ほしぞloveログ

天体観測始めました。

カテゴリ: 観測機器

休日の楽しみ、名古屋人の心の故郷コメダ珈琲で朝昼ごはんを兼ねて、CP+の準備とブログ書き。

その後、自宅でもう少しCP+のスライドを作り込んで、14時前くらいから太陽撮影です。黒点が出たという情報が昨日あったのですが、どうやら消えてしまったみたいです。

14_05_47_lapl4_ap2447_IP
黒点になると思われていた部分。

その代わりに、5時くらいの方向でしょうか、大きなフィラメントがプロミネンス まで繋がっているのが見えました。

14_09_56_lapl4_ap1572_IP2

このフィラメントですが、光球面からプロミネンス と繋がっている様子を出すのがすごく難しいです。一枚の画像で出したいので、ImPPGでトーンカーブをいじることで、光球面とプロミネンス を一度に出すこことにしました。以前もいろいろやってましたが、今回は本当に必要に駆られてです。

I,PPG

上のように、ガンマ補正でプロミネンス を出す場合に比べて、暗部を少し上げ、明部を少し下げてやります。これまではガンマ値が2くらいと、0.6くらいの2枚出していたのですが、一枚で済むので楽そうです。下の10時方向の比較的大きなフィラメントはこのように出しました。


14_03_05_lapl4_ap1219_IP

撮影日時: 2021/2/21 14:03-14:09
撮影場所: 富山県富山市自宅
鏡筒: Celestron C8、口径203mm、焦点距離2032mm、F10
エタロン: Coronado P.S.T.
赤道儀: Celestron CGEM II
カメラ: ZWO ASI290MM
撮影ソフト: SharpCap 3.3beta (64bit)
撮影条件: ser形式でgain 140-200, 1.25ms x 2000フレーム中上位50%を使用
画像処理: AS3にてスタック、ImPPGで細部出し、PhotoshopCCで後処理


実はPSTを2台持っていて、既に改造できるように分解済みです。


少し興味があったので後で買ったものを実際に使ってみました。ともに見えが悪いとのことで、先に買ったものも、後に買ったものも両方ともジャンク品です。先に買ったものはBFを掃除することで随分と見えるようになったのでもうけものでした。

今回見比べてみてわかった大きな違いは、エタロンの精度でした。もともと持っていたものも、そこまで性能が良いとは思ってませんでしたが、あらたに手に入れた方が明らかに見える面積が小さいことがわかりました。調整リングを増していくと、明らかにリング状のLaguerre-Gaussianモードが見えます。モードマッチング取れていないような状況です。明らかにHαが見える面積が小さいです。

うーんエタロン前のレンズを変えるか?でも見えている部分は(小さいですが)これまでのPSTよりHαがコントラスト良く見えているかも。あと、BF掃除したら少しは変わるかもしれません。ちょっと考えます。 

 

今回の記事は、普段私が何気に気を使ったりしていることや、小ネタなどをまとめてみることにしました。よかったら参考にしてください。細かいことなので、あまり記事とかにしてこなかったことも多いです。

あくまで個人のやり方なので、この方法が正しいなどという気はさらさらないですし、この方法を押し付けるようなこともしたくありません。むしろ、これを見てもっといいアイデアがあるぞとか、自分で工夫してもらってさらに発展させてもらえると嬉しいです。

それではいきます。


機材が揺れないように

倍率の高い状態で見たり撮影したりする望遠鏡。揺れは大敵です。

まず、L字型の構造は出来るだけ避けたほうがいいです。必要なら三角板をL字の真ん中に入れて補強するなどします。頭でっかちで、根元が細いのもだめです。赤道儀は基本的にL字や頭でっかちになりやすいですね。
  • 鏡筒と赤道儀の接合部
  • 赤緯体の根本
  • 赤経体の根本
  • ウェイトとウィエイトバー
  • 赤道儀と三脚の接合部
  • 三脚の足の接合部
などです。

基本的には、構造的に一番弱いところで一番大きく揺れます。極端に弱いところを途中に作らないことが重要です。

揺れに関しては重量というよりは慣性モーメントが効いてくるので、
  • 同じ重さなら、長い方がより揺れる。
  • 同じ重さなら、重量が端にあるものほどよく揺れ、重量が中心(支点に近いところ)にあるほど揺れにくい。
手で触って揺れが分かるようなものは構造的に不十分です。風が吹けば当然揺れてしまいます。

構造がしっかりしているはずなのに、ガタガタする場合はたいていクランプやネジの緩みです。特に赤道儀は、車などで運んでいると長期の間に自然にネジが緩むことがよくあります。外に出ているネジだけでなく、内部のネジまで含めて緩みを各自で定期的にチェックするか、それができなければメンテナンスに出すなどが必要になります。

一例ですが、私はガイド鏡でさえこれくらいガチガチに固定しています。高さもたわみなどが少なくなるようにできるだけ低くしています。

IMG_1513

もう一例、重い鏡筒なのでできるだけ鏡筒位置が低くなるような鏡筒バンドを選び、かつ長いロスマンディー規格のアリガタを使い、バンド間の距離をできるだけとっています。

IMG_9772

これだけバンド間の幅を取っていると、プレートより上は揺れに関しては無視することができて、それより下の赤道儀自身(今使っているCGEM IIの場合)の方が弱い構造となるので、揺れの大きさはそちらで決まります。


アルカスイス互換クランプ/プレートの利用

鏡筒の上部や下部に長めのアルカスイスプレートをつけておくと便利です。取っ手がわりにもなります。
さらに、ガイド鏡、ファインダーなどの下部にアルカスイスクランプをつけておくと、コンパクトな機構で安定に鏡筒に取りつけることができ、かつ取り外しが楽になります。




アルカスイス互換クランプは構造的に精度の許容範囲が広いため、安価なものでもそこそこ安定していて、気軽に使えるので使い勝手がいいです。。
  • 面で固定なので安定。
  • プレートの長さが相当長いものまで選べる。
  • クランプの長さも結構選べる

また、Vixen規格のアリガタからアルカスイスへの変換アダプターを作っておくと便利なことが多いです。

BCD1948C-4DAB-43CC-AB5C-BEB548F2F8C6

例えばAZ-GTiはVixen規格のアリミゾですが、上記アダプターでアリミゾからアルカスイス互換クランプに変換することで、L字フレームをつけたカメラや、上下にアルカスイス互換プレートをつけた軽い鏡筒なら、十分な強度で取り付けることができます。それだけでなく、このアダプターはかさ上げも兼ねていて、鏡筒が三脚に当たることをある程度防いでくれます。

さらに、この変換アダプターに使っているアルカスイス互換クランプのつまみのところには水準器が付いているので、AZ-GTiの経緯台モードの最初の設置の時に、鏡筒の水平出しに便利で、これがあるとないとで初期アラインメントの一発目の導入精度が全く違ってきます。


ハーフピラーの活用

AZ-GTiを使ったときに実感したのですが、上のかさ上げ用のアダプターでも不十分なときにはハーフピラーが便利です。AZ-GTi三脚セットに付属のものもそこそこの強度があfり悪くないです。特に天頂近くを見るときに、鏡筒が三脚に当たるのを防ぐことができます。


できるだけシンプルにすることを心がける

トラブルを避けるためには、あらゆるところをシンプルにした方がいいです。例えば、一つの箇所でトラブルが起きる確率が10%とすると、もしそれが10箇所あるとトラブルが起きる確率は1-0.9^10=0.65と、何と60%以上の確率で毎回何かトラブルが起きることになります。一つトラブルが起きると撮影としては大抵全て失敗してしまいます。意外なほどこの法則は当てはまったりするので、トラブルが起こる箇所の数を減らすことは、撮影の成功に直結します。
  1. 機材組み上げの構造はシンプルにする。
  2. ケーブルの本数は減らす。
  3. 複雑な操作を避ける。
  4. ソフトを多用しすぎない。
  5. Wi-Fiに便りきらない。何もつながらなくても動かせる手段を持っておく。
などです。

2. 特にケーブルはコネクタ部や内部で接触不良になったり、引っ掛けたり、可動部で挟んだり、何かとトラブルが多いです。持ってくるのを忘れることもよくありますね。

3.、4. 複雑なソフトの多用も考えものです。確かに全部連動してがうまく動くとカッコ良くて満足できたりするのですが、一つ動かないと全部動かなくなるとかの、互いのソフトの動作状況に依存するような組み合わせは最小限にすべきです。私は撮影時はPHD2と撮影ソフトのディザーのみの関係に抑えてます。各機器間を繋ぐASCOM関連の安定度は重要で、必ず事前にきちんと動くかチェックするようにしてます。

5. トラブったときに接続できなくて画面で何も見ることができない状況とかは、できれば避けたいです。PCをモニターがわりに使えるようなこんなアダプターを用意しておくと、別途モニターとかを用意する必要がなくなるのでいいかもしれません。


ケーブルの取り回し

ケーブルは回転の中心で固定したほうがいいです。例えば、鏡筒につけてあるカメラやガイド鏡に行くケーブルは、鏡筒と赤道儀の接合付近で一回ベルトでまとめてとめています。こうしておくと赤道儀が回転しても、ケーブルが変に引っ張られたりする危険が減ります。このことは、APTなどを使った子午線自動反転でのトラブルを少なくすることにつながります。


マジックテープは便利

三脚、ハーフピラーなど随所に裏がシールになっているマジックテープをつけてます。そこにもう一方のマジックテープを貼ったバッテリー、Stick PCなどをペタペタくっつけてます。こうすることでケーブルの長さを短くすることに貢献しています。

IMG_9893

ハーフピラーにマジックテープをつけてバッテリーとStick PCを親子亀方式でつけてます。
バッテリーとStick PCの間もマジックテープです。


ライトは暗いものがいい

庭撮りや遠征時に使うライトです。これの前のモデルを持っています。

 

電球分が取り外して懐中電灯のように使えるし、題において上から押すとスイッチが入ります。電球色で、暗いモードと明るいモードがあって、暗いほうのモードは天体観測には適度な明るさで、かつ1000時間以上持つので便利です。新しいモデルの高級バージョンは、6段回に明るさを調整できるみたいです。


テーブルと椅子

特に電視観望の時など、ノートPCを使う場合には、折りたたみ式のアウトドア用の机を使います。椅子もあると楽です。

IMG_9240

椅子は写真に写っているような高さ調整のできるものがいいです。私はルネセイコウのプロワークチェアを使っています。



これだと眼視の時にも相当低い位置から(高い位置よりも低い位置で安定して見えるほうが重要、腰が痛くなるのを避けることができます)見ることができて便利です。特に観望会などで足腰の弱いお年寄りの方がいる時には威力を発揮します。


小型のStick PCの利用

撮影時にはStick PCを使っています。小さく軽いのでマジックテープで三脚などに固定できるのと、Windowsのリモートデスクトップ機能を使うと、離れたところからでも他のPCから様子がわかるので、遠征時には車の中から、庭撮りでは自宅の中から、特に冬はヌクヌク状態で撮影しています。夜中じゅう放っておいて寝てしまっても、ベッドのところにiPadとかのタブレットを置いておけば、目が覚めた時にチラッと確認してまた眠ることができます。

最近はASIAir Proとか流行っているので、同様のことができますね。私はWindowsのソフトを使いたいのでStick PCですが、ASIAir Proは手軽さという面では上かと思います。


極軸をどう取るか?

