ここしばらくは別の記事でしたが、再び実画像のノイズ解析です。前回の記事はこちらになります。


ここまでで、画像1枚の中にある各ノイズの貢献度が定量的にわかるようになりました。


また天体部分の信号にあたる大きさも定量的に評価でき、S/Nが評価できるようになりました。


S/Nは1枚画像では評価しきれなかったので、スタック画像で評価しましたが、あくまで簡易的な評価にすぎません。簡易的という意味は、ダーク補正はフラット補正でノイズの貢献度がどうなるかをまだ評価できていないということです。

今回の記事では、ダーク補正やフラット補正で画像の中にあるノイズがどうなるかを評価し、他数枚をインテグレートしたときに信号やノイズがどうなるのかを議論してみたいと思います。


スタック(インテグレーション)

そもそも、天体写真の画像処理で言うスタック(PixInsightではインテグレーションですね)とはどういったことなのでしょうか?

基本的には以下のように、重ね合わせる枚数に応じて、信号SとノイズNで、それぞれ個別に考えることができます。
  1. 画像の天体などの「信号部分」Sに関しては、多数枚の画像同士で相関がある(コヒーレントである)ので、そのまま足し合わされるために、信号Sは枚数に比例して増えます。
  2. 画像の天体以外の「ノイズ部分」Nに関しては多数枚の画像同士で相関がない(インコヒーレントである、コヒーレンスが無い)ので、統計的には2乗和のルートで重なっていきます。例えば5枚のノイズNがあるなら、sqrt(N^2 + N^2 + N^2 + N^2 + N^2) = sqrt(5) x Nとなるので、√5倍となるわけです。
そのSとNの比(S/N、SN比、SNR (Signal to Noise ratio))を取ることで、スタックされた画像がどれくらいの質かを評価することができます。S/N等は技術用語ですが、ある特殊分野の技術単語というわけではなく、かなり一般的な単語と言っていいかと思います。

n枚の画像をスタックすると、1の信号Sのn倍と、2のノイズNの√n倍の比を取ると、
  • S/N = n/sqrt(n) = sqrt(n)
と√n倍改善されるということです。

よくある誤解で、スタックすることでノイズが小さくなるという記述を見かけることがあります。ですが上の議論からもわかるように、ノイズが小さくなっているわけではなく、実際には大きくなっています。ノイズの増加以上に信号が増えるのでS/Nがよくなるということです。また、スタックするという言葉の中には、足し合わせた輝度をスタックした枚数で割るという意味も含まれていることが多いです。S/Nが良くなった画像をスタックした枚数で割ることで1枚画像と同じ輝度にした結果、1枚画像と比較してノイズが小さい画像が得られたということです。

もちろん、こういったことをきちんと理解して「スタックすることでノイズが小さくなる」と略して言うことは全く構わないと思います。ただ、定性的にでもいいので、どういった過程でスタックが効いてくるのかは、理解していた方が得することが多いと思います。


ダーク補正

天体写真の画像処理でも一般的な「ダーク補正」。一番の目的はホットピクセルやアンプグローなど固定ノイズの除去です。ホットピクセルは、センサーがある温度の時に撮影すると、いつも決まった位置に飽和状態に近い輝度のピクセルが現れることです。ホットピクセルの数は温度とともに多くなると思われます。アンプグローはセンサーの回路の配置に依存するようです。これが温度とどう関係があるかはほとんど記述がなく、よくわかっていません。ホットピクセルやアンプグローなどは、どのような過程、どのような頻度で出るのかなど、カメラに依存するところも多くあり、私自身あまりよくわかっていないので、今回は詳しくは扱いません。いつか温度とホットピクセルの関係は実測してみたいと思います。

