考えられないこだわりです。元々はファインダーもあったようですが、今回はファインダーはついていませんでした。でもどうせCMOSカメラで電子ファインダーにしてしまうので特に問題ありません。問題は対物レンズ。結構な白濁です。その分本当に、その場で決断できるくらい格安でした。

IMG_7068


レンズの白濁について

いろいろ調べてみると、この白濁現象は1987年くらいまでの初期のFCシリーズに使われたレンズの反射防止膜がモノコートだった時代のものに、時間が経つとどうしても起きてしまうようで、避けようがないとのこと。1987年より後の後期型のマルチコートになったものはこのような白濁現象は起きないとのことです。

白濁が起きる場所は、弱いと言われている2枚目のフローライトではなく、最初の一枚目の対物レンズの背面(接眼側)だそうです。確かによく見てみると、表面は綺麗。中のどこかが汚くて、ちょうどその表面に見えるレンズの裏面くらいの位置に見えます。

結構ひどいので、この白濁をなんとかできないか調べてみました。まずタカハシはもう清掃や再コーティングなどは受け付けていないようです。(2019年5月11日追記: スターベース東京で確認したところ、現在でも清掃、調整を受け付けているとのことです。)他のメンテナンス会社でも、いくつか清掃をしてくれるところが見つかりました。自分で分解して、レンズ研磨のようなことをして強者もいるみたいです。一眼レフカメラの昔のレンズの白濁除去で探すと、アルカリ溶液でコーティングを除去してしまう例も見つかりました。

おそらく今回のものはコーティングの劣化なので、コーティングを除去してしまえば白濁は無くなるだろうと予測しています。その代わり反射防止の効果がなくなるので、一般的には4%ほどの反射が出てしまいます。ARコートは普通1.数%の反射率に抑えてくれるので、3倍くらいの反射光が出ることになります。大したことないかもしれませんが、多重反射でゴーストにもつながるので注意が必要です。

あと、自分で分解してクリーニングする場合には、光軸調整をきちんとして元に戻さないとダメなようです。私は屈折の光軸調整はごくわずかしかなく、全然自信がないのが正直なところです。これを機会に屈折の光軸調整に挑戦してもいいのかとも思いますが、タカハシなのでやはり躊躇してしまう気持ちもあります。まあとりあえずこの白濁が実際にどれくらい影響するかよくわからないので、まずは一度覗いてみることにしました。


FC-76の実際の見え味

IMG_7076

接眼側から対物側を覗いても、白濁がはっきり分かるので心配でした。とりあえず手持ちのタカハシの鏡筒バンドでサイズが合うものに取り付けて、アリガタを噛ませて赤道儀に載せました。アイピース口も元々25.4mm用ですが、手持ちのVixenの31.7mm交換アダプターで現行のアイピースが使えるようにします。アイピースはとりあえずそこらへんにあった、Vixenのポルタに付属の格安のものです。

昼間の景色を見てみます。白濁のひどさからあまり期待していなかったのですが、覗いた瞬間、その見え味にうっとりしてしまいました。もちろん白濁の影響はあるのでしょうが、アイピースで見ている限り全く気になりません。多分コントラストは落ちているのでしょう。確かに少し眠い気もします。それでも収差の少なさ、カリッカリの分解能の良さ、これで2諭吉さんちょっとなら十分すぎるくらいの性能です。FS-60Qでもそうですが、やっぱりフローライトっていいんですかね。分解清掃はもっと白濁が耐えられなくなるくらい進むまでしないことにしました。電視観望用にと考えていましたが、この分解能だともったいないくらいです。新型フラットナーを持っているので、うまくいくと撮影にも使えそうです。

試しにFC-76にASI294MC Proをつけて直焦点で撮影してみました。.serファイルで動画で撮影した一枚をjpegにまで落として、上下ひっくり返したものです。画像処理は何もしてません。拡大してみるとわかりますが、遠くのBSアンテナの4つのビスまできちんと写しこんでいます。ぱっと計算すると、ビスの直径が13秒角くらい、ビスの円を描いている黒線が3秒角くらいで、これだけみるともう少し出てそうです。3秒角でもすでにエアリーディスク径の2倍くらいなので、まあ相当なもんです。

test1

実は同じ構図でMEADEの25cmと比較していたのですが、分解能は口径と焦点距離の分FC-76が不利なはずなのに、口径差3倍以上でもFC-76も決して負けていません。焦点距離を合わせたら口径の差は消えてしまいそうなくらいです。それよりも考えさせらたのは画像の安定度で、軽いこともあるでしょうし、光軸調整が流石にタカハシレベルなのもあるのでしょうか、むしろFC-76の方がブレないです。この件もう少しまとまったらまたレポートします。

というわけでかなり使えそうなので、まずは鏡筒バンドとアリガタプレートなど、実戦配備に耐えうるように少し予算を割くことにしました。


GW特集の記事、もしかしたらもう一本書くかもしれませんが、こちらはちょっと時間がかかるかもしれません。

星座用のビノがたまってしまいました。いつの間にやら7個です。今回は実際に見たときの感想も含めて、それぞれレビューしてみます。

IMG_6951
左上から下に向かって、
WideBino28(新)、WideBino28(旧)、星座望遠鏡(双眼)、星座望遠鏡(単眼)、
右に移ってテレコンビノで、cokin、JAPAN OPTICS(?)、Nikonです。

IMG_6948
接眼レンズ側です。cokinのレンズ径の大きさが群を抜いています。



IMG_6926
ケースやキャップなども一緒に。順序は上と同じです。

タイトルには星座用ビノと書きましたが、正式な一般名称がよくわかりません。もともと2倍テレコンを利用して自作していたのが主流だったこともあり「テレコンビノ」と呼ばれていることもあります。商品名になるのでしょうが「星座望遠鏡」は分かり易い名前だと思います。でも一般の人にはそれでもなんのことやら、星座用の望遠鏡って???だと思います。「星座観察用双眼鏡」なんて長い呼び方もあるようです。とりあえずここでは「星座ビノ」と呼ぶことにします。


星座ビノとは

ここで少し、どれくら星座ビノがすごいのか説明しようと思います。まずこれらのビノを昼間にのぞいてもほとんどその価値はわかりません。ちょっと拡大されるだけで目で見るのとあまり変わらない。なんでこんなものにこんな値段を出すのか、全くわからないと思います。実際私がそうでした。原村の星まつりで昼間にのぞいても全然理解できなかったのです。でもこれを夜に、しかもある程度の光害地で使うと評価は全く変わります。大抵は「何これ!」「めっちゃくちゃ見える!」「こんなに星があるの!」と驚嘆の声を上げることでしょう。


見える星が増える理由 

見える星の数が増える理由はひとえに低い倍率にあります。普通双眼鏡というと10倍とかそこそこの倍率で、一見倍率が高い方がいいと思ってしまうかもしれません。ところが星座ビノの倍率はどれも2倍程度です。この2倍というのが非常にバランスが取れた倍率なのです。2倍の倍率ということは、2x2=4で4倍暗い星まで見ることができます。これはビノをのぞいたときに一辺2倍の長さに拡大してみるということなので、面積で考えると4倍に拡大してみることになります。すなわち明るさは4分の1になるわけです。ところが星は点光源なので、面積がなく広がらないために明るさは変わりません。星の明るさは変わらず周りの明るさを4分の1にするので、4倍暗い星まで見えるということになります。

では4倍暗い星(明るさが4分の1倍の星)とはどういうことでしょう?星は等級という単位で明るさを表します。都会や光害地では肉眼ではせいぜい2等星程度までしかみることができません。3等星まで見ることができればまだそこそこ暗いところになりますい。この等級という単位、2等級の差があると明るさは5倍違います。星座ビノでは4倍くらいの暗い星を見ることができるので、ざっくり2等級近く暗い星まで見ることができます

では等級ごとにいくつくらいの星があるのでしょうか?