極軸を合わせるのは極軸望遠鏡でもいいですが、最近では精度的には何らかのPCを使ったツールを使った方がいいでしょう。特に長時間撮影では精度の違いが重要になってきます。極軸精度が不十分だと一方向にずっとずれ続ける(「ドリフト」とか「DC的な変動」とかいいます)のでガイドに負担がかかってしまいます。

具体的には、私はSharpCapのPolar Align機能を使っています。Plate solveでリアルタイムで極軸を合わせることができる、非常に優秀で簡単に使える極軸調整ツールです。残念ながら有料版でしか使えない機能ですが、年間10ポンド(千数百円)とお小遣い程度なので、この機能のためだけでも有料版にしてもいいくらいです。ガイド鏡のカメラがそのまま使えるので、経済的にも、機材を簡略化する観点からもメリットが大きいです。

ちなみに、極軸を合わせるためのカメラは回転中心に置く必要はありません。しょせん星という無限遠を見ていることになるので、当たり前といえば当たり前ですね。さらに、カメラは極軸の方向にピッタリ合わせることも不要です。画面内のどこかくらいに入っていれば十分です。これもカメラの映像のピッタリ中心で回転することが必ずしも必要ないことから、当然といえば当然ですね。というわけで、適当に置いたガイドカメラを使っても十分に極軸調整のためのカメラとして使うことができるということです。


初期アラインメントはワンスターで十分!

極軸がきちんと取れてれば、初期アラインメントはワンスターアラインメントで十分です。無闇にツースターアラインメントや、スリースターアラインメントに時間をかける必要はありません。極端に言えば、高度なオートアラインメント機能などを使わずに、手動で導入しても構いません。だって、極軸があっていれば、どの星を見てもあとは自動で十分な精度で追尾してくれてくれるからです。

逆に、極軸が取れていない場合は複数の星を使った初期アラインメントが必要になります。それでも特に長時間露光の撮影時には、原理的にきちんと極軸を取ったものに勝てません。なので、極軸の精度はかなり重要になります。どれくらいの精度で合わせればいいかは



を見てください。ざっくり言うと、極軸を1分角の精度で合わせておけば、もう十分な精度と言えるでしょう。極軸望遠鏡でこの精度を出すにはなかなか難しいと思いますが、SharpCapなどのツールを使えばかなり簡単にこのレベルの精度を出すことができます。


初期アラインメント時に一発で視野に入れるには?

極軸をきちんと合わせているのに、初期アラインメント時に視野に入らない場合は、赤道儀の水平出しに気を使ってみてください。その際、水準器があると簡単ですが、水準器がついていない場合はホームセンターなどで買ってきて、赤道儀の平な面を見つけてそこに水準器を置き、一度水平を出してから赤道儀に直接接着してしまうと、毎回合わせることができるようになります。


ピントをどうやって合わせるか?

バーティノフマスクもいいですが、他にも精度良くピントを合わせる方法はたくさんあります。例えば、恒星のFWHM(半値全幅)を自動で測定してくれる機能が撮像ソフトには付いていることが多いです。BackYardEOSやSharpCapでは私も FWHMを常用しています。このFWHMが最小になるようにピントを調節します。このピントを調節するのも、やり方一つでかなり精度が変わってきます。ここら辺も経験が効いてきますが、コツを知っているか知っていないかでかなり違います。例えば、
  1. ダイヤルを回していって、一旦最適位置を通り越して、そのときに見た最小値を覚えておく。その最小値になるように戻す。
  2. 戻すだけだとバックラッシュで像の位置が変わることもあるので、一旦大きく戻して、最初に最初うちを見たときと同じ方向で、再び同じ最小値になるように合わせる。
  3. 手で触っていると揺れるので、どれくらい動かすかの最小単位を決めておき、毎回その単位で動かして毎回必ず手を離す。

さらに、ネジの精度が良すぎて変化がわかりにくい時の方法です。
  1. 一方向にあるステップ(幅)で動かしながら、何ステップ動かしたかを常に数えておく。
  2. 最初になんらかの変化が見えた位置から、最適値を通り越して、次に変化が見えなくなるまでのステップ数まで数える。
  3. 数えたステップの半分だけ戻す。
もし、最適値までのステップ数と、最適値後のステップ数にあまりに違いがあると、何らかの非対称性があるということになります。その場合は大抵何かおかしいことが起きているので、注意深く探ってみます。


その他

合わせてこちらもお読み下さい。





とまあ、今回はこんな所ですが、また何かありましたら随時追加してきます。

手持ちのStick PC、MiNISFORUM S41ですが、値段と性能の良さから天文界隈でも使っている方が意外なほど多いのかと思います。その小ささにもかかわらず、スピードも十分。なかなか微妙な立ち位置のStick PCの中で、久しぶりに出た高評価の実用的なものです。



これまでの状況

その中で唯一の弱点が電源。特にバッテリー駆動だとどうも不安定です。

これまで3種類のUSBバッテリーを使用して、そのうち2種は起動不可だったり、途中で落ちることが多かったです。唯一少しまともだったのがLess is moreというところの100Wまで出せるというバッテリーです。起動不可という経験はしたことがなく、テストでは不安定なことはありませんでした。

その後、Less is moreを実戦投入したのですが、撮影中に落ちてしまうということが何度かありました。いずれもSharpCapのPolar alignやファイルをまとめて触ったりするような高負荷なときです。今のところ、純粋に撮影だけしていた時に落ちたことはありません。それでも撮影が止まるのが怖いため、何度か落ちるのを経験した以降は使うのを諦めて、結局今はAC100V出力がある大容量バッテリーに、S41に付属のACアダプターを使って電源供給をしています。

もう少し汎用的にならないかと思うので、いったいどれくらいの電流になると落ちるのか調べてみようと思い、少し測定してみました。


まずは分解

測定に先駆けて、S41を分解して少し中を見てみました。

0C1E94C5-25EF-4A15-8756-6DE269383143

電源部をもう少し見てみます。

77FEA294-B834-48A1-83A3-BD1C40F7E5F0

付属のACアダプターのType Cコネクタの出力をStick PCにつないで、テスターで少し測定してみました。USB Type Cコネクタを使ってますが、形だけ使っているみたいで信号のやりとりはなく、電源とグランドピンだけしか使っていないみたいです。確かにこれだとUSB出力のバッテリーでは、大きな電流は流せないはずです。元々USB2.0は5Vで0.5Aまでしか流せない規格で、USB3.0でも5V、0.9Aです。その後USB PDなど色々拡張して20V x 5A =100Wとかまで使えますが、これはあくまで規格にのっとた信号のやり取りをした場合のはずです。なので、今回のように電圧ピンだけ使っているような場合では電圧が出ないはずなので、落ちる可能性が高いのは理解できます。


Ankerのバッテリー

では実際にどれくらいの電流が流れているの測定してみましょう。使ったのはUSBチェッカーです。

AD518BA4-027C-471F-880D-53551A8DD390

写真ではAnkerの13000mAのバッテリーをつなげています。上の写真は起動前の状態です。

5回くらい起動テストして、起動さえしなかったことが2回ありました。その場合は再起動を繰り返した場合と、止まってしまった場合がありました。それでも起動することもあり、起動した後は特に操作しなければ安定です。

ここの状態からソフトを立ち上げ負荷をかけますが、Ankerの場合SharpCapとStellariumを立ち上げたくらいで落ちることが多いです。落ちた後は0.87Aでほとんど動かなくまります。

FA243E68-C84E-4137-A450-8B6A433B4977

落ちる前にその負荷の高い時の電流を見ると、なぜか1A-1.5Aくらい普通にでてるんですよね。しかも大きな電流でも落ちない時もあり、さらにプレートソルブとかもかけてやります。すると一瞬ですが2Aを超えることもあります。

851C51F3-3F88-403A-9A2F-14EFEFD4CF86

これはどういうことなのでしょうか?そもそも規格で0.9Aしか出ないと思ってましたが、2A出すこともできるみたいです。

このAnkerバッテリー、負荷が低い時は安定する時もありますが、高負荷にしていくと必ず毎回最後は落ちました


Less is moreのバッテリー

Ankerの結果はあまりよくわからないですが、気を取り直してこれまで落ちにくかったLess is moreの100W出せるというバッテリーにつなぎ変えてみます。このバッテリー、Amazonで買ったのですが既にリンク先が切れていました。60Wのものは見つかりましたが、100Wの代替のものは無いみたいです。

61B75800-D386-44BA-BC86-8C128655AD80

ほとんど落ちることはなかったので、思いっきり負荷をかけます。CPUパワーは100%です。見ることができた最大電流は2.5A越え。

BB616BEE-BBD2-4DAD-8AC4-19BA7627BC76

ただし電圧が4.8V台全半まで落ちてます。2A位までは5Vを保ってますが、2Aを超えると供給電圧が落ちていくようです。StellariumにSharpCapでPolar align、プレートソルブをかけながらStellariumをグリグリ動かすととうとう落ちました。でも落ちる瞬間に電流がものすごく高いかというと、そうでもありません。フラフラしてますがCPUパワーが100%で頭打ちなので、平均では2A切ってます。

ここで言えることは、Ankerのものよりは確実に落ちにくいということくらいで、それでも高い負荷だと落ちることは落ちます。5回くらい試しましたが、ただ1度どう負荷をかけても落ちない時があって、その時は諦めて自分で電源を落としました。


付属のACアダプター

次に試したことが、ではACアダプターに繋げた時にどれくらいの電流が流れるか確認することです。でもこれも不思議なことに、2.3A位までは見ましたが2.5Aとかを見ることはできませんでした。CPUパワーが100%で頭打ちで、それ以上電力を使うことができないからかなと思ってますが、はっきりした理由は不明です。

一つだけ言えることは、どれだけ高負荷にしても落ちることは一度もなかったことです。


まとめ?と言えるのか...

