ほしぞloveログ

天体観測始めました。

2018年12月

赤道儀のセッティングの記事のコメント欄で延々と続いていた、Advanced VXの時刻の保持の謎がやっと解けました。

わかってしまえば簡単なのですが、謎が解けるまでにいろんなことをやりました。このブログは自分の天文関連の日記のような役割もあるので、読んでくださる方にはまためんどくさいことをと思われるかもしれませんが、一応失敗したことも含めて書いておきます。

IMG_5986
ハンドコントローラーの内部。
基板上に内蔵電池らしきものは見当たりません。(後述)


Celestron Advanced VXのアップデート手順

時刻の保持とは関係ないかもしれませんが、まずはファームウェアのアップデートです。はっきり言ってこの手順も分かりにくいですね。自己責任らしいのですが、他の方にも役立つかもしれないので、とりあえず試した順に書いておきます。
  1. 機器の接続ですが、ハンドコントローラー (NexStar+、以下コントローラー) と赤道儀本体は繋いでおいて、電源もいれておきます。コントローラーとPCの接続はRS232Cです。最近のPCでRS232Cがついているものは稀なので、USB-RS232C変換ケーブルなどを購入してつなぎます。RS232C端子とコントローラーは、赤道儀を買った時についてくる付属のRS232C-4pinモジュラー変換ケーブルで接続します。私はこのケーブルの存在を完全に忘れていて、過去に改めて買おうと思ったことがあるので注意が必要です。持っていないという方は箱の中を探してみてください。最初から付属しています。
  2. 一方ソフトの方ですが、CelestronのサイトからSUPPORT -> Manuals & Softwareに進み、Drivers & Softwareのページに行きます。その後たくさんあるソフトの中から適したものを選ばなければいけまえん。Hand Control Firmware Updatesとか、Motor Control Firmware Updatesとかそれらしい名前があるのですが、これらは古い機種用のアップデートツールみたいです。Advanced VXの場合は、Celestron Firmware Manager (CFM)を選びます。私がダウンロードしたのは2.3.7111というバージョンでした。
  3. ダウンロードしたzipファイルを解凍して、その中のCFM.jarファイルをダブルクリックします。あ、Windowsでしか動かないのと(追記: あれ?JAVAだから機種依存しない?未確認です。)、あと、JAVAがインストールされていないと実行できませんので、必ずJAVA(JRE)をインストールしておきます。
  4. ここまでできたら、あとは勝手にCFMが機器を認識してくれるはずです。最初ちょっとわかりにくかったのですが、コントローラーと赤道儀本体の「2つ」の機器が認識されたと出るはずです。一度のアップデートで、コントローラーと赤道儀本体の二つともアップデートしてくれます。
  5. うまく認識されたら、Updateボタンが押せるようになるはずなので、押します。12個のファイルをアップデートして終了です。
IMG_5993
アップデート時の様子。
この写真を撮っているときにケーブルを触ってしまい、
この後、失敗します。

ところがここでポカをやらかしました。12個目のファイルをアップデートしている最中にケーブルが外れてしまったのです。アップデートは当然停止、しかも赤道儀を立ち上げると「Bootloader invalid pkg: 0002」とかいうエラーが出て何もできなくなります。ここから迷走し出したのですが、Celestron Firmware Managerで機器が認識できない時に出る解説の通り、一旦赤道儀の電源を切り、コントローラーの左下のボタンと、すぐ上のMENUボタンを同時に押して、立ち上げなおします。「BOOT LOADER Serial User Keyoad Entry」とでて、本来これでファームウェアが壊れていても接続できる状態になっているはずなのですがなにをどうやっても接続できません。ファームが壊れて接続自身ができなくなったと思い込んでしまいました。

この段階で小一時間格闘して、別のPCを持ってきてやっと原因が判明しました。COMポートの自動選択がうまくいかなかったようです。最初のPCにはCOMポートが複数あり、うまくいった時は自動で赤道が繋がったものを見つけ出したようですが、うまくいかなくなった時はコントローラーが繋がっていないCOMポートを見ていて、その結果繋がらないというメッセージを繰り返していたというわけです。別のPCはCOMポートが一つしかなくて間違えようがなかったということです。Celestron Firmware Manager はCOMポートの選択を任意にできないようなので注意が必要です。

とにかく、ケーブルの接続に注意して再びアップデート。今度はうまく行きました。バージョンを見てみると
  • HC:GEM 5.28.5184
  • MC:7.11.4244
から
  • HC:GEM 5.29.7137
  • MC:7.15.8270
にアップデートされていました。 HCはハンドコントローラーのこと、MCがモーターコントローラーで赤道儀のことを表しているとやっと理解できました。

ファームウェアは日本語が含まれるものと含まれないもの2種類あるのは、以前CGEMIIをアップデートした時のブログのコメントでの情報で知っていましたが、今回は自動的に日本語が含まれるファームが適用されました。
 
IMG_5995
 


時刻の保持

やっと今回のメイン記事に当たるのですが、ここでも結構手こずりました。無駄なことも含まれてますが、やったことを書いておきます。

  1. アップデート後、一旦アラインメントで時刻を設定し、再度立ち上げなおして時刻が保持されるか確認しましたが、時刻は最初に設定した時のままで進まず。
  2. アップデート時に工場出荷時にされますが、りっくんさんがされたようにあえて再度工場出荷時にリセット。それでも同じで、立ち上げた時に設定した時刻が残るのみです。
  3. いろいろ触っていて一つ気づきました。「MENU」ボタンを押して上下ボタンを適当に押すと出てくる「時刻・場所の表示」です。これを押すと「位置を記憶」というのが出てきます。ここでEnterを押してやると、その時の時刻が保存されるようです。でも時刻が進むことはありません。でも保存時刻をコントロールできることはこの時点でわかりました。
  4. 半分諦めかけて、昼食を食べ買い物に行って帰ってきてから、後片付けの前に最後にと思って「advanced vx time keep」で検索してCloudy nightsでやっと答えが見つかりました。「MENU」ボタン -> ユーティリティー -> RTCのON/OFFです。RTCとはReal Time Clockとのことで、これをオンにすると内部時計が電源を切っても進み出します。
  5. でもこれもなかなか曲者で、時刻を合わせても、なぜかRTCをオンにすると「現地時刻」が30分くらいずれてしまいます。諦めずに、再度工場出荷時にリセットし、最初の時刻を合わせ、RTCをオンにし、30分くらいのズレが出ても「MENU」ボタン -> スコープセットアップ -> 時刻・場所の設定で時刻を合わせなおして、やっと現地時刻が正確な時間になりました。
  6. 確認方法は、赤道儀のスイッチを入れた時に、これまで時刻を合わせていたところで突然場所の設定が表示されてしまいます。ここでビビらずに、下ボタンを押すと現地時刻が表示され、しかも時間がリアルタイムで進んでいるのが分かります。