1等星:21個、2等星:68個、3等星:183個、4等星:585個、5等星:1858個、6等星:5503個

だそうです。たとえば2等星までしか見えない都会や光害地では約90個の星が見えます。これが2等級余分に見えるようになって4等星まで見えるとすると、約850個にまで見える数が増えます。なんと約10倍の数の星が見えるのです。実際には上の表には南半球で見える星も入っているので、数としては半分程度ですが、10倍近くの数の星が見えるようになるということは変わりません。高々2倍倍率を上げるだけで、10倍近くの星の数が増えるというのだから効率がものすごくいいのです。

では調子に乗ってさらに倍率を上げたらどうでしょうか?確かにより暗い星までみえるので、見える星の数は増えます。が、今度は視野が狭くなって「一度に」見える星の数が減ってきます。しかも狭い範囲を見ることになるので、いったい空のどこを見ているかがわからなくなってくるでしょう。この2倍程度という倍率は、大多数の星座の一つ一つがすっぽり視野に入るくらいの倍率なので、自分がなんの星座を見ているかすぐにわかるのです。しかも星座にある小さな星まで見えてくるので、星座早見盤と見比べながら星座を自分で一つ一つ確認して形をトレースすることができます。自分でやってみるとわかりますが、これはかなりおもしろいですよー。星座ってホントにこんな形を結んでできているんだと実感することでしょう。こんな理由から「星座」ビノなんて呼ぶのが適しているのかと思います。

2倍という倍率は本当に微妙で、覗いてみてもあまり視野が狭くなった気がしません。もちろん視野は狭くなっているのですが、人間の目が焦点を合わせられる範囲はそれほど広くはないので、ちょうどそこらへんの範囲と、星座ビノで視野が狭くなる範囲が一致するくらいにあるためだと思います。一方星の数は上の理屈通り、本当に増えて見えます。これはびっくりするくらい増えたように感じます。「わー、こんなに星が隠れてたんだー」という言葉を発したくなるくらいです。

さて長くなりましたが、いよいよレビューといきます。まずは現行機種で、簡単に手に入れらるものからです。


現行機種

WideBino28

販売: 笠井トレーディング
倍率: 2.3倍
口径: 公称40mm (対物側が実測で39mm、接眼側が実測で8mm)
入手方法: アマゾン、各種天文ショップ
値段: 1万6千円程度

長所: 入手しやすい。歪みは少ない。おすすめ。
短所: 接眼側の径が小さい。ピント合わせが軽いので首からぶら下げておくと服とかに当たってずれる。光軸中心から目がずれると大きくぼやける。現行機種の中では少し値段が高いほう。


IMG_6932

IMG_6936


私が一番最初に手に星座ビノです。星を始めた年の原村の星まつりで見たのが最初です。もっとも、その時は価値を全く理解できずに、「なんだ大して拡大もしないのに高い双眼鏡だなと」思ってしまいました。望遠鏡で暗い星が見えるようになる理由がわかってから、天の川を倍率の低い双眼鏡で見たらどうなるのだろうと思った時に、初めて「あ、だから原村であんなのが売ってたんだ!」とやっと理解できてすぐに入手しました。

もともと笠井トレーディングからの販売で、私はKYOEIで買いましたが、一般の天文ショップでも売っています。今ではAmazonで手に入れられるとのことで、とても入手しやすくなっています。たまにヤフオクとかで元の笠井よりも高額な値段をつけてあることがありますが、専門業者でもなんでもないところが高く売りつけようとしているだけなので、こんなところでは買わないように注意してください。

とても見やすく、値段もそこそこ。入手性もよく、一番おすすめです。ピントも合わせやすいですが、つまみが軽くて、首からぶら下げていると服とかに当たって勝手につまみが回ってしまい、ピントがずれてしまうことがよくあります。見え方も特に不満なく、よく見えます。倍率も2倍より少し高いので、多少暗い星まで見ることができます。

接眼レンズが少し小さいのですが、視野に関しては特に不満はありません。光軸中心から目の位置がずれると大きく像がボケるのが気になります。なんでこんなことを書くかというと、子供はなかなか上手く光軸中心に目を合わせられないからです。子供は最初はピントを合わせるのさえも難しいです。大人なら多分全く問題ないです。

私としては入手性や見え方なども考え、これが一番おすすめで、とにかく迷ったらこれです。


星座望遠鏡(単眼、両眼)

販売:  スコープテック
倍率: 1.8倍
口径: 公称40mm (対物側が実測で42mm、接眼側が実測で20mm)
入手方法: アマゾン(単眼双眼セット)、各種天文ショップ
値段: 単眼7千円程度、両眼1万4千円程度

長所: 現行機種では接眼側のレンズ径が大きい。入手しやすい。日本での開発、設計で、スコープテックが日の出光学に持ち込んで企画したもの。単眼だと一番安価(ただし、この記事を書いている間に笠井から最安値のCS-BINO 2x40が販売されました)。
短所: 周辺が少し歪む。

IMG_6935

IMG_6934

IMG_6937

発売は2017年だったと思います。原村星まつりで販売された直後のものをスコープテックのブースで手に入れました。もともと単眼で売っていたものを、去年2018年の原村の星まつりの頃に両眼アダプターの販売が始まりました。2つとアダプターを買うと双眼になるというものです。私は双眼の方も原村の星まつりで手に入れました。今では双眼用のセットとして、2つとアダプターが一緒になって売っているようです。

私が買った時は全部単眼(合計3つ)でレンズキャップがついてこなかったですが、今は単眼のものは対物側のキャップは付属するみたいです。でもアマゾンの写真を見ている限り、双眼セットにはキャップがついてこないように見えますが、どうなのでしょうか。

倍率が1.8倍とより視野を広く取れる代わりに、暗い星までは少し見えにくくなっています。光軸ずれに対しては上のWideBino28よりはるかにマシですが、周辺像が少し歪みます。でも実は、星座ビノ一般に言えることですが、歪みは昼間は目立って気になるかもしれませんが、夜に星を見ているとそこまで気にならないです。

値段が安いのも特徴で、試しに単眼でというなら7千円程度で購入できます。倍率も低いのであっさりした見え味が特徴でしょうか。でもこのあっさりというのは、コストも考えたらなかなかできるものではなく、日本のメーカーという特徴が出ている一品だと思います。とりあえず単眼で試してみたいというのならこれ一択です。


その他、現行機種

現行機種でまだ購入していないものが2つ (3つ?) あります。VixenのSG2.1×42とサイトロンの星空観測双眼鏡Stella Scan 2x40です。Vixenのは現行機種では結構高めなのと、サイトロンのは店舗に行ったときに何も欲しいものがないときに買おうと思ってとってあります。特にサイトロンのものはケーズデンキで購入することもできるので、天文ショップなどがないところでも、実際のものを見て決めることができると思います。これらはいつか購入したらまたレビューしたいと思います。