結局今回試したことで定量的にはほとんど何も言えませんでした。定性的には
  • バッテリーを使う限りは、多少の違いはあるが、負荷がかかると落ちることを避けることは出来なさそう。
  • 付属のACアダプターが唯一まともな電源で、少なくとも高負荷などで落ちることは確認できなかった。
ということくらいです。逆に疑問点の方が多く
  • USBバッテリーで何の規格のやりとりもなしで2A以上も出せるのか?
  • 逆にいうと、ここまで電流出せるのになぜ落ちることがあるのか?
  • 落ちる理由は何か?もしかして電圧降下が直接の理由なのか?
など、わからないことだらけです。

今回はUSBチェッカーの表示だけを見たので、もっと速い速度で応答を見れば何か分かるかもしれません。もう少し原因がわかれば、何か手を打つこともできるかもしれませんが、USBの範囲でやろうとすると規格外のことになるので、無難に付属のACアダプターを使った方がいい気がしています。

あと、今考えてるのがラジコン用とかのもっとシンプルなバッテリーを使うことです。これをType Cの端子だけ100円ショップで見つけてきて変換アダプターを作るとかだとうまくいく気がします。もちろん自己責任になります。

 

先週に引き続き、今週も午前は名古屋人心の故郷のコメダ珈琲に。Twitterで昨日の画像処理研究会の議論の続きをしつつ、2時間近くも長居してました。


PCCのカラーバランスについて

議論はPCCについてです。もともと昨日の研究会での議論は、PCCで撮影した画像の恒星を使い、合わせたカラーバランスは、星雲のカラーバランスにも適用できるか?というものでしたが、私の意見は星雲のカラーバランスは別物。理由はフィルターやセンサーのRBGの波長依存性があるので、たとえ恒星で合わせてもそれは必ずしも星雲のカラーバランスを保証するとは限らないのではというものです。APASSの参照カラーもTutrialにあるような特定のセンサーによって測定され、それは当然自分の持っているセンサー特性とは違うためです。

さらに今朝の議論は、星のカラーバランスも参照センサーと自分のセンサーの違いがあるので、厳密には正しくないのではないかということ。その通りかと思います。フィッティングしたグラフをよく見ると、各恒星の色データのばらつきは通常数10%程度はあり(グラフの数値は等級であることに注意、1は2.5倍の違いを表します)、それがセンサーバランスの違いと同程度のオーダーかと思います。なので、PCCはあるセンサーについてはベストエフォートのカラーバランスをしようとしているが、画像データだけからセンサー間の波長依存性の違いを補正するような魔法はないというのが私の考えです。


長焦点距離の電視観望

もう一つ別件で面白い議論をTwitterでしました。長焦点距離の電視観望は、短焦点距離の電視観望より効率が悪いのでは?というものです。シベットさんのC8での電視観望で効率が悪いという意見に端を発します。

シベットさんは実はLiveStackでとりこぼすので効率が悪いということを意味してたのですが、私は勘違いして長焦点そのものが効率が悪いと取り違えたのです。何でかというと、BKP200のF4の800mmでの電視観望と、FS-60CBでのF6の350mmでの電視観望、意外なほどFS-60CBの方が見えたりするのです。その後、cockatooさんからセンサーサイズやピクセルサイズが関係するのではという意見が出ました。最初私はあまりそれらのことは関係ないと思ってましたが、よく考えたら感度の悪いセンサーでQBPを使うと、むしろ悪化するという経験を思い出しました。もしかしたら、電視観望ではある明るさ以下になった時に途端に不利になるのではないかと考え始めました。例えば、
  • QBPで背景光が小さくなった結果、ノイズ(広がり)が大きくて中央値の小さい(例えば)リードノイズとかADCの量子化ノイズに埋もれた場合と
  • QBPなしで、ノイズ(広がり)が小さくて中央値の大きい背景光に乗っかった場合
の違いです。まだアイデアだけですが、定量的に評価できたら機材にある一定の制限をあたえることができそうです。


自宅へ帰って、太陽撮影

こんなことをずっと考えていたので、今日はコメダ珈琲では雑誌を読んだりすることもなく、午後1時前くらいに店を出ました。外が結構晴れてきてたので、自宅について少しだけ太陽撮影をしました。機材は最近流行のC8+PSTです。

太陽のHα像をまずはぐるっと見回すと、プロミネンス がいくつか出ています。光球面はダークフィラメントが少しありますが、あまり興味を引かれるほどではありませんでした。プロミネンス を4ショット撮っておしまい。その中の一つは結構大きくて、リング構造まで出すことができました。

14_35_25_lapl4_ap1540_RS_color_cut

14_38_10_lapl4_ap1318_IP_cut

14_39_23_lapl4_ap1371_IP_cut

14_42_32_lapl4_ap2326_IP_cut
  • 撮影日時: 2021/1/31 14:35から14時45分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: Celestron C8、口径203mm、焦点距離2032mm、F10
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM
  • 撮影ソフト: SharpCap 3.3beta (64bit)
  • 撮影条件: ser形式でgain 150-170, 1.25ms x 2000フレーム中上位50%を使用
  • 画像処理: AS3にてスタック、ImPPGで細部出し、PhotoshopCCとShapen AIで後処理
もう少しプロミネンス の細かい構造が出て欲しい気もしますが、結構迫力はあるのでまあ満足です。


センサーのお掃除

ついでにASI290MMのセンサー面の掃除をしました。細かいゴミがついているみたいで、黒いスポットを作っています。保護ガラスを外してもゴミがまだ見えたので、どうもセンサー面に直接ゴミがついているようです。目で見ても全くわかりません。綿棒でそれらしいところを擦ります。カメラをセットし、太陽を見て確認して、ホコリがまだ残っていればまた清掃というのを何度か繰り返します。ホコリが全て取れたことを確認してから、再び保護ガラスをかぶせて元に戻します。

これで次回以降はもう少しまともに撮れるはずです。

 


めずらしく晴れた!さあ撮影だ!

1月20日と21日、珍しく1日半程度、撮影ができるくらいに晴れました。しかも昼間の立山があまりにきれいにくっきり見えました。透明度はいいに違いありません。

もうずっと晴れてなくて、途中短時間の電視観望や太陽撮影はありましたが、星雲に関して言えば前回の撮影日が12月9日でオリオン大星雲なので、もう一月以上撮影できていません。



M42は楽しかったですが、昔撮ったものの取り直しも飽きてきたので、今回はあまりにメジャーな明るいものでなく、少し淡いモクモクしたものを撮りたくなってきました。そのための最初の一歩になります。平日なので自宅撮影です。でもそもそもそんな淡いモクモク、遠征せずに撮れるのでしょうか?

ターゲットですが、この時期でTSA-120と6Dで撮れる画角のものから選びます。いろいろ考えてオリオン座の上の方のM78としました。まだ真面目に撮影したことがないので、初撮影になります。かなり昔、電視観望では見たことがありましたが、中心以外はかなり暗いのでほとんど何も映らなかった記憶があります。


半月が出ててもフィルター無しで撮影

今回は少し課題をつけます。
  1. 平日なので自宅になるため光害は気にしない
  2. 冬の北陸で天気のいい日がかなり限られているので、月があっても厭わない。この日は月齢7日で、ほぼ半月。沈むのは0時頃ですが、そのころにはオリオン座も結構西に傾いてしまっているので、夜の早いうちから撮影を始めます。
  3. M78は白色や青色が豊富なので、フィルターを入れるとどれくらい色が変わってしまう可能性があります。なのでNo光害フィルターでいきます。ただし、恒星にハロが出る可能性があるのがわかっているので2インチのUV/IRカットフィルターを入れます。
要するに、ほとんど光害対策をしなくてどこまで淡い天体が出るかということです。

これまでQBP、CBPなどを使って、自宅でも輝線スペクトルをそこそこコントラスト良く出せることを示してきました。しかしながら、これらはかなり強力な光害防止フィルターのようなものなので、たとえ輝線スペクトルをきちんと通すとしても、カラーバランスが崩れてしまうことはどうしても避けられないのかと思います。例えばQBPではかなり赤によりがちになります。CBPは青をもう少し出してくれるのでまだマシかと思います。ところが、特に今回のM78のように、反射星雲だと波長は恒星によるはずで、QBPやCBPでは本来あるべき波長がカットされてしまっている可能性があります。また、暗黒星雲とその周りのモクモクの色なんかも光害カットフィルターで様子が変わってしまうのでは思っています。これはCBPで網状星雲を撮影したときに、右側に出るはずの広い暗黒星雲が全く出てこなかったことに起因します。

実はこのフィルター無しでとこまで写るのか、ずっとやってみたかったのです。だってHIROPNさんが都心で低ISOで成果を出しているし、トータル露光時間を伸ばせば背景光ノイズは相当小さくできるはずで、必ず記録はされているはずの天体情報は、うまくすれば引き出すことができるはずだからです。でも失敗してせっかくの撮影時間をまるまる潰す可能性があるので、なかなか勇気が出ませんでした。


撮影開始、でもやはり光害の影響はすごい

そんなこんなでいろいろ考えながらも、準備を焦らずゆっくりして、22時近くから撮影を始めました。6DでISO800、露光時間は3分です。ところが途中で試しに1枚、ABEで滑らかにしてオートストレッチ後、HTしてみたのを試しに見てみたのですが、もうひどいものです。

LIGHT_180s_ISO800_0c_20210120_23h55m36s483ms_RGB_VNG_ABE

リングは多分ABE由来ですが、M78自身が中心以外ほとんど何も写ってません。センサーの汚れも目立ちます。衛星もたくさん写り込んでそうです。どうもこの超ノーマル状態での光害下での撮影はだめそうです。

ちなみに撮って出しJPEGだとそれこそほとんど何も写ってません。

LIGHT_180s_ISO1600_+8c_20210120-21h32m46s782ms

この時点でかなりやる気をなくしたのですが、また設定し直すのも面倒なので、そのままフテ寝してしまいました。朝起きて確認すると夜中の1時頃でカメラのバッテリー切れで止まっています。トータル3時間、月が沈むのが0時だったので、最初の2時間分はまだ月が出ていたことになります。もうだめそうだし、時間も途中で切れてかけれなかったのでここで諦めても良かったのですが、次の日も途中までは晴れそうです。

結局二日目も同じ構図で、少し撮り増し。というか、どうせ途中で曇る予報なので新たに別の天体を撮り切る時間もなさそうですし、M78なら前日の設定が全て残っているので、楽だったからと言うのが実際の理由です。二日目は準備もほとんどできているので、少し早めの18時過ぎから撮影を始めました。天気予報通り、21時すぎで雲が出てきたのでここで終了。この日も3時間程度の撮影時間でした。


スタックした画像を見てみると!