幾つか不具合や謎らしきものも見受けられました。
  • ユーティリティー -> スコープセットアップ -> 時刻・場所の設定でtoyamaを選択してもなぜかakitaになってしまう。何度かやったらやっとtoyamaになりました。
  • Cloudy Nightsによると、しかも電池(CR2032)もあると。前回ネジを外してカバーを取って基板を見ても見つからなかったので、今一度、裏表も含めてきちんと見てもやはり見当たりません。2032なら大きいのですぐに見えるはずなのですが、不思議です。
  • 内部電池が見えないので、まさかと思って一旦ハンドコントローラーも赤道儀も電源ケーブルも全て外してしばらくしてから再接続し、再起動しましたが、時間は保持しているようです。何かどこかに時間を保持する電力があるはずなのですが、今のところ不明です。(追記: Twitterで情報がありました。電池は赤道儀本体側にあるとのことです。)

とはいえ、やっとAdvanced VXの時刻保持の謎が解けました。結構長かったです。知っている人にとってはあたりまえのことかもしれませんが、りっくんさんもkiharaさんも私もそうだったのですが、このことに気づいていない人は意外にたくさんいるのかと思います。

外は大雪。こういったことに時間をかけられるのは、なかなか星の出ない北陸の冬だからこそですね。
 

クリスマスイブ。連休の最終日です。昼間は雲が多かったのに、なぜか夜は全面晴れ。次の日仕事でしたが、今週から雪らしいのでもうチャンスもなかなかなくなると思い、家族とのクリスマスパーティー後、下の子の「トランプやって!」の声を振り切って、21時頃から庭に機材を出しはじめました。この日の目的は、前回からの引き続きでQBPのテストです。満月後わずか2日目、まだまだ空は明るいです。一昨日のQBPのテストは輝度の高いM42オリオン座大星雲でしたが、もう少し淡い星雲はQBPでどのくらいまで撮ることができるのか見極めるのが今回の目的です。 


ターゲット天体

あまり夜遅くなると次の日の仕事に響くので、ターゲットは一つとしました。画角に当てはまることと、そこそこ淡く、月にそこまで近くないという条件から、
  • IC405 勾玉星雲とIC410
としました。それでも月から40度角ないくらいなので、比較的明るい領域と言えます。


機材セットアップ

 前回と同じセットアップです。ほとんど組み直すことなく使えるのですぐにセットアップできて楽です。
  • 鏡筒: タカハシ FS-60Q (口径60mm, 焦点距離600mm)
  • 赤道儀: Celestron CGEM II
  • センサー: Canon EOS 6D(HKIR改造)、ISO3200、露光時間3分x10枚、2分x11枚の計52分
  • ガイド: ASI178MC + 50mm Cマウントレンズ、PHD2 + BackyardEOSでガイド+ディザー撮影
  • フィルターサイトロン Quad BP フィルター(クアッド バンドパス フィルター、 以下QBP)
  • 日時: 2018年12月24日、22時頃から
  • 月齢: 17.2

撮影

前回のM42はISO1600、露光時間1分くらいが限界でしたが、今回はISO3200、露光時間3分での撮影が可能でした。ISOで2倍、時間で3倍で、前回と比べて計6倍明るく撮れている計算になります。
  • 月が満月よりは少し暗くなったこと、
  • 以前より月からもう少し(10数度角くらい)離れていること、
  • 色温度を6000度にして、青を落としてRGBのバランスをとったため、サチルまでに余裕が出たこと
などが理由かと思います。

露光時間を取れたのはいいのですが、その代わりに星が流れてしまうのでガイドありでの撮影になりました。前回は600mm、1分でガイドなしで大丈夫でしたが、3分になると流石にCGEMIIでもガイドなしでは少し流れてしまいます。それと、以前縞ノイズで懲りたので、PHD2とBackyardEOSの連携でディザーもしています。

そういえば最近またAstroTotillaを使ったPlatSolvingで画角を決めています。これ、ものすごく楽なので、またそのうちに一度記事にまとめたいと思います。

実際の撮影は、ぬくぬく自宅の中からリモートでと、至って快適でしたが、カメラの電池が切れてしまった夜中の1時頃、風も少し出てきたのでその時点で撤収としました。


画像処理


前回のM42の時の画像処理と大きく違うのが、フラット補正をしたことです。鏡筒の先にスーパーの袋を2重にしたものをつけて、PCの画面を明くして白で埋め、そこを1/100秒の露光時間で撮影しました。ISOはライトフレーム撮影時と同じ3200としました。

今回は赤い領域が全体に広がっていたので、PixInsightのDBEでは周辺減光を取ることが困難だったからです。今回のフラット補正は結構効果が大きくて、変なムラみたいなのも一切出なくなりました。基本的なことをサボっていたのがそもそもの問題なのですが、QBPを使うときにはフラット補正は必須かと思いました。これは一度きちんと検証したいと思います。

その後の画像処理はこれまでとそう変わりません。PixInsightで処理して、DBEで最後のカブリを取り、PCCで色を合わせて、ArcsinhStretchでストレッチします。その後、Photoshop CCで仕上げます。


撮影結果

撮影結果を示します。

light_BINNING_1_integration1_AS_DBE_cut


撮影時間が52分と長くはないため、ノイズがまだ結構残っていますが、満月2日後の、自宅庭からのお気楽撮影でこれだけ出ればまあ満足です。恒星の青もそこそこ出ています。

もちろん、新月期に遠征をして光害の少ない場所で撮影するよりは、撮影した素材画像のクオリティーは絶対悪いです。そのため、色バランスやフラット補正など、多少画像処理で苦労はします。それでも、自宅で気楽に撮影ができ、数がこなせることは何物にも代え難く、私的にはこのQBPは買ってよかったものの一つと言えます。


週末土曜日、満月の日。一晩中明るい月が出ていますが、北陸の貴重な晴れの日と、週末が重なったので、こんな日は絶好の機材のテスト日和です。

せっかくなので、先日シュミットで購入した月明かりでも撮影が可能だというQuad BP フィルターを試してみたいと思います。そこそこ写るなら遠征に行けない「平日」でも、「月」が出ていても、「自宅で気楽に」撮影を楽しむことができます。