さらにこの記事を書いている間に、つい先日WideBino28を販売している笠井トレーディングからCS-BINO 2x40という星座ビノが発売されましたが、どうやらこれはサイトロンのものと同等の色違いらしいという噂があるのですが、実物を見たわけではないのでわかりません。単眼でも販売しているようで、価格もかなり戦略的なものになっていて、星座望遠鏡よりも安価になっているようです。(追記: 初出でCS-BINO 2x40の販売元を間違ってしまいました。ご迷惑をおかけしました。)


旧型機

ここからは現在では普通には販売されていない、多少入手困難なものです。入手順に書いていきます。普通のお店で手に入れるのは難しくなりますが、それでも特筆すべき特徴を持ったものもありますので、参考に書いておきます。


旧型WideBino28

まずはWideBino28の旧型。

販売: 笠井トレーディング
倍率: 2.3倍
口径: 公称40mm (対物側が実測で39mm、接眼側が実測で8mm)

長所: 歪みは少ない。
短所: 接眼側の径が小さい。光軸中心から目がずれると大きくぼやけるのは現行機種と同じだった。

IMG_6940

IMG_6941

三重県のアイベルに行ったときに入手しました。現行機と違って白色がベースです。笠井のページで見ると、旧型機でも黒いので、さらにもう少し昔のもかと思われます。適合目幅や重量など多少違いはありますが、倍率など大きなところは同じです。見え味も現行機とほとんど変わらない印象です。中古のせいか、紐がついていなかったりキャップがなかったりします。安く入手できるのでなければ、現行機を買ったほうがいいかと思います。



テレコンビノ

ここからはテレコンビノと呼ばれる、デジタル用の2倍程度のテレコンを双眼用に自作したフレームに取り付けたものになります。基本的にピントを合わせる機構がないので、目が悪い人は星もボケて見えてしまいます。その代わりにレンズ径が大きいので、メガネをかけても視野が狭くなりません。目が悪い人はメガネをかけて見るほうがいいです。


cokin テレコンビノ

販売: ケンコートキナー (DIGITAL TELE LENS-200-52mm)
倍率: 不明、実視ではSCOPTEHCの星座望遠鏡とほぼ同じなので1.8倍?
口径: 対物側が実測で65mm、接眼側が実測で38mm

長所: とにかくレンズ径が大きい、ピント合わせをする必要がない(できない)ので、子供でも扱いやすい。
短所: 周辺ひずみが大きい。分解能が少し劣る。

IMG_6942

IMG_6943

cokin製の2倍のテレコンを利用した自作のビノです。昨年の小海の星フェスで、趣味で作っているという方から手に入れました。このビノの特徴はとにかくレンズ径が大きいことです。対物側も大きいのですが、接眼側もそれに負けないくらい大きいのが特徴です。そのためすぐに星を視野に入れることができて、ほとんど迷うことなくすぐに見ることができます。初心者の方、特に子供に大人気です。観望会でも「これが一番いい」という方が多いです。欠点はピント調整ができないこと。これはテレコンビノに共通で、私はこのピント調整ができないということを最初知らなくて、購入してから「あ、しまった」と思いました。ところが意外や意外、観望会では調整をする必要がない(できない)ので、逆に扱いやすく、これも一番人気の理由です。このことが元で、もっとテレコンビノが欲しくなり、下の2種を最近ヤフオクで落としました。

ピント調整ができないと言っても、パンフォーカス(被写界深度を深くする事によって、近くのものから遠くのものまでピントが合っているように見える)なので、調整がないこと自体は気になりません。それでも目が悪い人はそれなりにしか見えないので、眼鏡をかけて見たほうがいいです。私は最近度が進んでしまっていてメガネがあまりあっていないので、ちょっとボケてしまいます。

見え味ですが、レンズが大きく見やすいのはとてもいいのですが、かなり歪みます。夜だとあまり歪みが気にならないのと、レンズ径が大きいのには代え難い扱いやすさがあるので、もし入手できるのならこれはかなりおすすめです。ただ、分解能が少し劣るのを不満に思う方がいるかもしれません。


メーカー不明 テレコンビノ

販売: 不明、JAPAN OPTICS? (DIGITAL HIGH DEFINITION 2X TELEPHOTO LENS)
倍率: 公称2倍?、実視ではSCOPTEHCの星座望遠鏡とほぼ同じなので1.8倍?
口径: 対物側が実測で45mm、接眼側が実測で31mm

長所: ひずみが少ない。軽い。安価だった。
短所: 多分入手がすごく困難。色収差が目立つ。分解能が少し不満。

IMG_6952

IMG_6953

まだ購入したばかりなので、実戦では使えていません。でも明るいところで見る限り、歪みとかは少ないです。あえていうなら少し色収差が大きく、分解能が他と比べると足りないことがわかります。


Nikon TC-E2 テレコンビノ

販売: Nikon (Tele Converter TC-E2 2x)
倍率: 公称2倍、実視ではSCOPTEHCの星座望遠鏡より倍率は高く、笠井WideBino28よりは倍率が低い。
口径: 対物側が実測で52mm、接眼側が実測で17mm

長所: ほとんど文句がない。キリッとしていて、ひずみも少ない。意外に入手しやすい。
短所: 中古だが、最近レンズ単体が高騰していて高い。

IMG_6954

IMG_6956

念願のNikon TC-E2を使ったテレコンビノをやっと手に入れることができました。以前、小海で実物を見せてもらったのですが、見え味は素晴らしかったです。その時は他に買いたいものもあり手が出ませんでしたが、ヤフオクで手の届く値段で出ていたので今回落札しました。ところが、フレームの作りやパッケージがcokinのテレコンビノとよく似ています。もしやと思ってヤフオクで連絡を取ってみたら、小海でcokinを売ってくれた方と同じ人で私のことも覚えていてくれていたらしく、Facebookでも友達になってしまいました。この方はまだいくつもNikonのTC-E2を持っているとのことで、最近フレームを大量に作ったのでこれからもいくつか販売するらしいです。フレームを自作するのは結構大変そうなのと、テレコン自身も高騰しているのですが、こういった方から入手できるというのはありがたいことです。

見え味は改めて見ても素晴らしいです。歪みも色収差も少なく、これがテレコンの最高峰と言われている理由がよくわかります。接眼側のレンズ径がcokinには負けているので、子供とかの評価ではパッと見の視野は負けるかもしれませんが、大人なら間違いなくこちらの方が見え味に納得すると思います。


まとめ

7機種(実質はWideBino28が新旧の違いだけ、星座望遠鏡が双眼と単眼の違いだけなので5機種)をじっくり見比べてみました。1機種だけだとあまり気にならないことも、さすがにこれだけ一度に見比べると違いがよくわかります。Nikonは間違いなく見え味は最高でしょう。ピントを合わせられないのが唯一の欠点と思えてくるくらい、本当に素晴らしいです。今ならまだ入手することもそれほど難しくはありません。笠井のWideBino28は現行機種の中ではおすすめです。SCOPTECHの星座望遠鏡は双眼で買っても2つの単眼として二人で使うこともできるのでお得です。私は持っていませんが、サイトロンのStella Scanは全国にあるケーズデンキで実物を見ながら購入できるので、こちらもいいかもしれません。

色々比べましたが、基本的にはどの機種を持っていっても、実際の星空を見ればびっくりするでしょう。本当に「こんなに星が隠れてたのか!」というのを実感できるはずです。一般の方にはこんな小さな双眼鏡にしては少し高価に感じるかもしれませんが、下手な望遠鏡とか、倍率の高い双眼鏡よりもはるかに楽しかったりします。まだ経験されたことがない方は、騙されたと思って是非とも一度お試しください。