ダーク補正でダークノイズは「増える」:
これまたよくある誤解が、ダーク補正をするとダークノイズが小さくなると思われていることです。ここで言うダークノイズとは、ダークカレント(暗電流)がばらつくことが起因で出てくるノイズのことです。ダークカレントとは、センサーに蓋をするなどしていくら真っ暗にしても出てくる一定の電流からの信号のことで、センサーの温度によって単位時間あたりの大きさが決まります。この信号のバラツキがダークノイズとなります。最近はメーカのカメラのところにデータが掲載されているので、そこからダークカレントを読み取ることができ、これまでもその値からダークノイズを計算し、実測のダークノイズと比較して正しいかどうか検証してきました。

何が言いたいかというと、ダーク補正をするとホットピクセルは除去できるが、ダーク補正ではどうやってもダークフレームが持っているダークノイズ(ホットピクセルでないラインダムなノイズの方)は消すことができなくてむしろ必ず増えるということです。

さらにいうと、個々のダークファイルには当然読み出しノイズ(Read noise)も含まれているので、ダーク補正時に読み出しノイズも増やしてしまうことにも注意です。読み出しノイズの増加については、次回以降「バイアスノイズ」という記事で、独立して説明します。

コヒーレンス(相関)があるかないか:
ホットピクセルは、個々のダークファイルに全て(ほぼ)同じ位置、(ほぼ)同じ明るさで出てくる、輝度が飽和しかけているピクセルのことです。アンプグローもカメラが決まれば同じ位置が光ます。どのファイルにも同じように明るく出てくるので、ばらつき具合は(中間輝度を基準とすると)全て正の方向で、互いに正の相関があり ( =「相関がある」、「コヒーレンスがある」、「コヒーレント」などとも言う)、全て足し合わされます。

一方、ダークカレンと起因のダークノイズはランダムなノイズです。個々のダークファイルのある一つのピクセルに注目して、全てのファイルの同じ位置のピクセルの値を見てみると、全ファイルのそのピクセルの輝度の平均値を基準として、個々のファイルの輝度の値は正負がバラバラになります。このことを相関がない ( =「無相関」、「コヒーレンスがない」、「インコヒーレント」などとも言う)といい、それらの値を全て足し合わせると正負なのである程度打ち消しすことになります。

ノイズの数学的な定義:
個々のダークファイルの画像のある面積を考えてみましょう。その面積の中の輝度も、平均値を中心に正負がバラバラで、その大きさも「ばらつき」があります。この「ばらつき具合」がノイズそのものです。数学的には面積内の各ピクセルの値から平均値を引いて、2乗して足し合わせたものを統計用語として「分散」と呼び、そのルートを「標準偏差」と呼びます。この標準偏差をここではノイズと呼ぶことにしましょう。

ここで注意ですが、ある面積を選ぶ時にはホットピクセルやアンプグローを含めてはいけません。ホットピクセルやアンプグローは背景のダークに比べて格段に明るく、特にホットピクセルは飽和気味の場合も多いのでで、そもそもここで考えている統計に従いません。ホットピクセルやアンプグローなどの明るい固定ノイズを除いた領域でダークノイズを測定する必要があります。ちなみに、飽和気味のホットピクセルを含んで測定してしまうと、とんでもなくばらついているようなものなので、結果はノイズがとんでもなく大きく出てしまうということは、言うまでもありませんね。

ノイズの重ね合わせの直感的なイメージ:
あるダーク画像1枚のある面積のノイズがNだったとします。他のダーク画像も同様にノイズNがあるとします。このダーク画像を例えば2枚足し合わせると、個々のピクセルは正負バラバラなのである程度打ち消します。その打ち消し具合は統計的には無相関の場合は「2乗和のルート」で合わさることになります。この場合2枚なので、
  • sqrt(N^2+N^2) = √2 x N
とルート2倍になります。正負で打ち消すということで、2倍にはならずに、元から減ることもなく1倍以下にもならなくて、結局その中間くらいということは直感的にイメージできるかと思います。