こんな状態だったので、画像処理もあまりやる気にならずに半ば諦めて放っておいたのですが、一応後日フラットとフラットダークを撮影してPixInsightでスタックまでの画像処理をしてみました。

ダークとバイアスは以前の使い回しなので、最近は楽なもんです。ISOと露光時間を合わせておくと、冷蔵庫法のダークライブラリの構築がそこまで大変でないです。スタック後の画像を見てみると、なんと意外にいけそう。下はオートストレッチ後、HistgramTransformation (HT)で適用したものです。

masterLight-BINNING_1-FILTER_NoFilter-EXPTIME_180.8

失敗画像を除いても5時間越えぶんの露光時間が効いたのでしょうか?色もきちんとついてますし、暗黒体の部分も結構出ています。

これは俄然やる気になってきました。


フラット補正とカブリ

ただし上の画像、フラットフレームを部屋で別撮りで撮ったので、実際の空とは違いどうしても1次的なカブリが残ってしまっています。

今回フラットフレームの撮影も簡易的な方法に置き換えました。昼間に太陽が出てる時、もしくは全面曇りの時に、部屋の中の窓から少し遠い白い壁を写すだけです。注意点は
  • 鏡筒の影を避けるために、壁に近づけすぎないこと。
  • 以前は鏡筒の先にスーパーの白い袋をかぶせていたが、今回はそれも外したこと。
  • ISOを同じにして、露光時間を短くしてヒストグラムのピークが中央らへんにくるようにすること。
  • その場で蓋をしてフラットダークも一緒に撮影してしまうこと。
などです。以前は晴れの日を選んで、スーパーの袋をかぶせていました。太陽が出ていて雲が横切ると明るさが変わってあまり良くなかったのですが、空一面の曇りなら大丈夫ではということです。あと、どうせピントは合わないので(多少壁はざらざらしているが)スーパーの袋はなくてもいいのではと言うところが改善点です。

さて、上の画像に残るカブリを取りたいのですが、左下の赤い部分はバーナードループなのでこれは残したいです。こんなときはABEはあまり使えません。実際にABEを1次で試しましたが、赤い部分が大きく取り除かれてしまいした。こんな時はDBEの方がよく、しかも点数をかなり制限してやります。実際打ったアンカーは数えたら10個ちょいでした。

DBE
(アンカーが見やすいように少し画面を暗くしています。)

これでできたのが以下のようになります。カブリが取れて、かつ左下の赤いのはしっかりと残ってます。

masterLight_180_8_integration_DBE4


ここでPCCのトラブルに直面

この後はPCCで、恒星の色を合わせます。ところがところが、肝心な時にPCCがなぜかうまく動きません。これで2日ほどストップしてしまいましたが、その顛末は前回の記事にまとめてあります。




ストレッチからPhotoshopに渡して仕上げへ

PCCがうまくいったあとはArcsinhStretch (AS)を何度かに分けてかけ、ストレッチします。ASは彩度を落とさない利点があるのですが、恒星の鋭さが無くなるので、StarNetで恒星が分離しきれない問題があります。そのため、ストレッチ前の画像から改めてScreenTransferFunctionでオートストレッチして、HTで適用することで恒星を鋭くしました。こうすることでStarNetできちん恒星と背景を分離できるようになります。分離した恒星画像から星マスクを作ります。実際にMaskとして使うにはMohologiacalTransformationのDilationをかけて少し(1.5倍位)星像を大きくします。

あとはPhotoshopに渡していつものように仕上げです。基本はほとんどが先ほど作った恒星マスクを当てての作業になります。DeNoiseも使います。そういえばDeNoiseのバージョンが2.4.0に上がり、Low Lightモードのノイズがさらに改善されたとのことです。DeNoiseは非常に強力ですが、それでもやはりマスクの境や、モコモコしたカラーノイズのようなものが出るなど、悪影響がどうしても残ってしまうことは否めません。今後はいかにDeNoiseから脱却することが課題になってくるのかもしれません。

結果を示します。少しトリミングして90度回転しています。

「M78」
masterLight_DBE4_crop_PCC_pink_AS3_cut

  • 撮影日: 2021年1月20日21時51分-1月21日1時12分、1月21日18時12分-21時20分
  • 撮影場所: 富山県富山市
  • 鏡筒: タカハシ TSA-120 (口径120mm, 焦点距離900mm) + 35フラットナー + SVbony 2inch UV/IRカットフィルター
  • 赤道儀: Celestron CGEM II
  • センサー: Canon EOS 6D HKIR改造
  • ガイド: PHD2 + 120mmガイド鏡 + ASI120MM miniによるディザリング
  • 撮影: BackYard EOS, ISO800,  露光時間: 180秒 x 108枚 = 5時間24分
  • 画像処理: PixInsight、Photoshop CC, DeNoise
どうでしょうか?光害下で、Noフィルターとは思えないくらい出たのではないかと思います。自分でもびっくりです。M78はこれまでも何度か挑戦しようとして諦めていたので、これくらい出ればそこそこ満足です。

ついでにAnotationです。

masterLight_DBE4_crop_PCC_pink_AS3_cut_Annotated



考察

今回の結果はある意味一つの挑戦です。

光害や月明かりが、実際の仕上げまでにどこまで影響するかです。はっきり言って、庭で半月でフィルターなしでここまで出てくるとは全く思っていませんでした。少なくとも1枚画像を見たときはこのチャレンジは失敗だと思っていました。

色バランスを考えた場合、フィルターは少なからず影響を与えます。なので色の再現性だけ考えたときには、フィルター無しの方が良いのかと思います。その代わり当然ですが、フィルターが無いと光害地では明るい背景光やカブリが問題になります。

明るい背景光は大きなノイズ(ノイズは明るさのルートに比例します)を出すので、淡い天体はノイズに埋もれてしまいます。それでも背景光に比べて、天体の明るさの分、少しだけ明るく記録されます。背景光のノイズは多数枚スタックすることで小さくなります。ヒストグラムで考えると、ピークの広がりが小さくなるということです。ノイズピークの広がりが小さくなれば、その一定値に近くなった明るさの中央値をオフセットとして引くことで、天体をはっきりと炙り出すことができるようになります。トータルの露光時間が増えれば、多少の光害地でも淡い天体を炙り出すことは不可能ではないということです。

ではフィルターの役割はなんでしょう?まずは背景光のノイズを光の段階で軽減させることが一番の理由でしょう。もちろん程度問題で、暗いところで撮影したら光害防止フィルターの効果は小さいでしょう。逆にあまりにひどい光害地でフィルターなしで撮影しても、一枚あたりの露光時間をろくにとれなくなったりするので、どうしてもフィルターが必須という状況もありえるでしょう。

あとこれは個人的な意見ですが、フィルターのメリットの一つは画像処理が圧倒的に楽になることではないかと思います。今回の光害下での撮影の画像処理は結構というか、おそらく初心者から見たらかなり大変です。例えばカブリ取りなんかは相当戦略を考えて進めることになります。こういった困難さを避けることができるのなら、光害防止フィルターは大きな役割があると言っていいのかと思います。

逆にフィルターのデメリットの一つは、すでに書きましたがカラーバランスが崩れるということがあると思います。画像処理で多少は回復できますが、それはそれで負担になってしまいます。あと、高級なフィルターの場合、値段もデメリットの一つと言えるのかと思います。

フィルターを使う使わないは、状況に応じて臨機応変に考えれば良いのかと思います。それでも今回、光害地で半月が出ている状況で、フィルターなしでも、画像処理によっては淡い天体をある程度炙り出すことも可能であるということが、多少は示すことができたのではないかと思います。このフィルター無しの方法が、どのくらいひどい光害まで適用できるのか、ここら辺は今後の課題なのかと思います。

今回は失敗かと思ったところからの大逆転、かなり楽しかったです。



 

皆様、新年明けましておめでとうございます。ほしぞloveログのSamです。今年も頑張って星活動を楽しみたいと思います。

さて、新年初記事になりますが、内容は年末の太陽黒点のことです。


12月後半の大黒点

2020年12月後半、また大きな黒点が出ているようです。21日の週の初めくらいだったでしょうか、黒点が出てきたという情報が聞こえてきましたが、仕事もありますし、相変わらず北陸の天気は全然だめです。

それでも休みの12月27日の日曜日、ほんの少しだけ太陽が見えました。と言っても薄ーい雲がほぼ全面にあるような状態だったので、いずれも薄雲越しです。機材はまだテスト段階といっていい口径20cmのC8にPSTを取り付けた状態での撮影となります。

ほんの30分くらいでしたが、なんとか撮影だけはできました。シンチレーションは良くもなく悪くもなくでしょうか。少なくとも前回の最悪の時よりは遥かにマシでした。撮影できた時間は30分くらい、その後は雲が厚くなり撮影も諦めました。