つい先月の末にも天ショップ巡りをしましたが、今月も関東方面に用事があり少しだけ時間が取れたので、秋葉原でスターベースとKYOEIに行ってしまいました。

スターベース

まずはスターベースです。

IMG_6902

ここで面白かったのは、仲のいいS君に紹介された新人のK君です。4月からアルバイトで来ているとのことで、上の写真にも姿が写っていますが、入店した時にちょうど店の前で鏡筒を触っていました。「あ、見慣れない人だ、ずいぶん若そうだな。もしかしたらメーカーの人かな?」とか思っていましたが、スターベースでのアルバイトさんとのことなので、これからも会うことができそうです。S君によると、K君はガチガチの眼視マニアだそうです。現在都内の大学院生で、高校の頃から天文部で活躍していたとのことです。でもよくよく話してみると、このほしぞloveログのことを知っていて、しかもTwitterでフォローしあっているということがわかりました。というか、ブログを相当読み込んでいてくれて、かなり突っ込んだ話をすることができました。眼視中心なのは撮影が大変だというのも理由の一つらしいのですが、この間のラッキーイメージの記事も読んでいてくれて、ラッキーイメージはガイドとかもなく機材がシンプルそうなので興味があるとのことです。

K君がせっかくの眼視マニアということで、これまでわからなかったことをいくつか聞いてみました。例えば「撮影用にいい鏡筒なのに、眼視用に向かないとはなぜか」とかです。単純に考えると撮影でアラが見えないくらい十分に使える鏡筒なら、眼視なんかは全然問題ないのではと思っていたからです。K君曰く、「眼視では中心像を強度に拡大することがあって、ディフラクションリングだとか見えた方がいいが、4隅はあまりこだわらないことが多い。逆に撮影用には4隅もこだわるために中心像だけを求めるようなことはないので、中心像だけを比べた場合、眼視に向いた鏡筒があるのでは。」とのことでした。私自身はあまり眼視のことはよくわかっていないので、本当に素人質問で申し訳なかったですが、わかりやすく答えてくれました。

実はスターベースのブログでFOA-60を使って、鉄道や航空機をものすごくシャープにとっているページがあって、かなり興味を惹かれていたのですが、ちょうどK君が触っていたのがFOA-60でした。アイピースのチェックをしているとのことで、少し見せてもらいましたが、ものすごくシャープに見えました。しかも軽いとのことなので、確かに長焦点レンズとしても使えるのかと思います。私も今度、手持ちのFS-60Qで航空機とかの撮影を、一度試して見たいと思っています。

あと、ちょっと前にTwitterで知り合った高校生の話が出ました。高校生でなんと光学設計までやってしまうような子なのでもう完全な天文マニアかと思いますが、K君も彼のことを知っていたので、一部で話題になりつつあるようです。彼が今度、岐阜で観望会を企画しているようです。ちょうど元号が変わる日の夕方から夜中にかけてで、私もたまたま近くに行くので、できたら電視観望機材を持って参加しようと思っています。「こんな子が将来光学設計とかの道に進んでくれたらなあ」とか3人で話しながら盛り上がっていました。スターベースのS君もK君も、高校生のS君も期待の若手です。この分野を引っ張っていってくれるような存在になってくれると嬉しいです。アマチュア天文界が、若い人や女性も含めて広がっていくような、未来のある分野になっていってくれればと、切に思います。


KYOEI

その後、夕方遅くにKYOEIに移動しました。途中、アイドルらしき女の子たちが走っているバスの中で歌って踊っているのを横目にKYOEIまで向かいました。

IMG_6904

秋葉原もどんどん変遷しています。私が初めて秋葉原を訪れたのは大学で東京に出てきたときでした。その頃は電気街とかパソコン街とかいう雰囲気でした。天文を初めた3年前からでさえも、秋葉原の天文ショップは変わっています。4件あった天文ショップが、今は2件だけなので少し寂しいですね。せいぜいそこにヨドバシとキタムラが加わるくらいです。もう少し天文とかカメラ関連で回れる店が増えるとより楽しいのですが。

IMG_6906

さて、KYOEIではずっと欲しかったZWOのフィルターホイールを購入しました。電動の5枚のフィルターを入れることができるものです。在庫切れのところが多かったのですが、KYOEIさんが在庫をもっていたので、無事に購入することができました。開けてみたら細かいネジやら、多分フィルターを固定する薄い板だと思うのですが、これが何枚もとか、いろいろ部品が入っていました。これで手持ちのバーダーのRGBフィルターと唯一のモノクロのASI290MMで少し遊べそうです。惑星も今年はRGB撮影に挑戦しようと思っています。いつかナローバンド撮影とかもやってみたいと思いますが、そちらは一からフィルターを揃える必要があります。

IMG_6907


もう一つ、最近話題になっているケンコートキナーのスターリーナイトフィルターが欲しかったのですが、どうやらちょうど次の日発売で、しかもサイズがいろいろあり、大きいのは結構高いとのことで、今回は手に入れることができませんでした。Samyangの14mmには大きいものでもそのままでは取り付けることができないそうです。なので購入する際にはどのサイズをどうやって取り付けるかをきちんと考えなかればダメみたいです。

と、こんなことを含めていつもの仲のいいMさんとずっと話しをしていました。MさんはRevolution Imagerの頃からいろいろ相談に乗ってもらい、いつも親切にしてくれるのでとてもありがたいです。この日も、星や機材ネタ、鳥のことなど、話は多岐にわたります。最後はインフレーションやビッグバンのことまで話が広がりました。そんな中で、先週撮った黒点の画像を見せたら流石にびっくりしていました。このブログをずっと読んでくれている方はわかるかと思いますが、あの太陽画像は、実売の1/4位で買ったジャンクPSTと、貰い物(実売価格も全然安価だったみたいです)の10cmのアクロマート屈折の魔改造機で作ったもので、機材としてはとてもじゃないですが高性能とは言い難いものです。単に値段と口径のみが取り柄で、高級機と比べたら操作性やらエタロン精度やら、欠点も数え切れないほどあります。撮影に使ったカメラのASI290MMだけはKYOEIさんで(めずらしく)新品で購入しているので、その成果をお見せできたような形になります。それでも私的にはこの機材でここまで撮れれば結構満足だったのですが、そのことを話すとMさんも大いに喜んでくれました。いつも小物ばかりの購入で話を聞いてもらって申し訳ないです。

あともう一つ、途中の「あきばおー」というお店で7インチの小型のモニターを購入しました。Stick PCのモニター用です。Remote desktopですんなり繋がればいいのですが、最悪遠征先とかで繋がらなかった場合の非常用です。IPS方式というもので、小さいですがデモを見る限り結構綺麗に表示できるみたいです。

IMG_6908


とこんな調子でお店を回っていたら、今回はいくつかモノを購入してしまいました。最近はできるだけ無駄遣いは控えようと思っているのですが、ホイールも小型モニターも前々から欲しいと思っていたものなので、その場で見てしまうとどうしても手が出てしまいます。まだ小物だからなんとかなりますが、大物だけはその場の雰囲気で買うことは、今の所かろうじて止めることができています。でも鋭い星像の大口径の鏡筒がものすごく欲しい今日この頃です。はい、値段もものすごいことになるので実際はおいそれとは手が出ません。


先週4月13日、土曜日の太陽黒点は、シンチレーションの観点からもどうやら相当状況が良かったようです。休日だったこと、久しぶりの大きな黒点だったこともあり、他の方の画像も随所にアップされていました。これまでほとんどの場合疑似カラーで画像処理をしていたのですが、コントラストの観点からか多少情報が出にくいようで、モノクロので処理してみました。