セットアップ

  • 鏡筒: タカハシ FS-60Q (口径60mm, 焦点距離600mm)
  • 赤道儀: Celestron CGEM II
  • センサー: Canon EOS 6D(HKIR改造)
  • 日時: 2018年12月22日、22時頃から
  • 月齢: 15.2、満月
  • テスト対象: サイトロン Quad BP フィルター(クアッド バンドパス フィルター、 以下QBP)
少し困ったのが、QBPをFS-60Qにどうやって取り付けるかです。フィルター径は48mm。ところが、FS-60シリーズは回転装置の出口部分内側に52mmのフィルターネジが切ってあるため、48mm径のフィルターはそのままでは取り付けられません。いろいろ試してみると、回転装置と延長鏡筒の間に挟み込むと、ねじ込みや固定はできないのですが、うまい具合にピッタリはまって取り付けられそうです。

IMG_5912


コツは、フィルターのネジが切ってある側を鏡筒の対物レンズ側に入れ込むことです。こうしないと延長鏡筒を1-2回転くらいしかねじ込めなくて、不安定になります。まあとりあえず大丈夫そうなので、今回はこの状態で撮影してみます。


対象天体

M42 オリオン大星雲:
  • これまでなんども撮っているので比較しやすい。
  • 満月との距離が25度角程度とあまり遠くなく、この日は非常に明るい領域。
  • 肉眼で見ている限り、リゲルとベテルギウスはなんとか月の光に負けずに見える。3つ星はほとんど見えないくらい。

画像比較1: 同じ露光時間でQBPありなしでの比較


まずは、露光時間を同じにしてQBP有り、無しで比較してみます。JPEG撮って出し画像での比較です。

  • QBPなしの通常の撮影: ISO1600, 10秒露光
M42_LIGHT_6D_10s_1600_+8cc_20181222-22h07m33s760ms

10秒以上の露光だと明るすぎなので、これくらいまでしか露光できません。

  • QBPありでの撮影: ISO1600, 10秒露光
M42_LIGHT_6D_10s_1600_+14cc_20181222-22h21m29s692ms


同じ時間でもQBPフィルターがあると、当然の結果ですが随分暗くなることがわかります。


なお、上の2枚とも色温度設定が3200Kと低いので青が強く出てしまっています。


画像比較2: 露光時間を変えて背景明るさを合わせる

これもJPEG撮って出しです。
  • QBPなしの通常の撮影: ISO1600, 10秒露光(画像比較1と同じもの)
M42_LIGHT_6D_10s_1600_+8cc_20181222-22h07m33s760ms

  • QBPありでの撮影: ISO1600, 30秒露光
M42_LIGHT_6D_30s_1600_+10cc_20181222-22h28m12s224ms

  • QBPありでの撮影: ISO1600, 60秒露光
M42_LIGHT_6D_60s_1600_+8cc_20181222-22h37m16s270ms



実際の背景の明るさを比べると、最初のQBPなしの1枚と、後のQBPありの2枚を比べるとわかりますが、露光時間が3倍だとまだ少し暗く、6倍だとかなり明るいくらいなので、4倍程度の違いでしょうか。


QBPによる背景明るさの変化の簡単な推定


月の明かりが太陽の反射なので白色光に近いとして、太陽光のスペクトル

SunLightSpectrum-280-2500nm-J
(Wikipediaより引用)

にセンサーの感度曲線をかけたものと、さらに今回のQBPの透過率

qbpf_g
(シュミットの販売ページより引用)

をかけたものとの面積比を比較すると、この明るさの比になります。太陽のスペクトルは調べるとすぐにでくるのですが、EOS 6Dセンサーの感度曲線が調べても出てきません。しかも天体改造してあるので、さらに良くわかりません。

それでもものすごくざっくりとした見積もりをしてみます。太陽のスペクトルが350nmくらいから900nmくらいまではそこそこ一定とし、一般的なCOMSセンサーの感度も350nmくらいから700nmくらいまでは一定と考えます。そうすると、QBPの透過率がある部分が465-510nmと640-685nmくらいまでと読み取ります。それぞれ透過幅はともに45nmとなり、合計90nmです。透過率は95%と程度としますが、ざっくり1としてしまってもいいでしょう。すなわち、350nmのうち90nmくらい通すと考えてしまうと、90/350 x 0.95 = 0.24となり、QBPと通すと月の光で制限されるような背景の場合の光量は24%程度になるということです。言い換えると、1/0.24 ~ 4なので、露光時間が4倍くらいで同じ明るさになるということで、実際の撮影結果にもかなり合っています。

これとは別に、月明かりがない場合の人工光による光害が支配的な場合、露光時間をどれくらい伸ばせるかはまた興味深いところです。これは場所や光源の種類に大きく依存するはずですが、LED灯でも上記くらいの改善比、水銀燈やナトリウム灯ならかなり高い改善比が期待できるはずです。


画像処理をした場合のQBPの効果


さて、一番興味のあるフィルターの効果の確認ですが、画像処理をかけた場合を想定して比較したいと思います。できるだけシンプルでわかりやすくするために、PixInsightで1枚どりの上記RAW画像に
  1. ScreenTransferFunctionでLink RGB Channelsをオフにして各色のロックを外してからオートストレッチをかけて
  2. HistgramTransformationで実際に画像に適用し
  3. JPGで保存
というような工程をとりました。

上記工程で、上の3枚の画像処理したものを比較してみます。

  • QBPなしの通常の撮影: ISO1600, 10秒露光
M42_LIGHT_6D_10s_1600_+8cc_20181222-22h07m33s760ms

  • QBPありでの撮影: ISO1600, 30秒露光
M42_LIGHT_6D_10s_1600_+14cc_20181222-22h21m29s692ms

  • QBPありでの撮影: ISO1600, 60秒露光
M42_LIGHT_6D_30s_1600_+10cc_20181222-22h28m12s224ms


検討してみます。
  • まず、10秒という同じ露光時間のものでも、QBPありの方が構造がはっきり出ていることがわかります。
  • 次に、QBPありの場合はさらに露光時間を延ばすことができ、より構造が鮮明になります。
  • QBPなしとQBPありで思ったより色の変化がないです。これは意外でした。
最近シュミットから出たM42のデモ画像は、思ったより赤が出ていたので、青が相当出にくいのかと思っていましたが、そうでもないようです。他の方の例を見ても青は思ったより普通に出ていたので、青の出方に関してもそれほど心配ないというのが今回自分で試した上での感想になります。


簡易画像処理

QBPを通して撮った画像をスタックして、画像処理をしてみました。と言っても、結局雲間での撮影で、きちんと撮影できたのは60秒の露光でわずか18枚の、総露光時間18分の画像です。

画像処理はPixInsightでプリプロセッシング、(フラット撮影はサボってしまったので)DynamicBackgroundExtraction (DBE)で背景ムラを整えて、PhotometricColorCalibration (PCC)で恒星の色を合わせました。恒星の色がうまく出るか心配だったのですが、確かに少し近似直線上から分布がずれるきらいはありましたが、それほどおかしくないレベルで色は出ているのかと思います。