結果

画像処理はAutoStakkert!3とImPPGとPhotoshopとSharpen。とりあえず結果だけ示します。どの画像も少しトリミングしています。

_12_58_34_lapl4_ap2556_IP_DBE_cut

_12_59_24_lapl4_ap2549_IP_ABE_cut

13_01_41_lapl4_ap2492_IP_cut

13_04_16_lapl4_ap2361_IP_cut
  • 撮影日時: 2020/12/27 12:58から13時4分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: Celestron C8、口径203mm、焦点距離2032mm、F10
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM
  • 撮影ソフト: SharpCap 3.3beta (64bit)
  • 撮影条件: ser形式でgain 150-300, 1.25ms x 2000フレーム中上位30-50%を使用
  • 画像処理: AS3にてスタック、ImPPGで細部出し、PhotoshopCCとShapen AIで後処理

考察

解像度はさずがにシンチレーションが酷かった前回より普通に出ています。撮影時にもわかるくらいだったので、ある意味当然の違いかと思います。口径20cmのC8の性能が効いてきていると言ってもいいくらいにはなっているのかと思います。

ただいくつか問題も露呈してきました。
  • まずはセンサー面に細かいゴミがあったこと。細部を出そうとするとそのゴミが目立ちます。今回は画像処理でごまかしてしまいましたが、これは邪道です。センサーの掃除を相当気合を入れてやる必要がありそうです。もしくはフラット補正、しかもリアルタイムの補正が役に立つのでしょうか?
  • あと、プロミネンス を見てもわかるのですが、いまいち細部が出切っていません。やはりシンチレーションがそこまでいいわけではなかったというのはここからの判断です。
  • 一番の疑問は、画像処理においてここまで細部を出していいものなのか?Sharpenの威力は相当なものです。炙り出していくと擬線のようなものも出てくるのかと思います。あまりにおかしくなるような設定は避けているつもりですが、どこまで出すのが正しいのか?まだ私には判断できていません。
  • あと、周辺部改善のために前回の撮影からERFを外してHαフィルターに交換したのですが、周辺部がよくなかったかどうかの判断はまだつきません。これはもう少し時間をかけて直接比較したいです。今回は晴れている時間も限られていたので、結論は出せずじまいでした。


まとめと今後

撮影日は日曜は実は天気予報は悪くて期待してなかったのですがなんとか撮影できました。さらに月曜と火曜は天気予報はそこそこ晴れだったので期待していました。でも実際には晴れることはほとんどなく、その後の年末年明け以降もしばらく天気が悪そうなので、一旦ここで記事にしてしまいました。

せっかく解像度が出るようになってきたので、もう少し時間をかけていろいろ試したいのに、天気がどうしようもないです。晴れてくれー!

ここしばらくシリーズ化しているメジャー天体撮り直しシリーズ、M31アンドロメダ銀河M45プレアデス星団に続き今回はM42オリオン座大星雲です。







これまでのオリオン大星雲

M42は初期の頃からのFS-60Qでの撮影も含めて、


QBPのテスト
の時や、


AZ-GTiの赤道儀化のとき


ラッキーイメージングなど細部出しに特化したもの、


また明るい天体のため、電視観望でもよく見ることができ、見ている画面を保存して簡易的に画像処理してもそこそこ見栄えのするものができてしいます。


電視観望の応用でAZ-GTiの経緯台モードでの撮影も試したりしました。


TSA-120を手に入れてからも、フラットナーがない状態でも解像度ベンチマークなどでトラペジウムの撮影を中心に何度も撮影してきました。分解能に関して言えば、この時が最高でしょう。


その後、昨シーズン終わりにやっとTSA-120用に35フラットナーを手に入れてから一度テストしていますが、四隅の星像の流れはもちろん改善していますが、中心像に関してはフラットナーなしの方が良かったというのが以前の結論でした。



でもテスト撮影も多く、なかなか満足のいく露光時間はかけていませんし、仕上がりに関してもまだまだ細部を出すことができるはずです。今回はそれを踏まえての、初めてのまともな長時間かけての撮影になります。


撮影開始

撮影日は平日でしたが冬シーズンにしてはたまたま晴れていた(次の日からはまたずっと天気が悪い予報)のと、月が出るの午前1時過ぎと、多少の撮影時間が確保できそうでした。平日なので自宅での庭撮りになります。夕食後準備を始めました。このシーズンオリオン座は夜の始めはまだ低い高度にいるので、焦らずに準備できます。

鏡筒はTSA-120。これに35フラットナーをつけて、前回M45の撮影の時に準備したCA-35とカメラワイドアダプターをつけます。カメラはEOS 6D。フィルターはここのところ光害地では定番のCBPです。青を少し出したいことと、赤外での星像肥大を避けることが目的です。赤道儀はいつものCGEM IIです。撮影環境はStick PCにBackYardEOSを入れて、PHD2で二軸ガイド。

一つ気をつけたことが、Stick PCの電源を最初から大容量バッテリーのAC電源出力からとったことです。これは、これまでSharpCapでの極軸合わせなど計算量が多くなった時に何度か落ちたことからの反省です。前回のM45の撮影時の画像連続チェックで落ちてからAC電源に交換して、それ以降落ちなかったので、その経験から今回は最初からAC電源です。効果はテキメンで、SharpCapでの極軸合わせの時も全く問題ありませんでした。ダメな時はネットワークが不安定になるところから始まるのですが、そんな兆候も全然なく、やはりネットワークがダメだったのも計算負荷にで電力がネットワークアダプターのほうに回っていなかった可能性が限りなく高かったと言う結論になりそうです。


オリオン大星雲の撮影目標

せっかくの明るい星雲なので、
  • 階調と分解能をできるだけ出すこと。
  • 長時間露光でノイズを抑えること。
  • 星雲周りの分子雲を出すこと。
  • トラペジウム周りで飛ばないこと。
などを目標とします。

露光時間は淡いところを出したいので300秒とします。自宅庭撮りでこれだけ長くできるのはCBPなどの光害カットフィルターがあるからです。長時間露光の代わりに、ダイナミックレンジを稼ぎたいのでISOは少し低めの800としました。これでヒストグラムのピークが1/5くらいのところになりました。それでもトラペジウム周りは完全にサチってしまうので、別途同じISOで1秒露光のものを20枚、最初に撮影しておきました。同じISOにしたのはバイアスとフラットが使いまわせると目論んだからです。でも、後で書きますが、この目論見は失敗に終わります。


露光時間とISO

ISO800にした理由ですが、このページを見るとISO100の時のダイナミックレンジが12bit=4096、ISO800で11.5bit=2896とそこまで落ちないからです。さらに300分の1の露光時間の1秒露光で20枚ほど撮影してあるので、うまくつなぐとさらに300倍のダイナミックレンジ(2896x300= ~869000)を稼ぐことができることになります。

でもまあ、画像に写っている中で一番明るいオリオン座のι(イオタ)星のHatysa(ハチサ)が2.75等級なので、それより例えば15等級下の17.75等級を見ようとすると100万のダイナミックレンジが必要になり、既に不足となります。300秒露光の画像は既に背景のヒストグラムで最大値の1/5位のところにあるので、ということは背景の5倍の明るさで既にサチることになってしまいます。こうやって考えると恒星に割り当てることのできるダイナミックレンジはものすごい小さいことになってしまいますが、これでいいのでしょうか?何十枚もスタックして背景のランダムなノイズを下げ、オフセットは引くことができるので、もちろん1枚の時よりダイナミックレンジは増えます。画像処理のストレッチ過程で暗い恒星を炙り出すので、RAW画像の見た目の5倍というよりは実際にはもっと広いダイナミックレンジを扱うことができます。それでもサチっているところはサチったままです。

逆に言うと、背景に近い暗黒帯などは(低い方の)ダイナミックレンジが十分にあるところで情報としてRAW画像の中に残しておかないと、きちんとした諧調で表現することができなくなります。例えばPhotoshopでRAW画像を見たときに背景ピーク位置が256段階の3くらいのところにあったとします。ピークの幅が3くらいで、この中に暗い部分の背景の情報が入っているとします(実際には欲しい部分は背景のピークより少し値が大きいところにありますが、幅は同程度と仮定しています)。16bit=65536で処理するとすると1段回で65536/256=16階調あることになるので、3段階だとわずか48階調で背景の暗黒帯や対象天体の淡い部分などを表現することになります。ところが、背景ピークが10倍の30あたりにあり、その幅が30程度あるとすると、16階調をかけて480階調で表現できるようになります。ADCの量子化ノイズなどと言われたりしますが、一番見たいところをADCのどこの位置に持ってくるかを露光時間はゲインで調整するというわけです。でも実際にはたとえ階調不足でも、今のソフトはよくできていて、飛び飛びになっている階調を自動で補完してくれるので、見かけ上は階段状に見えるようなことがあまりなかったりします。

とりあえず今回は明るすぎる恒星は主に画像処理で回復し、トラペジウム周りの白飛びのみを1秒露光の画像で補完することにします。

セットアップ後は自宅からぬくぬくリモートモニターです。月が出る午前1時過ぎまで仮眠でも取ろうと思いましたが、結局そのまま起きていて、片付けが終わって寝たのが2時過ぎだったので少し寝不足になってしまいました。


6Dのセンサー面の清掃とフラット画像

後日、画像処理のためにフラットなどを撮影します。まずはカメラを外せないフラットからです。本当は太陽が出ている明るい時に撮影したかったのですが、北陸はしばらく冬型の気圧配置で、今後天気は期待できそうにないので、曇りの日に撮影することに。そういえば今回はM42の撮影前にカメラのセンサー面の掃除をしたので、フラットフレーム最近いつもあるゴミの後はほぼ一掃されていました。清掃といってお、カメラの清掃モードを利用してセンサー面を露出し、エアーで吹き飛ばしただけです。これだけでかなりの効果がありました。

フラットダークとバイアスに関しては同じISOの以前使ったマスターファイルがあるので、それを再利用できます。

ダークは冷蔵庫と冷凍庫にカメラを入れて冷却状態で撮影します。温度がばらつくので、多少多めに撮影しておきます。それでも枚数が稼げないこともあるので、その場合はダーク補正なしでCosmetic Correctionのみにする時もありますが、今回はそこそこの枚数を稼げたので撮影時の温度に合わせて選択して使うことにしました。