Capture_09_09_59__09_09_59_lapl5_ap2548_IP_mono_cut_small

カラー画像と比較するとわかりますが、モノクロの方がコントラスト的に細部がより鮮明に見えます。黒点などは無理に疑似カラー化せずにモノクロの方がいいのかもしれません。

その後、17日と19日、時間を少しだけ見つけて撮影を試みました。17日は夕方太陽が沈む寸前でさすがに低高度で厳しかったこと、19日は昼間でしたが、薄い雲がちょうどかかっている時間しか取れなかったの、いずれも13日の画質にははるかに劣ります。

Capture_17_22_26__17_22_26_lapl5_ap2308_IP_cut_small
2019/4/17、西に沈む寸前。


Capture 12_23_06_lapl5_ap2324_IP_IP_cut
2019/4/19お昼頃。新たな黒点が左上に見えています。

画像のクオリティの違いを除いても、どうやら活動がすこし弱くなってきたように見えます。また、19日の画像には小さいですが新たな黒点が出てきたことがわかります。昨日19日の時点でかなり西寄りになっているので、週末には活動領域をまた真横から見ることになりそうです。再びジェットのようなものを撮影できると楽しいのですが、天気はどうなのでしょうか。土曜日は撮影できないので、日曜にかけていますが、どうやらちょっと天気は期待できなさそうです。

13日の画像はおそらく口径で制限された分解能に達しつつあるようです。本格的に20cm計画を再稼動しようかと思っています。

先日撮影した、ジェットが出ていた活動領域が表面に出てきて、今週は黒点が見えています。平日はなかなか撮影はできないので、週末の土曜日、天気は昨晩からものすごい快晴。雲一つなく、透明度もかなり高い絶好の太陽撮影日和となりました。

撮影器材

昨晩牛岳に行っていて、結局寝たのが午前4時と遅かったにもかかわらず、太陽が気になって結局8時には起きてしまいました。朝ごはんもそこそこにさっそく撮影準備です。いつもの太陽器材ですが、一応記録の意味も兼ねて書いておきます。
  • 鏡筒: 国際光器マゼラン102M、口径102mm、焦点距離1000mm、F10 アクロマート
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM
  • 撮影ソフト: SharpCap 3.2 (64bit)
  • 撮影時間: 2019/4/13 8:45頃から10時00分頃まで、モノクロ16ビットのser形式で15本、それぞれ10ms x 1000フレーム x 12本, 10ms x 5000フレーム x 1本, 5ms x 1000フレーム x 1本, 5ms x 5000フレーム x 1本、ゲインはそれぞれサチらない範囲で最大 
  • 画像処理: AS3にてスタック。ImPPGで細部だし、PhotoshopCCで疑似カラー化と後処理。

この器材だと、準備から撮影開始まで30分程度で、もう手慣れたものです。

太陽黒点

準備完了後さっそくPCの画面で確認すると、黒点がすぐに目に飛び込んできます。ざっと回るとプロミネンスも少し出ていましたが、今日はまずは黒点です。以前も小さな黒点は撮影していますが、こんなにはっきり大きく出ているのは初めて見ます。

撮影も滞りなくうまくいって、処理をしたらモノクロ段階でも結構すごい細かい模様が出てきてちょっと興奮気味でした。疑似カラー化した完成画像をとりあえず示します。

Capture_09_09_59__09_09_59_lapl5_ap2548_IP_cut

端の方のエタロンがうまく働いていない、ボケてしまっているところはトリミングしています。それでも黒点周りは口径10cmの解像度がいかんなく発揮できていて、かなりの分解能で撮影できています。

今回撮影で特に気を使ったことは、露光時間5msecで5000枚撮影して、そのうち上位20%を使用したこと。予備で10ms、1000枚、上位40%などの設定でも10ショットくらい撮影したのですが、明らかに差が出ました。特に、5msecにしたのは効いていて、10msec、5000枚、上位20%としたのと比べても明らかな差が出ました。

両者を比較してみます。ともにImPPGでの処理を終えた段階です。

Capture_09_09_59__09_09_59_lapl5_ap2548_IP
露光時間5ミリ秒、5000枚、うち20%を使用。


Capture_08_54_54__08_54_54_lapl5_ap2514_IP
露光時間10ミリ秒、5000枚、うち20%を使用。

AS3!の設定は全く同じ、ImPPGの設定はストレッチで明るさをそれぞれ同じくらいにしたこと以外は全く同じです。時間をおいてなので、エタロンの角度は少し違うかもしれません。それを除いても、露光時間が変わるだけで解像度にかなりの違いがあることがわかると思います。実際にはずっと10msecで撮っていたのですが、最後に一応5msecで撮っておこうとしたのが吉と出ました。

また、最初のカラー写真と比べることでどれくらいトリミングしているかもわかるかと思います。


プロミネンス

蛇足になるかもしれませんが、プロミネンスも少し出ていたので載せておきます。まず西側にたくさんプロミネンスが出ています。今回は結構薄いのまであぶりだしてみました。

Capture_09_05_34__09_05_34_lapl5_ap2294_IP_cut

南東にも一本。

Capture_09_07_17__09_07_17_lapl5_ap1725_IP_cut


短時間の撮影でしたが、黒点とプロミネンスでもうおなかいっぱいの気分です。


まとめ

昨年から始めた太陽撮影で、とうとう今回は念願だった大きな黒点を撮影することができ、かなり満足です。立山を見るとすごくよく見えたので透明度もよかったのかと思います。停滞期はもう終わるはずなので、これからは太陽活動が活発になってくれると嬉しいです。

次はいよいよ、あのいわくつきの20cm太陽望遠鏡を復活させることでしょうか。



もう先々週になってしまいますが、3月8日金曜日の帰宅後、ちょっと疲れていたのですが新月期で天気も良かったので、かねてより試したかったAZ-GTiによる2軸ガイドを試してみました。これができると、かなり軽量コンパクトな撮影システムになるので、海外や登山でも持っていけそうです。

撮影対象はM42、オリオン大星雲です。画像処理に時間がかかってしまったので、記事にするのに時間がかかってしまいました。撮影結果を先に示しておきます。本来ガイドを試して星像を見るテストなのですが、今シーズン最後のオリオンになるだろうことと、撮影時間1時間弱にしてはそこそこ出たので、AZ-GTiで(まだまだ稚拙ですが)ここまでは出るという指標として、きちんと画像処理までしたものをあげておきます。

light_M42_PCC_maskstretched_ok_HDR_dark

富山県富山市下大久保 2019/3/6 21:23-23:04
f=600mm, F10 + AZ-GTi(赤道儀モード)
EOS 6D(HKIR改造, ISO3200, RAW)
300sec x 11frames 総露出時間55分 + HDRのため3sec x 12
PixInsight , Photoshop CCで画像処理




AZ-GTiのこれまでの経緯

これまで、これまでAZ-GTiを赤道儀モードも含めていろいろ試してきました。
  1. AZ-GTiのファーストテスト
  2. AZ-GTiの赤道儀化(その1): ハードウェア編
  3. AZ-GTiの赤道儀化(その2): ソフトウェア編
  4. AZ-GTiの赤道儀化(その3): 極軸調整とオートガイド
  5. AZ-GTiの赤道儀化(その4): Stick PCでのガイドとTips