結果だけ示します。

light_BINNING_1_integration_DBE_CP_Stretched_cut

本当はもっとあぶり出したかったのですが、かなり大きなレンジ(空間周波数が低いという意味)での色むらが残ってしまっていて、背景を出すと目立ってくるので、ここら辺までに押さえておきました。この色むらはフィルターのせいなのか、総露光時間が足りないからなのか、はたまた雲が常時流れていてその合間を縫っての撮影なのでその影響が出てしまったのかなどの判断はまだできていません。

本当はM42の後、もう少し淡いカモメ星雲を撮りたかったのですが、雲が多くなってきて撮影できるレベルではなくなってしまったので、ここで撤収しました。


Quad Band Pass フィルターを使ってみて 

うーん、今回のQBPかなり良いのではないでしょうか。満月下でこれだけ遊べれば十分満足です。色が思ったより変わらなかったのも、私的には気軽に楽しめるので、いい点です。今回は雲のために実際の撮影時間が短かったのでちょっとしたテストくらいでしたが、長い時間かけてじっくり撮影してみたいです。

元々の目的が、平日で遠征などできないときに、自宅の庭で月明かりや光害下でも気軽に撮影が楽しめたらというものです。このくらいの目的ならば十分に達成できそうです。あとは、月がない環境で自宅の光害下でどれくらい効果があるかを試してみたいです。以前の結果からも、透明度がいいときはそこそこ撮影も楽しめるくらいの環境です。ただし、暗い天体は今の所、フィルター無しでは自宅庭からでは全滅です。このQBPでもう少し暗い天体も狙えるようになれば、購入しただけの価値は十二分にあります。また試してみます。


とうとう彗星に手を出してしまいました。

タイトルにもある通り、実はこれが生まれて初めて見た彗星になります。いつかはやってみたいと思っていましたが、これまで彗星はほとんど興味がなかったので、今回の46Pの盛り上がりはいい機会になりました。

冬型の天気でここ最近ずっと天気が良くなくて、週末も全く期待していなかったのに、なぜか土曜日12月15日は昼間も夜の天気予報もずっと晴れ。どうせ次の日はダメという予報(実際朝から曇りでした)だったので、この日しかないなら何か撮ろうと思って、せっかくだから地球最接近が次のに日になるウィルタネン彗星と、極大日が前日だったふたご座流星群を狙おうと決めました。


とりあえず今回はウィルタネン彗星2枚です。一つはNIKKOR-S 50mm f/1.4をf/4.0にして、アダプターでASI294MCに取り付けたものです。広角にしてヒアデスとプレアデスを入れてみました。赤、青、緑の対比が綺麗です。

integration_DBE1_PCC_AS
富山県富山市, 2018年12月15日21時11分
ASI294MC + NIKKOR 50mm f1.4を4.0で使用 + CGEM赤道儀
露出30秒x30枚 総露出15分 
PixInsight、Photoshop CCで画像処理

60枚以上撮影したのですが、実際に使ったのは30枚です。30枚に制限したのはこれ以上重ねると核の移動が目立ってしまうからです。流石に使ったのがオールドレンズだけあって無理も多く、4隅はコマがひどいです。50mmくらいのいいレンズも欲しくなってしまいます。



もう一枚はFS-60QにEOSの6Dをつけて、30秒x20枚で10分くらいの露光になります。こちらはPixInsightで彗星の核を基準に重ねました。

integration_SA_CA_DBE_stretched_cut
富山県富山市, 2018年12月16日0時54分
FS-60Q + CGEM赤道儀
EOS 6D(HKIR改造, ISO3200, RAW), 露出30秒x20枚 総露出10分 
PixInsight、Photoshop CCで画像処理

この時はまだテールが見える可能性があるなんてこれっぽっちも思ってなくて、10分間でも十分かと思っていたので、撮影したのは本当にこれだけでした。核を基準にスタックできると知っていたら、もっと長い時間撮影していたかもしれません。周りの恒星を流れなくする方法もあるようなのですが、かなりややこしそうなので、今回は見送りました。

処理のついでに、PixInsightのBlinkを使って、10分間分の20枚を動画にしてみました。10分でも結構移動していくのがあらためてよくわかります。



今回、彗星を見るのも撮影するのも初めてということで、とりあえず撮ってみた感が強いのと、あまりに寒くて自宅からの撮影にしたのでそれほど暗い空ではないため、テールはどう処理しても見ることができませんでした。テールを出すためにはどうやら分子雲が映るくらいでないとダメみたいです。光害もひどいでしょうし、露光時間も全く足りないということを後で知って、彗星を撮るのも星雲を取るのも必要なものは同じだと思い知らされました。他のFacebookや天リフでアップされている素晴らしいテールを見ていると羨ましくなってきます。いやー、彗星なめてました。さっそくリベンジしたくなってきました。また晴れてくれないかなあ。


あと、ふたご座流星群ですが、月が沈んでカメラを仕掛けて寝てしまいました。EOS 6Dに広角のSMAYANG 14mm F2.8をつけて30秒露光で撮り続けたのですが、流星が写ったのは139枚中わずか2枚。ここでアップする価値があるかわからないくらい小さなもので、雲がかかっているせいもあって、写真の中のどこに写っているか探すのも大変なので、トリミングしてみました。

20181216-IMG_2223 cut

20181216-IMG_2276_cut

しかも途中から薄雲が広がってきたりで、流星群の方は大した結果は得られませんでした。途中起きて見に行ったら寒くて電池切れになっていたのと、薄雲が目で見ても広がっていたので、これで撤収としました。 


テールは見えなかったなど、いろいろ不満な点もありましたが、それでも初めての彗星です。あんな綺麗な緑色が出るとか、結構移動するとか、画像処理もこれまでと違い、かなり楽しむことができました。

IMG_5898


 

赤道儀のセッティングの続きを少しだけ。初期アランメントで一発目に度くらいの精度で入ってくるかという話です。比較するのは、前回の記事で評価した

  • 水平インデックス法
  • 鏡筒水平法

の2通りの方法で実際どれくらいの誤差になりそうかというのを評価してみます。今回も極軸は十分な精度であっているとの仮定が入っています。あ、便宜上名前は勝手につけてしまいました。全然正式な名前ではありませんのでご了承ください。


水平インデックス法

1. 三脚の脚の長さででる水平度の誤差:
水準器を見ながら、最下部の脚の開きがざっくり1mくらいの幅で、手で3mmくらいの精度の脚の長さを合わせるのはできそうなので、
0.003[m] / 1[m] x 180[deg] / pi[rad] ~ 0.2 [deg] 