画像処理

撮影したファイルをPIのWBPPで処理します。できたファイルをPCCにかけます。背景に分子雲が大量にあるのでカブリとの見分けがつかず、ABEやDBEは使わないことにしました。ノイズ処理とDecombolutionもPIで試しましたが、やはりまだDeNoiseの方が有利な気がして、今回も使いませんでした。いずれ移行したいですが、もう少し検討してからにしてみたいです。

恒星中心の回復はRepaired HSV Separation Scriptを使い、Masked Stretchで恒星を保ちながら炙り出しました。

問題はStarNetの適用のタイミングです。今回はPhotoshopでも炙り出す余地を残したために背景と恒星の分離を少し早い段階で済ませました。そのため、PSでの処理時に恒星をさ散らすことになってしまったので、あまりMasked Stretchの意味がなかったかもしれません。でもその一方、恒星を全くサチらせずに処理すると、恒星が野暮ったい感じになりインパクトに欠けることにもなります。今回はサチらせる方向を取りましたが、ここはもう少し検討したいところです。もしかしたら再処理するかもしれません。

1秒露光の画像の処理も同様にPIでやったのですが、WBPPが全くうまくいきませんでした。仕方ないので、マニュアルでCosmeticCorrectionから順番に確認していくと、ImageCaibrationのバイアスやフラット補正が全くうまくいきません。バイアスファイルやフラット補正ファイルは、ISOを合わせた300秒露光の補正で使ったものの使い回しなので問題ないはずです。ファイルが問題と言うよりは、補正すること自体がダメなようです。簡単に言うと暗かったライトフレームが補正で明るくなってしまうような状態です。どうやってもうまくいかなかったので、補正は諦め、撮影した21枚、21秒分を位置合わせしてスタックしただけにして、トラベジウム周りだけを使うことにしました。

300秒画像のトラペジウム周りはサチっているので、境目が滑らかになるように輝度を落とし、そこに1秒露光の画像をPhotoshop側で合成しました。

結果は以下のようになります。
masterLight_PCC_pink_MS_all5


2020/12/14追記: 次の日少し見直して1から処理し直しました。StarNetを使わずにマスク処理で恒星部を調整し不自然さと幸理をできるだけ無くしています。あと、まだ赤寄りだったのでもう少し青寄りにして色調豊かにしました。まだ不満はいくつか残っていいます。
  • 分子雲の中の微恒星周りが不自然です。これはマスクの領域を拡大しすぎたからかと思います。明るい領域の微恒星と暗い領域の微恒星では多分マスクの扱いが違うのかと思います。最後に気づいたので力尽きて諦めました。またそのうちに解決策を手段を考えます。
  • 分子雲と背景のノイズ処理が甘くてボコボコしているようなところがあります。DeNoiseの効果なのですが、他のノイズ除去フィルターでも同じようになってしまいます。Dfine2で大まかなノイズを除いてからDeNoiseで解決できる可能性もありますが、根本的には露光不足なのでさらに長い時間撮影するのが一番です。
  • かなり炙り出しているので、人工衛星の軌跡が目立ち始めています。軌跡が残っている画像は全て捨てるのが解決策なのですが、今回もかなりの枚数に軌跡が映り込んでいます。これだけ衛星が多いとオリオン座はもう難しいのかもしれません。
それ以外のところは、「今のところ」不満はありません。でも気づいてないことがまだたくさんあると思うので、あくまで今のところです。

masterLight_integration2_ABE1_PCC_SCNR_HSV_MS_all3_cut
  • 撮影日: 2020年12月9日20時57分-12月10日1時10分
  • 撮影場所: 富山県富山市
  • 鏡筒: タカハシ TSA-120 (口径120mm, 焦点距離900mm) + 35フラットナー + CBPフィルター
  • 赤道儀: Celestron CGEM II
  • センサー: Canon EOS 6D HKIR改造
  • ガイド: PHD2 + 120mmガイド鏡 + ASI178MCによるディザリング
  • 撮影: BackYard EOS, ISO1600,  露光時間: 300秒 x 50枚 = 4時間10分 + 1秒 x 21枚
  • 画像処理: PixInsight、Photoshop CC, DeNoise
分子雲については十分に出ていて、星雲本体の階調も分解能も満足できます。トラペジウム周りもそこそこ自然に出ています。

その一方、恒星部にはまだ少し不満もあります。露光時間が300秒と長いために星像がガイド揺れやシンチレーションでボテっとなるのは仕方ないです。でも1秒露光の方でトラペジウム部分を見てもあまり分離できていません。ピントがずれている可能性もありますが、おそらくこの日はシンチレーションが酷かった可能性が高そうです。

トラペジウムもピシッと見えていて、背景もきちんと出ているようなものを多露出露光合成なしで撮れるような、タイミングと機器とパラメーターが揃った時に、いつかまた気合を入れて撮影してみたいものです。でもまだ今の機材でももう少し攻めることができる(ラッキーイメージングでしょうか?)はずなので、今後も継続して挑戦していきたいと思います。オリオン大星雲は深いです。


まとめ

メジャー天体際撮影シリーズはこれで終わりかと思います。4年半前に星を始めて、最初の頃に挑戦したものでしたが、機器も技術も4年半の間に随分進歩したことがわかります。ソフト的な進歩も大きいです。

特にPixInsightでのDBEやストレッチの技術と種類の多さ、StarNetでの分離、Nik CollectionやDeNoiseなどの細部だしやノイズ除去など、自分の腕の不足を明らかに助けてくれます。今後はこういった便利なソフトから少し離れて、自分の腕で画像処理を極めたいと思っていますが、実際この楽な状況から本当に脱却できるのか?まあ、当分はそのままかもしれません。


おまけ

Annotationです。

masterLight_PCC_pink_MS_all5_Annotated


恒例の以前FS-60Qで撮影したものです。約4年前と

cut

1年半前です。

light_M42_PCC_maskstretched_ok_HDR_dark

今回の撮影もまだ不満はありますが、自己ベストは明らかに更新です。何年か経つととりあえず進歩の跡が見られるのはいいものです。オリオン大星雲は楽しいので、また条件を変えて挑戦します。



前週に飛騨コスモス天文台で撮影したM45プレアデス星団(和名すばる)、良く言えば個性的な、悪く言えばみるも無残な結果でした。



画像処理を終えてかなり凹んでいたので、早速次の週末(11月21日の夜)にリベンジです。

また、これは最初の頃に撮影したメジャー天体の取り直しシリーズの第2段にも当たります。ちなみに第一弾はM31アンドロメダ銀河です。




準備

まず準備として、前回発覚したTSA-120とEOS 6Dが接続できない問題を解決しました。一眼レフカメラに接続するためのCA-35は既に購入していましたが、さらにCanonやNikonなどカメラ別にワイドリングというカメラを取り付けるアダプターが必要になります。

これ既に持っていると思っていたのですが、手持ちのものは「DX-60W」と呼ばれる、「カメラマウントDX」に「ワイドリング60C」というものが付いているもの。これはFS-60用です。

TSA-120に接続するには、「カメラマウントDX」は共通なのですが、そこに「ワイドリング」が付いている「DX-WR」というセットにしなくてはいけません。

実際には違う部分の「DX-WR」だけ購入すれば、マイナスドライバーでいちいち付け替える手間はありますが、事足ります。でもこれ、スターベースには単独では売っていなくて、KYOEIとかだと単独で売っていて3千円くらいと、高い部品ではありません。でも毎回付け替えるのが面倒かなあと思って、結局DX-WRのセットで欲しくなりました。さらに送料も惜しくなってドローチューブ減速微動装置MEF-3を買うとちょうど3万円越えで送料無料かと思って、気づくと最初の予定の10倍の値段。嬉しいのか悲しいのか、まあ、よくあることですね。

ちなみに、このMEF-3は2つ目です。FS-60Q用にずっと自作の減速機を使っていたのですが、



TSA-120用に一つ純正品を購入して取り付けてみたらかなりいいので、とうとう自作のものも置き換えです。自作の減速機は無駄にせずにFC-76に使います。


撮影場所

さて、この日は夕方くらいから晴れてくる予報ですが、富山側が天気が良く、岐阜まで行くと曇りの予報です。撮影場所は迷いましたが、結局いつも行く県境近くの山の上に行くことにしました。20時過ぎに出て、コンビニで買い出しをして21時前には到着なので近いものです。北は富山市街地方向なので明るいですが、天頂から南にかけてはそこそこ暗いところです。iPhone用の簡易測定ソフトでSQMを測定したら21.3でした。まあ気軽に行ける割にはそれほど悪い場所ではないでしょう。

ターゲットはもちろん前週に失敗したM45です。やっと念願のTSA-120と6Dで撮影ができます。もし余裕があればM42も撮影したいと最初の頃は思っていましたが、結局時間が足りなくてこちらはまた次回となりました。到着してから月が沈むまでにまだ時間はあったので、のんびり準備してました。前回忘れてしまった撮影用のStickPCも、今回は忘れてません。ELECOMの簡易ルーターを使い、StickPCも電源を入れたら自動的にこのルーターにIP固定で繋がるように設定してあります。固定IPを叩いてそのままリモート接続でき、撮影時は車の中からでも状況を確認することができます。

ちょうど準備が終わったのが月が沈む22時50分頃。この時点ですばる自身は天頂超え少し手前でしたが、自動導入すると赤道儀は子午線越えで始めてくれたので、切り替えも必要なく助かりました。恒星中心がサチることも考えて、まずISO1600で3秒露光のものを20枚撮っておきました。その後、いつも通り、PHD2でガイドしながらBackYardEOSでISO1600、300秒露光で撮影を始めました。