実際4のところでガイドも試していますが、露光時間が30秒と短すぎたのでまだちゃんとしたテストにはなりませんでした。その後、この赤道儀モードでもう少し時間をかけた撮影を試みました。
  1. 昨年11月2日にAZ-GTiの赤道儀モードでノーガイドでテスト。
  2. 11月3日にAZ-GTiの赤道儀モード2軸ガイドに挑戦するが、接続問題で断念。
  3. その後、ブログの記事にはしていませんが、11月15日に少しくらい山の方に行ってAZ-GTiの赤道儀モード2軸ガイドに挑戦するが、ISO1600、3分で13枚だけとって、そのうち成功はわずか2枚、Maybeが5枚で、失敗6枚とほとんどダメだったので、検証は失敗。原因は風が強くて全く点像にならず。
と、現状はこういったところです。

この頃はまだQBPフィルターを手に入れる前なので、自宅ガイド無しで露光時間90秒が最長、山の中のガイドありでも3分が最長で、その代わり特に自宅だと露光時間の短さを補うためISOが6400と高めです。それからだいぶん日にちが経ってしまいましたが、今年の目標の中にはまだAZ-GTiの赤道儀モード2軸ガイドは入っていました。なかなか天気が良くなかったり、途中レデューサーフラットナーのテストも入ったりしたのですが、それらのテストも一巡して、FS-60CBだった鏡筒もやっとエクステンダーを付け直して、焦点距離600mmのFS-60Qに戻りました。やっと久しぶりのテスト再開です。


目標

さて、この「AZ-ZGiでの2軸ガイド」計画の目標ですが、具体的には
  1. 焦点距離600mmの鏡筒をAZ-GTiの赤道儀モードで稼働し、2軸のガイドを実現すること。
  2. フルサイズのカメラで撮影して、少なくとも3分以上の露光で、赤道儀起因の流れが十分無視できる程度の撮像が得られること。
  3. 撮影枚数のうち、8割以上の成功率を実現すること。
の3つです。これは海外へ行く時など、できる限り軽量で実用的な撮影ができるという条件から設定しています。この目標が達成できれば、十分海外へ持っていっても使い物になると考えることができます。

1については上で書いたように、赤道儀化テストの4番目や、昨年11月15日にシステムとしては稼働しているので、すでにほぼ目標達成です。2については上記の3に書いてあるように、3分で2枚だけ成功しているのですが、風が弱かった時での成功で、もしかしたらピリオディックモーションがたまたま小さかった時のみの成功かもしれません。なので主にここからの検証です。

機材とソフトウェア

  • 鏡筒: タカハシ FS-60Q (口径60mm, 焦点距離600mm)
  • 赤道儀: AZ-GTiを赤道儀モードで使用
  • センサー: Canon EOS 6D(HKIR改造)、ISO3200、露光時間5分x11枚、計55分 + HDR合成のため、3秒x12枚、バイアス画像100枚、ダーク画像5秒x15枚、フラット補正無し(撮影後、フラットを撮る前にセッティングを変えてしまったため)
  • 初期アラインメントおよび追尾ソフトウェア:iPhone上でのSynScan Pro、その後Windows10上のSynScan Pro
  • 自動導入および視野確認: Carte du Ciel + SynScan Pro AppのASCMOドライバー、Astro Trotilla + BackyardEOS
  • ガイド時のソフトウェア: Windows10上のSynScan Pro AppのASCMOドライバーにPHD2 + BackyardEOSでガイド+ディザー撮影
  • ガイド機器: ASI178MC + 50mm Cマウントレンズ
  • フィルターサイトロン Quad BP フィルター(クアッド バンドパス フィルター、 以下QBP)
  • 撮影場所: 富山県富山市下大久保
  • 日時: 2019年3月6日、21時23分から
  • 月齢: 29.6(新月)、天気快晴、風が少々
  • 画像処理: PixInsight、Photoshop CC


セットアップ

まずはAZ-GTiを赤道儀モードで稼働させることが前提です。経緯台モードでも2軸ガイドができるという情報もありますが、私はまだ試したことがありません。

AZ-GTiでの2軸ガイドのポイントの一つは、SynScan App用のASCOM driverをインストールして、PHD2からのガイド信号をSysScan経由でAZ-GTiにフィードバックすることです。すなわち、PC上で信号のやり取りはほぼ済んでしまうために、ケーブルとしてはガイドカメラからのUSBケーブル一本、あとは今回の場合BackYard EOSを使ってディザーガイドをしているため、PCとEOS 6DをつなぐUSBケーブルが一本の、計2本です。AZ-GTiの電源は乾電池で内臓、EOS 6Dの電源も電池のため内臓で、AZ-GTiの駆動はWi-Fi経由なので、本当にケーブル2本、もしディザーをしなくてカメラ単体でとるのならわずかケーブル1本での2軸ガイドが可能です。

さらに今回の場合、Stick PCを使い、PC自身も三脚あたりに取り付けてしまったため、本当にコンパクトな2軸制御システムとなりました。Stick PCの操作はWiFi経由なので、自宅からぬくぬくと撮影、モニターをすることができます。


実際の撮影

極軸合わせはいつも通りSharpCapで行いました。一つだけポイントを挙げておきます。

AZ-GTiは構造的にそこまで頑丈ではないです。SharpCapの極軸合わせで90度視野を回転させる場合、手で回す際はウェイトバーがついているところのネジを緩める必要があるのですが、その時全体が大きくたわんでしまいます。90度回す時はモーターで回転させた方がはるかに精度が出ます。

さて、実際の撮影はフル自動導入の赤道儀とほぼ同様に扱うことができます。これは、Carte du CielなどのプラネタリウムソフトでAZ-ZTiを制御して自動導入することもできますし、Astro Tortillaなどでplate solvingすることもできるので、撮影した写野から位置を特定することもできることを意味します。ようするに、操作性だけ言えば大型で高機能な赤道儀に全然遜色ないということです。

視野が決まれば、あとは撮影です。QBPを使っているので、5分露光くらいまでは十分耐えることができます。ISOは3200としました。撮影中は自宅にいたのですが、今回は星像が気になってしまい、仮眠をとったりすることができませんでした。というのも、最初のうちはガイドは非常に安定していたのですが、30分くらいしてからガイド星の位置が結構頻繁に飛びはじめたのです。しかもピリオディックモーションが出ないはずの赤緯の方です。時に上に行ったり、時に下に行ったり、ガイドがかなり頑張って補正しているようでした。何か調子が悪いのかと思って外に出たらすぐに納得しました。明らかに風が強くなっていたのです。どうやらAZ-GTiは、撮影レベルになるとやはり外乱の影響を受けやすくなってしまうようです。もちろん三脚などでも変わると思うので、もう少し大型の三脚に載せてもいいかもしれませんが、それだと売りのコンパクトさが損なわれてしまいます。使えるのは風が強くない日限定でという制限をつけた方がいいかと思います。

この頃は冬も終わりに近づき、オリオン座も西に傾く時間がはやくなってしまっているので、結局撮影に使えた時間は21時半くらいから23時くらいまでと1時間半で、総露光時間は55分と1時間を切ってしまいました。


撮影結果

結局14枚撮って(ただし、撮影最後の西に沈んで影になった3枚はカウントから覗きました)11枚が成功でした。と言っても衛星が大きく通った一枚も失敗とカウントしたので、星像という意味では実際には14枚中12枚が成功と言っていいと思います。86%の成功率なので、目標達成といっていいでしょう。