2. AVXの赤経体の直径が10cm(半径5cm)くらい、インデックスマークの幅が2mmくらいで半分の半分くらい幅の幅では少なくとも合わせられるとして、
(0.002[m] / 4) / 0.05[m] x 180[deg] / pi[rad] ~ 0.57[deg] 

3. 同じくAVXの赤緯体の直径が10cm(半径5cm)くらい、インデックスマークの幅が2mmくらいで半分の半分くらい幅の幅では少なくとも合わせられるとして、
(0.002[m] / 4) / 0.05[m] x 180[deg] / pi[rad] ~ 0.57[deg] 

4. 時刻の精度ですが、実際に時刻を打ち込んでからいつが赤道儀が動き出す最初かあまり確定していないのですが、30秒くらいの精度では合うとして、
0.5[min] / 60[min] / 24[h] x 360[deg] ~ 0.125[deg]


誤差は1から4までの2乗和のルートくらいになり、

sqrt(0.2^2 + 0.57^2 + 0.57^2 + 0.125^2) ~ 0.84[deg]

となります。この精度がどれくらいの意味を持つかというと、基本的にそのまま赤道儀の初期アラインメントの一発目がどれくらい中心からずれるかを示します。
  • 典型的な光学ファインダーの視野が、例えばVixenで7倍、50mmで実視界7度とのことなので、十分ファインダーには入るはずです。
  • 電子ファインダーで例えば、焦点距離50mm、1.8インチのASI178MCだと8度x6度と十分すぎる画角です。
  • 例えばFS-60Qで焦点距離600mmの鏡筒でフォーサーズサイズのASI294MCだと1.6x1.2度なので、まあなんとか入ってくるくらいです。
  • 例えばFS-60CBで焦点距離355mmの鏡筒で1/3インチのASI224MCだと0.8x0.6度くらいなので、ちょっと厳しいですね。


鏡筒水平法

一方鏡筒水平法では、誤差は結構変わってくるはずです。基本的に、三脚の脚の長さ調整の誤差と赤経のインデックスマークの誤差が、鏡筒においた水準器の精度に置き換わります。水準器の誤差はホームセンターで普通に売っている簡易なものでも簡単に0.1度くらいは出るようです。赤緯のインデックスマークの誤差は同じとします。全部の誤差を考えると

sqrt(0.1^2 + 0.57^2 + 0.125^2) ~ 0.59[deg]

くらいで、 
  • 光学ファインダーで電子ファインダーでも当然一発目で入ってきて、
  • 焦点距離600mmの鏡筒でフォーサーズサイズセンサーだとかなり真ん中に来て、
  • 焦点距離355mmの鏡筒で1/3インチセンサーでもなんとかギリギリ入ってくるくらいです。

確かにこのあいだの実際のテストでも、何度かやってみても鏡筒水平法の方が真ん中近くに来ていたので、あながち間違った見積もりでもないでしょう。

IMG_5887
水平インデックス法: 視野のギリギリで入るくらいです。入らない時もあります。

IMG_5895
鏡筒水平法: だいぶ真ん中に寄ります。視野に入らないことはまずありあません。

あと、鏡筒の光軸自身が赤道儀に取り付けたアリガタの向きからずれれている誤差は今回入れていません。これがずれていると、上の誤差以上のずれが出るかもしれませんが、見た目でそこそこ合わせているならそれほど大きくずれることはないでしょう。私は極軸を合わせた時に、カメラの視野の真ん中が極軸になるようにある程度光軸を合わせてあるので、実際に上の誤差よりも十分小さい範囲で合わせこまれていることになります。これはSharpCapで極軸調整した際に一回合わせてしまえば、それ以降アリミゾと鏡筒を外したりしなければあまりずれないので、一度はきちんと合わせておいてもいいかと思います。


いずれにせよ、水平インデックス法に変えて、鏡筒水平法にせよ、ファインダーレベルで一発目に入らないのはさすがに論外な誤差と言えるので、何か根本的におかしいと思っていいはずです。例えばりっくんさんは、AVXの設定を工場出荷時に戻したら、少なくとも一発目でファインダーに入るようになったというので、あまりに状況がおかしかったら他の原因を考えるのも解決につながるかもしれません。

先々週の赤道儀のセッティングの記事で、水平出しのことが議論になりました。コメントがいくつかあったのですが、かんたろうさんとその後もメールのやり取りをして、白熱した議論となりました。以後の議論では赤道儀の極軸は十分な精度であっていて、また、鏡筒も極軸と平行に設置されるものと仮定しています。

突き詰めていくと、今回の論点は、

  • Celestronの赤道儀Advanced VXで、ワンスターアラインメントでの初期アラインメントの時に、水平出しをしていることで、きちんと視野に入るかな入らないかに影響があるか?

というものになります。私は水平出しをしていなければ入らないという主張で、かんたろうさんは必ずしも水平出しをしていなくても、赤緯体が天頂方向を向いていれば、きちんと視野に入るというものです。

もう少し噛み砕いていうと、私はいつも赤道儀の水平出しをしてからインデックスマークを合わせるので、赤緯体は基本的に誤差の範囲内で天頂方向を向きます。かんたろうさんのは赤道儀の水平を出していなくても、赤緯体を天頂方向に向ければそれでよくて、その場合は赤経のインデックスマークが(水8兵からずれた分だけ)ずれた状態となるということです。赤緯体を天頂方向に向ける方法は、赤緯方向を90度傾けて鏡筒を東西に向ける。鏡筒の上に水準器を乗せて、赤経を調整して水平を出せば、赤緯体は天頂方向を向くというものです。

議論は平行線で、やはり実際に確かめなければ納得できなかったので、久しぶりに晴れた今日、試してみみました。

まずは、自分の方法できちんとワンスターアラインメントで入ることで、機器に異常がないかどうか確かめます。三脚についた水準器で赤道儀の水平を出し、

IMG_5885


SharpCapで極軸を1分角以下の精度であわせて、

IMG_5886


ワンスターアラインメントで手近なカペラを導入します。まあいつもやっているのでわかっているのですが、結果はきちんと視野の中に入ってきて、

IMG_5887


左がASI178に50mmのレンズをつけた電子ファインダー、右がASI294MCを600mmのFS-60Qに取り付けた鏡筒の視野です。両方とも明るいのがカペラです。電子ファインダー、鏡筒の視野ともに、赤いクロスの交点は一致しています。すなわち、右の鏡筒でクロス点にきているなら、左の電子ファインダーでもクロス点にきます。実際の導入はファインダーでざっくり0.8度くらい中心からずれた位置で導入されています。水平出しやインデックスマークの誤差もこれくらいのオーダーなので、特におかしくない精度です。機器に特に異常もないと思われます。


次に、三脚の脚の一本を数cm伸ばします。

IMG_5888


三脚につけた水準器はこの時点で全く水平を示していません。

IMG_5889


この状態で極軸をSharpCapを使って再び1分角以内の精度で合わせ直します。

IMG_5890


ここから、赤緯を90度程度傾けて、鏡筒に水準器を乗せて、赤経を調整してその水準器が水平になるようにします。

IMG_5893


この時点で赤緯体は天頂方向を向き、赤経のインデックスマークは当然ずれます。

IMG_5894


90度傾けた赤緯を戻して、赤緯のインデックスマークを合わせて準備完了です。この状態でワンスターアラインメントを実行します。

私の説が正しければ天体は導入できない、かんたろうさんが正しければ天体は導入できることとなります。果たして結果は...