ちょっと風が強かった時もあり、ガイドが暴れる時もあったのですが、まあ撮影結果を見る限り星像はほぼ丸だったので、大丈夫だったみたいです。

IMG_1238



Stick PCの電源トラブル

基本的に順調だったのですが、途中撮影された画像を何枚か連続で確認していたらStickPCにかける負荷が大きすぎたのか、接続が切れてしまいました。何が起こっているか確認するために、こんな時のために購入しておいたHDMI出力をUSBに変換するアダプターを使い、母艦のMacBook Proに接続して様子を見てみると、やはりStickPC自身が完全に落ちていました。同様のことは前回のM33の撮影の時も起きていたので、やはりLess is more電源でもまだ不安定な可能性があると考え、AC出力ができる大型リチウムバッテリーにStickPCに付属のType C出力のACアダプターを使うことにしました。また不安定になることが怖くてあまり負荷はかけていませんが、少なくともこの日はこれ以降落ちることはありませんでした。

撮影中はなんとも優雅な時間でした。周りに誰もいない一人での撮影なので、妻から熊に気をつけるように言われていて、ラジオの音をガンガン鳴らし、車の中でTwitterで星仲間と繋がってました。たまに外に出て星を見て、寒くなると車に戻ります。ラジオからは昔の懐メロがかかっていて、誰もいないので大声で歌っていました。

オリオン座が高く上がってきたので、M42に移るか迷いましたが、途中のトラブルもあり撮影時間が中途半端になりそうだったので、結局そのままM45を撮影し続けることにしました。


画像処理について

明るい天体で、撮影時間も4時間越えと十分で、画像処理も楽でした。
  • フラットは前回同様、TSA-120の先にスーパーの白い袋を二重にして被せ、太陽が出ているときの部屋の中の影になっている白い壁を同ISO1600、ヒストグラムのピークが真ん中らへんにくる1/200秒で写しました。
  • フラットダークもそのまま同条件で鏡筒に蓋をして暗くして100枚撮影。
  • バイアスは以前撮った同ISO1600、最小時間の1/4000秒で100枚撮ったものから作ったマスターバイアスを使い回し。
  • ダークは冷蔵庫の中に入れ撮影したものを、IrfanViewを使い温度情報を引き出して確認して使いました。
画像処理はいつも通りPixInsightです。最近PixInsightを使う人が増えてきて、皆さん成果を上げています。日本ではかなり以前から蒼月城さんが動画と共にとても詳しい解説をしてくれています。最近でもNiwaさんが丁寧な解説記事を書いてくれていますし、M&Mさんはこれまでの画像処理方法から変えて100日でPIをマスターすると宣言して、PIであからさまによくなった結果を出してきています。

私は基本的にストレッチまではPIで、それ以降はPhotoshopに渡しています。星雲部を分離することができるのでStarNetを使うことも多く、背景の炙り出しに関してはずいぶん楽にできるようになってきました。その反面、恒星に対する無頓着さが目立ってきて、恒星の飛びや、合成時の不連続性が気になるようになってきました。まだ試行錯誤中ですが、今回特にスバルということで、とにかく恒星中心があまり辺にならないように気をつけてみました。具体的には蒼月城さんが動画で解説しているPinkstarを解決したり、ストレッチもAS一辺倒でなく、少し工夫しています。

ただ、やはりPIだけで処理してしまうのはまだ難しいので、途中からPhotoshopを併用します。操作性に関しては慣れのせいもありPhotoshopが楽です。その際、NikCollectionやDeNoiseなどの便利すぎるフィルターを使うことができるため、特にノイズ処理と細部出しにおいてPIでどこまで処理すればいいのか迷っています。

SCNRはわかりやすく効果も見えやすいのでいいのですが、TGVDenoiseに関してはまだ全然使いこなせていません。どうもボヤッとしてしまうのを避けきれなくて、うまくいった時のDeNoiseには及ばない気がしています。細部出しに関しても、LHEを何度か試していますが、実際に適用するまでに至っていません。PIでのマスク処理に関しては少し慣れてきたので、LHEとの組み合わせも結構目処はついてきていますが、ストレッチとStarNetの分離、PSへの引き渡しとを考えるとどのタイミングで細部出しをすればいいのかまだ迷うところです。

これと同様に、MorphologicalTransformation(MTF)を使った星像のシャープ化もどのタイミングでやるのかを迷っています。やはりPSに渡す直前でしょうか。でもできるならPSで処理した結果を見てMTFを適用するか決めたいのですが、またいちいちPIに戻るのもPSのレイヤー構造などが全て破棄されるので、躊躇してしまいます。今回はMTFは無しです。

また、いつも使うStarNetも今回は使っていません。使わなかった理由ははっきりしていて、一度StarNetで分離したら青い分子雲の中の恒星が分離できなくて、処理を進めると周りの恒星との輝度に明らかな違いが出てしまったからです。そのため一旦戻ってStarNet無しで進めることにしました。分子雲を含めた背景はStarNetありで進めたものを保存しておいて、StarNetなしで同等程度にすることを目標としました。こうやって同じ画像で処理し直すと、StarNetで分離したときにいかに楽に処理できていたかが実感できます。また恒星部に関しては、StarNetありだとよく言えばシャープ、悪く言えば貧弱になるので、今回のStarNetなしの場合は多少ボテっとしますが、微光星まで出ているのかと思います。

あと、これまで背景の暗黒帯をあまり出してこれなかったので、今回少し目立たせるようにしました。でも結果を見ると、もう少し出してもいいくらいなのかもしれません。

上のオレンジの恒星はアクセントになるので、撮影時から構図に気をつけました。この画角だとギリギリ入るくらいでしょうか。 


結果

最近思うのは、2時間と5時間の撮影時間では結果に大きく差が出るのではということです。特に暗部のノイズに差が出るので、結果として仕上がり具合が違ってくるようです。今回は4時間越えで、そこそこの時間をかけています。結果ですが、下のようになります。

「M45プレアデス星団(すばる)」

masterLight_integration_DBE1_PCC_HSV_AS_PIP_all6_cut

  • 撮影日: 2020年11月21日23時12分-4時52分
  • 撮影場所: 富山県富山市伏木
  • 鏡筒: タカハシ TSA-120 (口径120mm, 焦点距離900mm) + 35フラットナー
  • 赤道儀: Celestron CGEM II
  • センサー: Canon EOS 6D HKIR改造
  • ガイド: PHD2 + 120mmガイド鏡 + ASI290MMによるディザリング
  • 撮影: BackYard EOS, ISO1600,  露光時間: 300秒 x 51枚 = 4時間15分
  • 画像処理: PixInsight、Photoshop CC, DeNoise
どうでしょうか?少なくとも、前週に飛騨コスモス天文台で撮影した微妙な光条線付きのものよりはもう全然マシで、青い分子雲に関しても刷毛で書いたような模様が綺麗に出ています。細かいところはまだ手を入れ切れてないところもあるのは十分承知ですが、私的にはそこそこ満足です。

Annotatinon付きの画像です。

masterLight_integration_DBE1_PCC_HSV_AS_PIP_all6_cut_Annotated


ちなみに、4年前のM45が下の画像です。

New5_histgram_digital_ps_SI_print

とにかく背景を出したくてかなり無理をしていました。それでもいまだに色は嫌いではありません。一見よく見えるかもしれませんが、画像をクリックして拡大してみて下さい。ノイズがすごく目立ち、これを見ると今回の撮影で4年経った進歩を感じることができます。


エピローグ


帰り道、立山連峰を見たらものすごく綺麗でした。これだけきれいに見えるということは、透明度は良かったんだなあと思いながら、午前6時頃には自宅に到着。近場は楽でいいです。この日の撮影は仮眠を取らなかったので、ベットに入るとすぐに寝てしまいました。

IMG_1244

 

先週のC8での黒点撮影に引き続き、とうとう大きな黒点が出てきました。これをC8で撮影してみました。




大きな黒点出現、でも撮影できなくてヤキモキ

冬季は日が短いせいもあり、仕事があると週末以外なかなか太陽を撮影することができません。せっかく先週やっとC8で格安大口径太陽Hα撮影プロジェクト(長い...)が立ち上がったというのに、今週末は富山は完全に雨の天気予報でした。何度SCWを見返しても土曜は雨雲だらけ、日曜はもしかしたら曇りくらいかもと言った感じで、太陽のためだけに太平洋側の名古屋まで撮影に行こうかと思っていたくらいです。


奇跡的に晴れ間が!

ところがところが、今日土曜の午前11時半くらいから少し外が明るくなってきて、思わず外に出てみると一部に青空があるじゃないですか!しかも雲の流れる方向を見てると、ちょうど青空で抜けているところが太陽方向に向かっているような感じです。まだ地面も今朝の雨で濡れていたのですが、急いで準備を始めました。先週のセットアップがまだ残っていたので、準備はすぐにできます。

IMG_1250
こんな感じでC8にPSTがくっついています。
ちなみこれは先週日曜に準備したときに撮った写真です。
準備完了とともに曇り始めました。天文あるあるです。


IMG_1282
午前11時48分、間も無く雲から太陽が出るところです。

11時40分に準備開始で、ファイルの時刻を確認したら11時51分には撮影してました。

IMG_1284

すごい!こんな大きな黒点は初めてです。しかもC8の解像度も相まって、物凄い仕上がりになりそうです。

実際の撮影時間はわずか10分程度。すぐに全面雲がかかってしまい、撤収です。撤収後間も無く、雨がパラパラ降ってきました。本当に一瞬のチャンスでした。片付け終わったのが12時15分くらいなので、準備から撮影して片付けまでわずか30分ちょいでした。

IMG_1285


すごい解像度!