隅の星像を(自作プログラムを改良して8隅が出るようにしました。)拡大してみます。大体のガイド性能までわかると思います。ただし、AZ-GTiのそもそものピリオディックモーションが+/-75秒程度とかなり大きいので、ガイドをしてもその影響を取り去ることはできません。また、風の影響も多少あります。

星像がまともと判断したものの中でベストに近いもの。まあまあ、丸になっていますが、やはり完全ではなく、わずかに斜め方向に伸びています。

M42_LIGHT_6D_300s_3200_+7cc_20190308-21h47m38s110ms_8cut


星像がまともと判断したものの中でワーストに近いもの。ここら辺までが許容限界としました。スタックすると多少は平均化されるのですが、拡大すると明らかに縦方向に伸びています。主に風の影響です。

MAYBE_M42_LIGHT_6D_300s_3200_+6cc_20190308-22h50m46s955ms_8cut


また、下のように風の影響で星像が2つに分かれてしまっているものもあります。一瞬大きな風が吹いたのかと思われます。これはもちろん使えないとしました。

BAD_M42_LIGHT_6D_300s_3200_+6cc_20190308-22h57m53s875ms_8cut


画像処理

画像処理は今回のテーマでないのですが、1時間弱にしては結構出すことができたので少しだけ書いておきます。

結果は一番上の画像を見ていただくとして、とりあえず処理してみると分子雲が結構出てきたので、少し強調してみました。露光時間が短いのでまだ粗いですが、自宅撮影でQBPがあればここら辺までは出せることはわかりました。また、青を出す方法も少しわかってきました。といっても、トーンカーブで青の真ん中らへんを持ち上げるだけですが。やはりQBPだと青色が出にくいので、少し強調してやる必要がありそうです。

最後に、全てスタックして画像処理をした画像(一番最初に示した画像)の星像です。やはり、ごくわずか縦長になってしまっています。どれくらい歪むかは風の強さによるかと思いますが、あとは歩留まりで調節するのかと思います。私的にはここら辺までなら、まあ許容範囲です。

light_M42_PCC_maskstretched_ok_HDR_dark_8cut




まとめ
  • AZ-GTiの赤道儀モードで、PHD2とSynScan用のASCOMドライバーを使った2軸ガイド撮影はそこそこ実用レベルで使用することができる。
  • 具体的には焦点距離600mm程度なら、露光時間5分でもある程度の歩留まりで星像は安定する。
  • ただし軽量システムのため、風に弱い点は否めない。
なんとか目標の歩留まり8割にたどり着きました。軽量コンパクトな撮影システムの構築という目的はある程度達成したと思います。次回海外へ行く時や、登山(多分することはないとわかっているのですが...)で持っていくシステムとしては完成です。このシステムは電視観望システムを含んでいるので、海外とかでのデモンストレーションもできることを考えると、当分コパクトシステムはこれで行くことになりそうです。やはり2軸制御できるところがポイントです。惜しむらくはピリオディックモーションです。もう少し小さいと星像ももっと安定すると思うのですが、この価格でそこまで求めるのは酷かもしれません。SWATなどの方がここら辺は利がありそうです。

AZ-GTiの購入から半年ちょっと、すごく楽しめました。軽量撮影システムとしてはこれで大体完成なのですが、本当に撮影で普段使いをするかというとこれはまた別問題。やはり風に弱いという欠点があるため、車が使える時や、自宅では頑丈な赤道儀を使っての撮影になるかと思います。あ、でも電視観望ではAZ-GTiは完全に主力ですよ。

AZ-GTiは、特に天文を始めたばかりの人でも、アイピースでの観察から電視観望、経緯台モードでの簡易撮影から、赤道儀モードでの本格的な撮影までこれ一台で相当楽しめるはずです。コストパフォーマンスを考えたら間違いなくオススメの一品です。


昨日の記事の続きです。やっとなんとか形になりました。

ノイズを標準偏差で評価するか、平均偏差で評価するか迷っていたのですが、Twitteでガウス分布から外れているのなら飛んだ値が多いはずなので、(飛んだ値に影響されにくい)平均偏差の方がいいのではという意見をもらいました。なるほど、考えてみればその通りで、標準偏差と平均偏差にすでに無視できないような有意な差があるということは、いいかえてみればガウス分布から外れた値も多いということが言えるのではと思います。

Fits画像のhistogram


というわけで実際にヒストグラムで分布を見てみました。まず、debayerなど何の処理もしていないRAW画像です。 

histgram_raw

見ての通り、ガウス分布からかなり外れていることがわかります。これはRGBでそれぞれ反応が違うために山がいくつもできるのかと思われます。

次に、同じ画像をdebayerしてRed、Green、Blueに分けたヒストグラムものを示します。

まずはRed:
histgram_R
次にGreen:
histgram_G

最後にBlue:
histgram_B


不思議なのは、RGBに分離しても山がいくつも見えることです。debayerの際に周りのピクセルの状況も読み込んでいるからなのか、もしくは画面の中で場所によって明るさに違いがあって、それが山になっているのかもしれません。また、RGBを合わせてもRAWの山の形になりそうもないことも不思議です。一瞬違う画像を処理したかと思ってしまったのですが、きちんと確認しても同じRAW画像から分離したものです。debayerもそんなに単純でないようです。

最後に、その中の50x50ピクセルを取り出してきた場合のヒストグラムです。
histgram_50x50
山がいくつもあるようなことはなくなり、大まかな形としてはガウス分布にだいぶん近づきます。それでもサンプル数が少ないことによるばらつきがあるのも確かなので、ここでは平均偏差でいくのが良いと考えることにします。



Conversion Factor

さて、実際にコンバージョンファクターを求めてみました。サンプル数を多くするために画像中心付近の100x100ピクセルを選んで解析しています。

結局今回はPythonで平均偏差を求めるルーチンをを自前で書いて、各ピクセルごとに計算しています。書き忘れてましたが上のヒストグラムも全部Pythonで書いています。やっとPythonでの画像解析に慣れてきました。結果ですが、以下のようになります。

20190302_01_Conversion_Factor

ついにここまでくることができました。結果はグラフの中にも数値で書いてありますが、コンバージョンファクターとして4.12、そこから計算できるUnity gainが200 x log10(4.12) = 123となり、メーカー値の117とわずか0.6dB、1.07倍の誤差くらいの範囲で求めることができました。

検証


もう少し検証してみます。

IMG_3262

上のようなSharpCapでの自動測定の結果のグラフと比べると、自動測定の測定値を伸ばしていくと0点近くに行きますが、自分で測定したものは0点に向かわずに、y切片で-352くらいのところにあたります。本当にきちんと測定しようとするならバイアスノイズをのぞいたり、フラット補正をすべきなのですが、今回は省いています。それでもSharpCapもそれ専用の測定はしていないように見えるので、うまくy切片が0になるような補正をかけているものと考えられます。

もう一点、自動測定の場合、測定点がいくつか重なっているように見えます。おそらくこれはRGBと分解した3点が重なっていると推測されるのですが、それにしても横軸(ADU)が一致しすぎています。普通に測定すると、自分で測定した時みたいにRGBで光源も違えばセンサーのフィルター特性も違うはずなので、ずれるはずです。これもSharpCapの自動測定では何らかの補正をしているものと思われます。


まとめ

結局、上の結果を得るまでに2週間くらいかかりました。色々苦労しましたが得たものも多く、まずPythonでの画像解析の環境がだいぶ揃いました。既存ライブラリに頼らない、ピクセルごとに解析する手法もある程度得ることもできました。統計的にどのようにアプローチすればいいのかも少し学ぶことができました。