なんと、見事カペラが導入されました。

IMG_5895


確かめるべく、ベテルギウス、リゲルなどもそのまま導入してみましたが、きちんと導入されます。これは完全に私の負けです。

さてここでやっと、なんできちんと導入されたのか考えました。答えはすぐにわかりました。私はワンスターアランメント(2スターアラインメントの最初でも同じです)のアルゴリズムは「赤道儀の水平」を仮定していると思い込んでいたのですが、実際にはアルゴリズムは「赤緯体が天頂を向いている」ということを仮定していたわけです。落ち着いてよく考えてみると確かに、水平を仮定するよりも赤緯体が天頂を向いていると仮定する方が、より条件が緩く、かつこれで十分だということがわかります。

すぐにかんたろうさんに電話して、私が間違っていたことを素直に伝えました。最後まで意見を変えなかった頑固な私に、ずっと付き合って頂いたかんたろうさん、どうもありがとうございました。改めてお礼を述べさせていただきます。


というわけで、赤道儀の初期アラインメントで一発目に天体を視野に入れるためには、必ずしも水平は必要ないと訂正しておきます。ただし赤緯体を天頂に向ける必要があることは変わりありません。かんたろうさんの方法を使ってインデックスはずれた状態で赤緯体を天頂に向けるもよし、赤道儀のの水平を出してインデックスを合わせて赤緯体を天頂に向けるもよしです。

ちなみに、言うまでもないかもしれませんが、「初期アラインメントで一発目」にさえこだわらなければ、水平も出す必要はないですし、赤緯体を天頂に向ける必要はありません。2スターアラインメント以上でマニュアルで一つづつ丁寧に導入していけば、自動導入可能な状態までもっていけます。


とにかくやっと納得しました。やはり自分で実際に試すのが一番わかりやすいです。かんたろうさんはじめ、コメントをくれたせろおさん、りっくんさん、いろいろお騒がせして申し訳ありませんでした。

前回の記事で、シュミカセの補正板の導出がわからないというところまで書きました。

結局のところ、日本語で詳しく解説してあるところはほとんど見当たらなかったので、海外のページを検索し始めました。するとすぐに相当数の解説を見つけることができました。中でもtelescope-optics.netというところの解説が詳しくてわかりやすかったです。

リンク先のページは、まずはシュミットカメラについての解説です。ここの最後の方に載っているExampleで計算結果が正しいかどうか確かめながら、まずは200mm, f/2のシュミットカメラの各係数 "A1, A2" などをExcelなどを計算していきます。Exampleに示されている値と同じ値が出れば計算過程は正しいでしょう。その後、500mm, f/2.5の値を自分で計算します。すると4次のオーダーの係数が-4.79E-10程度、6次のオーダーの係数が-7.26E-16程度になるはずです。

IMG_5882


このパラメータは、LensCalにサンプルとして入っているシュミットカメラ(シュミットカセグレンでは無いことに注意)

Sm20f2.ldt

というファイルのパラメータと同じです。ファイルの解説には(アイコンの「Memo」を押すと出てきます)シュミットカメラ 20cm F2.5と書かれているのですが、ファイル名だけだと間違えてしまいます。ファイルを開いて焦点距離を見てみると501.895mmと出るので、焦点距離500mm, 口径200mm, F2.5で間違い無いでしょう。このNo.2(2行目)のAirの側の係数を見ると、-4.769E-10と7.12E-16程度なので、自分で計算した値とほぼ一致します。

迷ったのは長さの単位でしょうか。基本的にミリメートル [mm] をどこも使っているようです。メートルとミリメートルで3桁違うので、2次とか4次とかだと、6桁とか12桁変わってくる可能性があるので検証がちょっと面倒でしたが、解説記事もLensCalもミリメートルで大丈夫と言うことがわかりました。

あと一つ疑問があります。LensCalで出ている補正板の出射側のAirの曲率の求め方です。単純に途中の計算で求めた曲率半径かなと思ったのですが、自分の計算では約-103m、LensCalでは約-68mと、1.5倍くらい違います。

まだ疑問が残るところはありますが、ある程度シュミットカメラまでの補正板の係数を求める過程を追うことができました。次の収差の解説ページにある球面収差の図もほぼLensCalで再現できているのも素晴らしいです。

IMG_5879


さらにtelescope-optics.netにはシュミカセの解説記事がまだまだ続いています。もう少し計算を続けてみます。
 

突然レンズ設計に目覚めてしまいました。ここ最近のマイブームで、四六時中ずっとレンズ設計のことを考えています。そもそもの動機が、シュミカセでコマ収差が盛大に出ていたのを、コマコレクターである程度軽減できることがわかったのですが、じゃあそもそもコマコレクター ってなんですか?というところから来ています。

IMG_5869

上の写真は手持ちのコマコレクター、バーダープラネタリウムのMPCC MarkIIIです。結構歪んで見えるので非球面レンズなのでしょうか?でも値段からいったら単純なレンズの組み合わせな気がします。説明書にはF4からF6まで対応すると書いてあるのですが、実際にコマ補正したい鏡筒はMEADEのLX-200の口径25cm、焦点距離1600mm、F6.3のものなので、少しだけ範囲から外れてしまいます。以前一度試しにつけてみたのですが、そこそこ効果があることはわかっています。

でもこのコマコレクターでこと足りるのか?最適な位置やバックフォーカスはどこなのか?もっといいコマコレクター はできないのか?と疑問は尽きず、気づいたらじゃあそもそもシュミカセってどんなものなの?という疑問に行き着きました。これを確かめるにはある程度シュミカセの設計自体を理解しなくてはダメです。


と言うわけで、前置きが長くなりましたがレンズ設計の挑戦の始まりです。どこまで続くことやら。

レンズ設計に関しては先人の理論、設計、ソフトウェアや検証など、多くの蓄積があります。まずはシュミカセに行く前に、レンズ設計ソフトを触ってみることにしました。あぷらなーとさんHIROPONさんがブログの中で試していらっしゃるので、それを捕捉する形で書いて行きたいと思います。ソフトはその中でオススメの「LensCal」です。製作者は京都の「星を求めて」でお会いすることができたラッキーイメージを得意とするYamashitaさんとのことです。Yamashitaさん、こんな素晴らしいソフトをフリーで提供していただいて、ありがとうございます。