負の相関について:
あと、負の相関も考えておきましょう。ある画像で特徴的な形で明るい部分があるとします。もう一枚の画像では同じ形ですが、1枚目の明るさを打ち消すようにちょうど逆の暗い輝度を持っているとします。2枚の画像を足し合わせると、正負で、しかも明るさの絶対値は同じなので、ちょうど打ち消すことができます。このようなことを互いに「負の相関がある」と言います。でも天体写真の画像処理の範疇ではあまりない現象なのかと思います。


ダーク補正の定量的な扱い:
実際の画像処理では、ダーク補正というのはライト画像からマスターダーク画像引くことです。マスターダークファイルとは、個々のダークファイルを複数枚重ねて、輝度を元と同じになるように枚数で割ったものですから、 個々のダークノイズをNとして、n枚重ねて、輝度を枚数nで割ったとすると、マスターダークファイルのダークノイズ
  • N_ masterはsqrt(n x N^2) / n = 1/√n x N
となり、元のノイズのルートn分の1になります。

各ライトフレームにも当然ダークノイズは含まれています。ダーク補正をする際に、各ライトフレームのダークノイズと、マスターダークファイルに含まれるダークノイズは、ここまでの議論から2乗和のルートで「増える」ことになります。

1枚のライトフレームのダーク補正:
個々のライトフレームがマスターダークファイルで補正されると、補正後のダークノイズは
  • sqrt(N^2+N_ master^2) = sqrt(N^2+(1/√n x N)^2) = N x sqrt(1+1/n)
となり、sqrt(1+1/n) 倍にごく僅か増えます。

ダーク補正されたライトフレームのスタック:
これらのダーク補正されたライトフレームをスタックします。スタックの際、ライトフレームに元々あったダークノイズは個々の補正されたライトフレームでランダムに(無相関に)存在するので2乗和のルートで合わさり、輝度を揃えるために最後にライトフレームの枚数で割るとします。

マスターダークファイルで足された(ルートn分の1の小さい)ダークノイズは、スタックされる際に「(同じマスターダークファイルを使い続けるために)正の相関を持っている」ことに注意です。

2枚のスタック:
  • sqrt([sqrt(N^2+N^2)]^2 + [N/sqrt(n)+N/sqrt(n)]^2) = N sqrt(sqrt(2)^2 + [(2/sqrt(n)]^2) = N sqrt(2 + (2^2)/n) 
大外のsqrtの中の、1項目が無相関で2乗和のルートで足し合わさるノイズ。2項目が正の相関を持ってそのまま足し合わさるノイズ。それぞれがさらに2乗和となり大外のsqrtでルートになるというわけです。

3枚のスタック:
  • sqrt([sqrt(N^2+N^2+N^2)]^2 + [N/sqrt(n)+N/sqrt(n)+N/sqrt(n)]^2) = N sqrt([sqrt(3)^2 + (3/sqrt(n)]^2) = N sqrt(3 + (3^2)/n)

ライトフレームの枚数をnl枚として、
nl枚をスタックすると:
  • N sqrt([sqrt(nl)^2 + (3/sqrt(nl)]^2) = N sqrt(nl + (nl ^2)/n)

スタックされたライトフレームの輝度を、1枚の時の輝度と合わせるためにnlで割ると、上の式は少し簡単になって:
  • N sqrt(nl + (nl ^2)/n) /nl = N sqrt(1/nl + 1/n)
と ライトフレームの枚数nl分の1とダークフレームの枚数n分の1の和のルートで書ける、直感的にもわかりやすい形となります。

簡単のため、個々のライトフレームの枚数と、個々のダークフレームの枚数は同じnとしてみましょう。
n枚のスタックは:
  • N sqrt([sqrt(n)^2 + (n/sqrt(n)]^2) = N sqrt(n + (n^2)/n) = N sqrt(n + n) = N sqrt(2n)

となり、結局は「1枚当たりのライトフレームのダークノイズNがn枚」と「1枚当たりのダークフレームのダークノイズNがn枚」合わさったものと同じで、√2n倍のノイズとなります。