早速画像処理です。普段はAutoStakkert!3の後にImPPGを使うのですが、今回はもっと細部を出したくてRegistaxにしてみました。細かい調整が効くので、解像度が高いファイルの場合はRegistaxの方が良い結果が出るようです。下がその結果です。大きな黒点であることもあり、ここまでくっきり見えるなら私的にはかなり満足です。

11_51_38_lapl3_ap2313_RS

  • 鏡筒: Celestron C8、口径203mm、焦点距離2032mm、F10
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM
  • 撮影ソフト: SharpCap 3.3beta (64bit)
  • 撮影時間: 2020/11/28 11:51 ser形式でgain 300, 10ms x 2000フレーム中上位30%を使用
  • 画像処理: AS3にてスタック、Registaxで細部出し、PhotoshopCCで後処理

中心部は申し分のない解像度が出ているのかと思います。一方、ノートリミングなので、中心部以外はPSTのエタロンの性能が悪いせいと思われますが、かなりボケてしまっています。もしかしたらC8とPSTの相対的な位置の問題で、強度の収差が出ている可能性もあります。今後詰めていきたいと思います。

カラー版です。

11_51_38_lapl3_ap2313_RS_color

あと、前回撮影した黒点も撮っておきました。比較すると全然大きさが違い、今回の黒点がかなり大きいのがわかると思います。

11_52_49_lapl3_ap484_RS2


まとめ

今回は撮影時間が10分ほどとかなり制限されていたので、まだ条件など攻めきれていません。太陽活動がどんどん活発になっているようで、今後の撮影がますます楽しみです。

焦点距離の短い全体像も合わせて撮っておきたいのですが、PSTだとエタロンの精度の都合上全面でHαで写すのはなかなか難しいと思われます。本当は良い機材が欲しいのですが、太陽の沼はそれこそ深すぎるので、今のところはまだ自重しようと思ってます。

 

とうとうC8にPSTを取り付けて口径20cmで太陽のHαを撮影することに成功しました!


太陽光を見ることの危険

(初記事で興奮のあまり安全性について書くのを完全に失念していました。追記しておきます。)

太陽を望遠鏡で見ることは大変危険です。特に、望遠鏡で集められた光を目で見るようなことは失明に直結するの恐れがあります。

本記事では太陽望遠鏡の改造について記述してありますが、私は改造をしてからはアイピースなど、目で覗くようなことはしていません。カメラで見るのみにして、これを頑なに守っています。

改造しても壊れていないからいいとか、自分は大丈夫など、絶対過信することなく、メーカー推奨以外の改造をしたら万が一のことは十分に起こり得ると覚悟し、決して目で覗くようなことはしないでください。ましてや、改造した太陽望遠鏡を観望会などで他人に覗いてもらうなどということは、自己責任の範囲超えていますので絶対にやめてください。他人に何か事故を負わせたときに取り返しのつかないことになる恐れがあります。

さらに本記事では大口径鏡筒使い、集光力を高めているため、発熱、火事などの危険も伴います。もし同様のことを試す場合にも、くれぐれも安全には気をつけて、自己責任の範囲内でテストするようにしてください。

くどいようですが、繰り返し書いておきます。

改造した太陽望遠鏡は決して
安全なものではないです。
もし太陽望遠鏡を改造する場合は、
絶対目で覗くことのないよう、
また火事などの事故にも気をつけて、
自己責任の範囲内で楽しむに留めて下さい。

なお、本記事では太陽望遠鏡の改造について記述してありますが、決して改造を勧めることを意図してはいません。あくまで自己責任の範囲内で、アマチュア天文機材の可能性をテストしているだけです。もし同様のことを試される場合も、くれぐれも自己責任の元でテストするようにして下さい。


口径と分解能

これまで撮影で使ってきたのは10cmの屈折なのですが、口径で分解能が支配されているのはわかっています。分解能を上げるためには口径を大きくするのが一番近道なのですが、以前熱問題でフィルターを割って以来、かなり慎重になっていたのと、長らく太陽の活動が停滞していたので、なかなか試す気になれませんでした。

最近太陽も活動期に入りつつあり、黒点もかなりの頻度で出ています。先月今月、2度撮影しましたが、まだ黒点も小さく今の分解能では細かく見えないのでいまいちパッとしません。なんとか分解能のいい黒点撮影ができなかと思っていました。


車用の遮光フィルム

今回まず試したのが、遮光フィルムです。ホームセンターで車の窓用に売っているものです。とりあえず透過率が13%と謳っているのを買って試してみました。

IMG_1235

とりあえずテストなのでかなり適当につけてあるのですが、取り付け方が全く問題にならないくらいに実際の映像は全然ダメ。ボケボケです。これはピントが合っていないとかではなく、どうも光が拡散されて迷光が多くなりすぎているようで、コントラストが著しく落ちたような状態です。その証拠にエタロンを回すとゴースト光が動いているように見えてしまいます。フィルターで反射しているのかとか思い、元々付けていたMARUMIの赤のR2フィルターを外したり、手持ちのカメラ用のUVカットフィルターに変えたり、HαフィルターをCMOSカメラに付けたりしたのですが全然ダメです。


UV/IRフィルターが救世主に

外で撮影しながら悩んでいるとき、たまたま何日か前に頼んでいたSVBONYの2インチのUV/IRフィルターが配達されてきました。これはもともとは夜の撮影用で、TSA-120で少し赤外と思われるハロが出たので、それを回避するためのものです。ダメ元でと、とりあえずこのフィルターを入れてみると、まだまだボケてますがそれでも像が多少マシになります。これまでのR2フィルターでは迷光が取り切れていなかったものと思われます。

いずれにせよこの時点でフィルムは使い物にならないと判断し、取り外しました。その代わりにC8の対物側の蓋を取り付け、少しだけずらして光をいれてCMOSカメラで像を見てみるということをしてみました。するとこれまでコントラストが全くダメだったものがものの見事に改善されたのです。やはりフィルムが悪さをしていたようです。

さらに気づいたことが、これまでの10cm屈折でやっていた時より、カメラに到達する光の量が全然小さいことです。これは10cm屈折で撮影するときの露光時間とゲインと比較することでわかります。少しづつ蓋をずらしていって光の量を見ますが、最後まで蓋を外しても、口径20cmにもかかわらず、口径10cmの時の光の量と同じか、むしろ少ないくらいです。違いはR2フィルターかUV/IRカットフィルターかの違いです。どうやら今回のUV/IRカットフィルターはR2フィルターに比べて、太陽光を4分の1以下にするようです。

ここで心配になったのはフィルターの温度です。透過量が少なくなったので、その分熱くなってるのかと思いましたが、全然熱くありません。普通に触って少し暖かいかなというくらいです。ということはフィルター部でエネルギーを吸収しているのではなく、光のかなりの部分を反射していることになります。これで少し安心して、試しに撮影してみることにしました。

全然関係ないですが、最近SVBONY製品を使うたびに「SVBONY」が「走れジョリー」の主題歌にのって頭でずっと回ってます(笑)

♪♪
SVBONY トゥルルル、ルルルル、ルルルル、ルルルル
SVBONY トゥルルル、ルルルル、ルルルル、ルルルル
テケテケテケテケ、テケテケテケテケ、S、V、BONY

と言った感じです。今日はSVBONYのフィルターのおかげで解決したのでさらに激しく頭の中で鳴り響いています。


口径20cmでの撮影結果

まずは蓋を半分ずらした状態で2000フレーム。フィルターの温度も、カメラに入る光量も全然問題なさそうなので、次に蓋を全部外して2000フレームです。画面を見ている限り分解能には明らかな違いがありそうです。

その後画像処理をしたのが下の画像です。少なくとも私にとっては初めてみるような物凄い分解能です。さすがに口径20cmの威力と言ったところです。この結果にはさすがに満足です。

15_02_16_lapl3_ap504_IP2_cut
  • 鏡筒: Celestron C8、口径203mm、焦点距離2032mm、F10
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM
  • 撮影ソフト: SharpCap 3.3beta (64bit)
  • 撮影時間: 2020/11/21 15:02 ser形式でgain 300, 10ms x 2000フレーム中上位50%を使用
  • 画像処理: AS3にてスタック、ImPPGで細部出し、PhotoshopCCで後処理
カラーにしたものも載せておきます。

15_02_16_lapl3_ap504_IP2_color_dark_cut


同日の10cmでの結果

ちなみに、C8を試す前に10cm屈折で比較参照のために撮影しておいたものが下です。2時間半くらい前の撮影で、その後ホームセンターに遮光フィルムを買いに行きました。

実はこの日はシンチレーションがかなり良かったようで、10cmでもかなり綺麗に撮影できています。

12_19_28_lapl5_ap2515_IP

12_24_13_lapl5_ap2545_IP
  • 鏡筒: 国際光器マゼラン102M、口径102mm、焦点距離1000mm、F10 アクロマート
  • エタロン: Coronado P.S.T.
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI290MM
  • 撮影ソフト: SharpCap 3.3beta (64bit)
  • 撮影時間: 2020/11/21 12:19(上)、12:24(下)、設定はともにser形式でgain 300, 10ms x 5000フレーム中上位50%を使用
  • 画像処理: AS3にてスタック、ImPPGで細部出し、PhotoshopCCで後処理
特に、2枚目新しく出た小さな黒点は、プロミネンスからダークフィラメントも伸びていて、長いこと撮りたかったものの一つでした。ただし、黒点自身が両方ともそもそも大きくはないので、やはり細かくは見えません。

試しにC8で撮ったものと同じくらいの拡大率で見てみると、明らかに分解能の違いが分かります。

12_19_28_lapl5_ap2515_IP_cut

わかりやすいように、黒点部分を拡大して並べてみます。左が口径20cmのC8、右が口径10cmの屈折です。

comp


やったー!

10cmと20cmの撮影結果は、撮影時間に2時間半くらいのズレがあること、ピント位置とエタロンの調整が必ずしも一緒でないことなど、条件も完全には一致していないのですが、それを差っ引いてもあからさまな差があります。20cmの圧勝です!

惑星もそうですが、動画での超多数枚のスタックはシンチレーションの影響などを軽減することができるので、口径の差がそのまま結果に反映されることが多いです。今回も多分にもれず口径を大きくした効果がそのまま出るような結果になったと思います。

この大口径太陽Hα望遠鏡プロジェクトは、ジャンク製品を多用しものすごく安価に仕上げています。多分値段を言うと、真剣に太陽をやっている方から怒られてしまうような額かと思います。その代わりに、性能はPSTのエタロンやブロッキングフィルターの精度や大きさに依存し、綺麗に見える範囲は大きくはありません。アイデア次第で光学機器の性能を上げるのはアマチュア天文の醍醐味の一つだと思っていますが、それゆえ別の面での性能の制限もあることをご理解いただければと思います。

それでも今回の結果はとても嬉しいものでした。

2年越しの計画がやっとできたー!!

これからの太陽活動期が楽しみになってきました。どんどん撮影していきます。


このページのトップヘ