とすぐにでもソフトに手を出したいのですが、ここではあぷらなーとさんが試したように、基準となる拠り所が欲しくて、まずはハルチング(今はハーティングと言うべきなのでしょうか)の公式に手を出してみました。


ハルチングの解とは、フランフォーフェル型と言う凸レンズと凹レンズの組み合わせにおいて、C線(656.27nmのHα)の焦点とF線(486.13nmのHβ)の焦点を一致させ、d線(587.56nmの黄)に対して球面収差とコマが最小になるような設計とのことです。2枚の設計したいレンズの上の3つの波長での屈折率を与えてやって、16個の連立方程式を解くと目的のレンズの曲率半径が求められるものです。

ネットを漁るとこのページにたどり着いて、ここから辿っていくとエクセルの表を手に入れることができます。ただ、これだけだと何をやっているかわからないので、式が書いてある掲示板を参照してみてください。私は吉田正太郎著「天文アマチュアのための望遠鏡光学〈屈折編〉」という本で式と概念をフォローしましたが、他の書籍でも同様の記述は見つかると思います。本の方では多少詳しい説明がありますが、連立方程式の導出から書いてあるわけではないので、結局は天下り的にこの連立方程式を解くだけです。リンク先で手に入るエクセルの表のパラメータも解も、上記書籍のパラメータ及び解と全く同じだったので、少なくとも表に特に変な間違がないことがわかるので安心できます。


この時のパラメータが最初のレンズをBK7、2枚目をF2で作るとして

BK7:
nC = 1.51385
nd = 1.516330
nF = 1.521900

F2:
nC = 1.615020
nd = 1.620041
nF = 1.632120

となっていて、最初のレンズの厚さが0.65mm、レンズ間距離が0.02mm、2枚目のレンズの厚さが0.45mmとするとします。

その時のハルチング公式からのそれぞれの曲率半径の解が

r1 = +60.572mm
r2 = -35.620mm
r3 = -36.041mm
r4 = -147.961mm

となるのは、上記書籍も、表計算の値も同じです。


さて、ハルチング解がある程度理解できたところで、やっとLensCalに移ります。ダウンロードインストールなどはマニュアルの通りです。Example of glass dataは必須ですし、Data.zipも落としておいた方がいいでしょう。ヘルプファイルは絶対あったほうがいいです。

一つ注意点は、ものすごく重要なヘルプファイルがWindow10だと中身を見ることができません。ヘルプファイル自身はダウンロードしてファイルをダブルクリックするだけでいいのですが、LensCalの掲示板にあるように

1.LensCal.chmを右クリックしてプロパティを開き、
2.いちばん下の「ブロックの解除」のボタン又はチェックボックスに印を入れてOKを押す
と読めるようになるようです。

とあるので、これに従うと無事にWindow10でもヘルプファイルの中身がきちんと見えるようになります。

基本的にはこのヘルプファイルの「簡単な使い方」のその1からその3までを丁寧に試していけばあるていどのことは学べてしまいます。ここで注意することは、ヘルプファイルの説明が少し添付データと違っていることです。2枚目のレンズのF2が「Sumita」から選ぶように書いてあるのですが、実際には「Schott」の方に入っています。しかもSchottのデーターも、Example of glass dataでダウンロードしたGlassData.zipを解凍して、出てきたファイルをLensCal.exeと同じフォルダに入れておかなければ、ガラスデータとして選択することができません(マニュアルにこのことは書かれています)。私が迷ったのは上記2点くらいで、他は全て問題なく、非常にわかりやすく扱いやすいソフトでした。

ヘルプに沿っていけば、「ベンディング」というらしいのですが、ある2つのパラメータを自由にして、収差を最小にするようなチューニングのようなこともできてしまいます。最適解を数値計算的に求めることもできるようです。ただ、最適解の場合は条件出しに少し癖があるようで、例えば波長の効き具合とかに、あまり効かせたくないと思って0を入れたりするとエラーが表示されて、立ち上げ直すまで2度と計算できなくなってしまったりします。そんなときは0.01とか小さな数を入れてやることで回避しています。

IMG_5867


上記写真は最適解とベンディングを駆使して求めた曲率ですが(距離は固定)、ガラスの屈折率にごくわずか違いがあることや、最適化の条件の調整が難しいこと、ベンディングの調整の誤差もあることなどから、ハルチングの解析解と少し違った値になっています。それでもまあ、かなりいいところまで最適化できていると言っていいでしょう。ここで気付いたのは、ハルチング公式の条件の一つの「C線(656.27nmのHα)の焦点とF線(486.13nmのHβ)の焦点を一致させ」というのは、シミュレーションでは球面収差を見ながら「有効径の外の方で合わせる」というのが解に近いみたいです。最初中心で焦点を合わせていたら、どうしても解析解とずれてしまいました。でも外側で合わせるというので本当に正しいのでしょうか?ここは謎が残ったままです。


さて、LensCalには20cm F10のシュミカセのサンプルファイルも添付されています。でもこのサンプルファイルにあるシュミット補正板の係数の値が本当に正しいかどうか、いまいち確信が持てません。シュミット補正板については同じ吉田正太郎著「天文アマチュアのための望遠鏡光学・反射編」にある程度書いてあるのですが、これも式の導出までは記述がないので、出ている式を天下り的に使うしかないのですが、どうもサンプルファイルの補正板の曲線の係数と全然一致しません。

もう一本Opt-Design 2000というソフトでも試していて、こちらもLensCalとある程度似たようなことができ、さらにこちらにも20cm F10のシュミカセのサンプルファイルが添付されています。でもこの補正板の係数の値もまた全然違います。

球面収差図を見ていると、原理から言って補正板の中性帯(曲率の正負が逆転する中間地点で、ここを入射する光は補正板の影響を受けない)を通るところで収差がなくなるはずで、LensCalの方はそれを再現しているようにも見えるので、LensCalの値が正しいように思えます。でもじゃあどうやってこの補正板の値を出したのかなど、まだ謎だらけです。

とりあえず、今やっとここら辺です。
 





 

関東に来る機会があり、恒例の天文ショップ巡りをしてきました。

まず最初は秋葉原から新宿の方に移動したシュミットさんです。富山からだと大宮で新幹線を降りて、埼京線で行く方が値段も時間も得するみたいです。新宿駅で都営大江戸線に乗り換えです。最寄駅は都営大江戸線の落合南長崎駅です。もともとサイトロンの商品の展示場があったところで、一度行きたい思っていたのですが、結局これまで行けずじまいだったので、今回のシュミットの店舗の移転がいい機会となりました。駅からは徒歩でほんの数分くらいです。近づくと「シュミット」と書かれたのぼりが見えるのですぐにわかるでしょう。道から階段を降りて半地下のようなところのフロア一帯の、手前側にシュミットの移転してきた店舗があり、奥にものすごく広いサイトロンの展示場があります。