マスターダークを考えずに、ダーク補正をまとめて考える:
これは直接「n枚のライトフレーム」と「n枚のダークフレーム」のダークノイズを全て足し合わせたものを考えることと同等で、実際に計算してみると
  • sqrt(n x N^2 + n x N^2) =  N sqrt(2n)
と、1枚1枚処理した場合と同じなります。数学的には
  1. 事前にマスターダークを作ってから個々のライトフレームに適用しても、
  2. 全てのダークノイズをライトフレーム分とダークフレーム分を一度に足しても
同じ結果になるということです。これは直感的にわかりやすい結果ですね。

重要なことは、たとえ頑張ってライトフレームと同じ枚数のダークフレームを撮影して補正しても、補正しない場合に比べてノイズは1.4倍くらい増えてしまっているということです。もっと言うと、補正しない半分の数のライトフレームで処理したものと同等のダークノイズになってしまういうことです。ホットピクセルを減らすためだけに、かなりの犠牲を伴っていますね。

枚数が違うダークフレームでの補正:
例えばある枚数のライトフレームを枚数が違うダークフレームで補正する場合を具体的に考えてみます。

例えば10枚のライトフレームと、同じ露光時間とゲインのダークフレームが10倍の100枚あるとするとします。ダークノイズ起因のS/Nはライトフレームは1/√10=0.316となり、ダークフレームでは1/√100 =1/10となります。ダーク補正したライトフレームは
  • sqrt(1/10+1/100)=sqrt(11/100)=√10/10=0.332
となり、ダーク補正する前の0.316よりほんの少し悪くなる程度に抑えることができます。同様の計算で、2倍のダークフレームだと約4分の1のノイズ増加、3倍のダークフレームがあれば約10分の1のノイズ増加に抑えられます。

では闇雲にダークフレームの数を増やせばいいかというと、それだけでは意味がなくて、他のノイズとの兼ね合いになります。画面のノイズがダークノイズで制限されていいればどの通りなのですが、例えば明るい空で撮影した場合にはノイズ全体がスカイノイズに支配されていることも多く、こんな場合にはダークフレームの枚数は少なくても、それによるノイズの増加は無視できるということです。


フラット補正

フラットフレームは一般的にライトフレームと同じゲインですが、露光時間は異なることが普通です。そのためフラット補正を真面目に計算すると、ダーク補正よりもさらに複雑になります。

ただし、ライトフレームの輝度はライトフレームの背景よりもはるかに明るいことが条件として挙げられるので、補正の際にフラットフレームの輝度を、ライトフレームの背景の輝度に合わせるように規格化する(割る)ので、ノイズに関してもその分割られて効きが小さくなると考えられます。

その比はざっくりフラットフレームの露光時間とライトフレームの露光時間の比くらいになると考えていいでしょう。最近の私の撮影ではライトフレームが300秒露光、フラットフレームが最も長くても10秒露光程度で、通常は1秒以下です。ノイズ比が30分の1以下の場合、2乗和のルートとなると1000分の1以下となるので、実際にはほとんど効いてきません。さらにフラットファイルも多数枚をスタックするので、スタックされたライトフレームと比べても、効きは十分小さく、無視できると考えてしまっていいでしょう。

ただし、暗い中でフラットフレームを作る場合はその限りではなく、ノイジーなフラットフレームで補正をすることと同義になるので、注意が必要です。ここでは、フラットフレームは十分明るい状態で撮影し、フラット補正で加わるノイズは無視できるとします。


まとめ

スタックとダーク補正でノイズがどうなるか計算してみました。理屈に特に目新しいところはないですが、式で確かめておくと後から楽になるはずです。

今回は計算だけの記事で、しかもスタックを1枚づつ追って計算しているので、無駄に長く見えるような記事になってしまいました。でもこの計算が次のバイアス補正のところで効いてきます。ちょっと前にX上で黒天リフさんがバイスについて疑問を呈していましたが、そこらへんに答えることができればと思っています。