次はEOS 6Dのユニティーゲインを求めることでしょうか。
あー、ホントはCP+行きたかったです。

今回はCMOSカメラ、ZWOのASI294MC Proの性能評価の一環で、全ての測定の元になるADUからeへの変換のコンバージョンファクターの測定についてです。結論から言いますと、SharpCapの自動測定機能での結果と、SharpCapでマニュアルで一枚一枚撮影しその画像を自分で解析した結果がどうしても合いません

この記事は多分ほとんどの人にはめんどくさい話で、よほどでない限り興味がないことと思いますし、しかもうまく結果が出なかったものなので、公表するかどうかも迷っていたのですが、それでも自分のメモがわりに書いておこうと思います。ご容赦ください。


動機

もともとダークノイズを評価する過程の一環で進めているのですが、今回の測定の動機は2つあります。
  1. ダークノイズの測定は多岐に渡るので、まずは解析環境をpythonで整えようとするのにちょうどいい練習になる
  2. 天体用CMOSカメラだけでなく、一眼レフカメラの性能評価もできないかと思ったから
です。特にEOS 6Dのユニティーゲイン(ADUとeの比が1になるゲイン)、引いてはコンバージョンファクターの測定まで自前でできたらなと目論んでいたのですが、今のところ見事に失敗。

最近ブログをなかなか更新できなかったのは、天気が悪くて星が見えないとか、仕事が忙しいとかもありますが、この解析が全然うまくいかなくてずっと悩んでいたというのが、一番大きな理由です。


測定方法

各画像の撮影はSharpCapで撮影します。共通の設定は
  • iPadのColor Screenというソフトを光源とした
  • RAW16
  • Gain = 0
  • Brightness = 8
  • White Bal(R) = 50
  • White Bal(B) = 50
  • 温度15度程度(コントロールなし)
となります。この状態で露光時間を変更して10枚程度の画像を撮影します。上記設定や露光時間はSharpCapでのセンサー性能を測る時のパラメーターを参考にしています。というか、最初適当に設定していたのですが、結果が全然合わないので、最後はコンバージョンファクターを測る時の状況に限りなく合わせるようにしました。

ゴールとしては下の写真(SharpCapのセンサー性能測定機能で自動測定した場合)の

IMG_3260

右のようなグラフが得られればOKです。横軸(各ピクセルの明るさ)が10000程度の時に縦軸(ノイズの2乗)が2500程度です。グラフの傾きは0.25程度、その傾きの逆数が今回求めたいコンバージョンファクターになり、普通に測定すると1/0.25=4程度になるはずです。この値はZWOが示している値ともほぼ一致しています。

コンバージョンファクターはちょっと理解が大変かもしれませんが、関係式と意味についてはこのページの1のところに、式の証明についてはこのページの一番最後のおまけのところに書いてあります。


測定結果

ところが自分で測定してみた結果は散々なものです。普通に画像を撮影してそのまま何も考えずに解析すると、そもそもDebayerもされていなかったりするので、ノイズが大きく出すぎてしまいます。結果を見せるのもあほらしいのですが、

mymag_all


のようになり、SharpCapの結果にカスリもしないくらいノイズが大きく出てしまっています。傾きが30くらい、コンバージョンファクターは0.03とかで、メーカー値の100分の1以下です。ここから苦難のノイズハンティングの道が始まりました。結局やったことをまとめると
  1. SharpCapでfitsファイルを撮影
  2. PixInsightでCosmeticCorrectionでホット、クールピクセルを除去 (飛び抜けて明るいピクセルなどあるとばらつきが大きく出てしまう)
  3. PixInsightでDebayerをしてカラー化 (RGBでゲインが多少違うため、debayerせずに標準偏差を取るとばらつきが大きく出てしまう)
  4. PixInsightでR、G、B画像に分離し、一枚一枚を個別に保存する (今回解析に使ったirafは天文研究に使われるソフトで、モノクロがほぼ前提なので、カラー画像を解析できない)
  5. 中心近くの50x50ピクセルのみを選択して解析 (画像全体だと周辺減光などの影響で、ばらつきが大きく出てしまう)

4番まで進めた時のグラフが

mymag _rgb_all


のようになりますが、まだ傾きが10程度、コンバージョンファクターにして0.1程度しかありません。

さらに5番目の中心部分のみを解析するようにして、やっと下のグラフくらいにまでなりました。

mymag_rgb_cut


それでも結局傾きが0.35程度、コンバージョンファクターが1/0.35で3程度になり、どうしてもまだ4近くにまでなりません。

考察と今後

なぜこの差が縮まらないか、もう少し検証します。まず、横軸(各ピクセルの明るさ)が10000の時に縦軸(ノイズの2乗)が2500くらいになるためには、ノイズはそのルートの50程度でなければなりません。ではノイズと言っているものが何かと言うと、画像から測定したピクセルの明るさのばらつきということなので、普通は標準偏差(standard deviation)をとればいいと思われます。この標準偏差を求めるのに今回は天文研究でよく使われているirafを使いました。ところが、明るさ10000程度の50x50ピクセルの明るさのばらつきの標準偏差をirafで測定すると60程度になってしまいます。グラフの横軸でいうと2乗なので3600程度になってしまうわけです。

ここでirafを疑いました。何か間違った結果が出ているのではと思ったのです。そこでPixInsightの統計ツールで測定したのですが、標準偏差はやはり60程度とでます。それどころか、SharpCapでも画像の選択したあるエリアの各色の標準偏差をリアルタイムで測定できるのですが、それもやはり60程度なのです。

SharpCapで測定しても60とでるならば、SharpCapの自動センサー性能測定の測定はどうやってやっているのでしょうか?何か特別なことをやって50と出しているのか、それともまだ私が何か勘違いをしているのか

PixInsightの統計ツールで少しヒントになるようなものを見つけました。標準偏差ではなくてオプションでAverage absolute deviationという値を出すことができるのですが、この値がちょうど50程度になるのです。

IMG_6410
標準偏差(stdDev)が60ちょい、Average absolute deviation(avgDev)が
50切るくらいになっているのがわかると思います。

Average absolute deviationのは一般的にはMean absolute average (around the mean)というらしくて日本語では単純に平均偏差というらしいです。標準偏差が各値(Xi)から平均値(M)を引いたものを2乗したものの総和を総数Nで割ったもの

1Ni=0N(XiM)2

に対して平均偏差は各値から平均値を引いたものの絶対値の総和を総数で割ったもの

1Ni=0N(XiM)

となります。他にもMean absolute average (around the median)というのもありますが、こちらは平均値を引く代わりに中心値を引きます。

標準偏差が2乗和のルートになるので、ばらつきがより効いてくることになり一般的に

標準偏差 > 平均偏差

となるそうで、確かに標準偏差より小さい値になっていて納得です。

さて、平均偏差を使えば、メーカー値もしくはSharpCapで測定した値に近い結果が出るはずなのですが、そもそも平均偏差を使っていいものなのか?やはり普通に考えると標準偏差を使った方が、あとの統計的な評価が簡単になりそうで、素直な気がします。

さらに、irafなどの一般的な解析ツールでは平均偏差を出すことができるものが少ないので、グラフまで出せるくらいにきちんと解析するのなら自前で統計処理の部分のコードを書く必要があります。

そんなこんなで、今pythondで書いているのですが、果たしてこの方向が正しいのかどうか?
まだ色々迷っています。


このページのトップヘ