IMG_5823

新しいシュミットは、店舗スペース自身も広くなっているのですが、意外や意外、タカハシやVixenなどのサイトロン以外のメーカの製品がたくさん置いてありました。店長さん曰く、CelestronやSky-Watcherの製品は奥の展示場で思う存分見ることができるから、それと比較してもらう意味でサイトロン以外の製品を置いているとのことです。もちろん倉庫の方に在庫があるのでCelestronやSky-Watcherを購入することもできるとのことです。というよりも、以前展示場だけだった時にはそこで製品を見ても購入することができなかったので、これからはサイトロン展示場で見て気に入ったものがあればシュミットの店舗の方で購入ができるようになり、お客さんにとっても、より便利になるのではとのことです。

IMG_5826

一方サイトロン展示場の方は圧巻で、ほぼ全ての現行のCelestron製品といくつかの現行モデルから外れてしまった過去のものも展示してあります。また、米国のCelestronのページにはあって日本では未発売のものもいくつか置いてあります。特に入門機についてはカタログ未掲載のものもたくさんあるとのことで、これは主にホームセンターなどの販売店の方に実際にものを見てもらうためにおいてあるとのことでした。

IMG_5830
展示場はとても広くてパノラマで撮ってやっと入りきるくらいです。

Sky-Wacherの方も現行モデルの大多数のものがおいてあります。私のところでも最近フル活躍のAZ-GTiは、鏡筒の違いによって3台もおいてありました。ここでは経緯台にもなるAZ-EQシリーズと、赤道儀オンリーのEQシリーズを直接比較することができます。AZ-EQは数少ないデュアルエンコーダー搭載でしかも経緯台としても使える多機能タイプです。どちらか迷っている人はここにきて、実際に触ったり、揺らしたりしてみるといいかと思います。ネットの情報だけではわからない、意外ないろいろなことがわかると思います。

展示場の方は担当のKさんが小一時間くらいずっと付き合ってくれて、いろいろ話すことができました。展示場のみでは商品を購入することができなくて話すだけなので、逆に無理に何かを買う必要もなく、じっくりとものを見たい、いろいろ相談したいという方はうってつけなのかと思います。他にもアイピースやコントローラーなどもショーケースの中に展示してあって、頼めば覗かせてくれるそうです。まだまだ展示したいものはたくさんあって、ショーケースの中には収まりきらないと言っていました。

展示場を楽しんだ後は、再びショップ側のシュミットの方に行き、店長さんとまた少しお話をしました。先週くらいに富山のY君が店舗に寄ってくれたという話も出てきました。Y君ですが、こちらも店舗を相模原に移動した三基光学のほうも行ったみたいです。実は三基光学の新しい場所は、妻の実家のすぐ近くなので、早いうちに行ってみたいのですが、残念ながら今回はチャンスがありませんでした。

この日、シュミットでは2つのものを購入しました。一つはAZ-GTiのハーフピラー部分です。AZ-GTiで電視観望や撮影していると、たまに知らないうちに鏡筒やカメラが三脚に当たってしまい、ずれてしまうことがあります。そんな時にハーフピラーは持っておいてもいいかなと思いました。しかも三千円程度と安価ですが、ものすごく丈夫そうです。

IMG_5862


もう一つは一部ですごい話題になっているHα、Hβ、OⅢ、SⅡの4輝線付近のみを一度に通すQuad BP(クアッド バンドパス) フィルターです。東京の江戸川区で撮影した馬頭星雲とか、満月で撮影したバラ星雲とかのデモ写真を見ていると相当の優れものだということがわかります。富山でどれくらい必要になるのかはわかりませんが、平日に時間がなくて遠出ができない時に、庭先で気軽に撮影ができればいいなと思っての購入です。ただ、デモ写真を見てもわかるのですが、青が出にくいようなので、それをどう扱うかが決め手になるかもしれません。

IMG_5847

ちなみにこのQuad BPフィルターですが、先週の金曜に発売して、わずか5日で初期ロット完売だそうです。私が言った時に残り二つで、一つ買ったので、最後の一つもその日に売れてしまったことになります。店長さんによると100枚以上用意したとのことなので、本当にものすごい勢いで売れたみたいです。あ、ハーフピラーも私が買ったのが最後の一本でした。今回は目的のものがギリギリ残っていたので運が良かったです。

その後、まだ時間があったのでKYOEIさんの方に移動しました。いつもMさんと話すのですが、今回もずっと話し込んでしまいました。購入したのは天文雑誌2誌だけで、申し訳ないくらいです。Mさんは野鳥の方でも活躍されているとのことで、天文と野鳥の違いをいろいろ聞くことができ、なかなか興味深かったです。「天文に興味がある人は野鳥にあまり興味がなくて、野鳥に興味がある人はもれなく星にも興味がある」とか、「野鳥の方では天文ほど機材が重要ではなく、撮影にそれほどこだわるわけでもない」とかです。なんか聞いていると、都会でも田舎でも場所をあまり選ばず、昼間に見ることができて、色も豊かで、曇りでも雪でも楽しめてと、星に比べてなんかものすごく健全な気がしました。星は機材は大変だし、基本的に夜だけだし、月にも左右されるしで、なんでこんなに苦労するのかと思いますが、まあこの苦労もまた楽しいんですよね。

あと、子供が観察会や観望会で参加するのはどちらも同じですが、野鳥の方でも天文と同じように年配の方が多くて、若い人があまり参加していないことに危機感を感じているようです。すでに若手だけの野鳥の会みたいなのにも力を入れているとか、対策にも乗り出しているとのことです。天文も若い人がなかなか入ってこないので、Mさんも危惧していました。趣味として縮小してしまうのは残念です。なんとしても裾野を広げたいというので、Mさんと一緒に盛り上がっていました。電視観望がその助けになればと思っています。

あ、そういえばここでもY君の話が出ました。Y君の行動力すごいです。Y君みたいな若い人がどんどん出てくれば安泰だとおもうのですが。

あと、帰る時間ギリギリで頑張ってスターベースにもよったのですが、定休日があることをすっかり忘れていて、店の前で呆然としてしまいました。仕方ないので、店に寄る分のあまった時間で、近くにある「麺屋武蔵」でつけ麺を食べてきました。美味しかったです。

IMG_5846
休みで残念。




 

このページのトップヘ