ほしぞloveログ

天体観測始めました。

BlurXTerminator version 2.0 and AI version 4がリリースされました。



以下BXT2とかAI4とか呼ぶことにします。以前のものはBXT1とか単にBXTでしょうか。BXTというのはバージョンに限らずBlurXTerminatorの略語の場合もあるので、ここでは文脈によって使い分けたいと思います。


Correct only

まず、恒星についてはこれまでのBXT1に比べて明らかに大きな改善です。以前もこの恒星の収差を改善するCorrect onlyがかなりすごいと思って評価しましたが、その当時は星雲の細かい模様出しが第一の話題の中心で、恒星を小さくすることが次くらいの話題でした。収差などを直すCorrect onlyはあまり話題になっていなかったのが残念でした。でも今回はむしろ、この収差補正の方が話題の中心になっていて、しかもその精度が格段に上がっているようなので、より精度の高いツールとして使うことができそうです。

今回のBXT2で修正できるものは:
  • First- and second-order coma and astigmatism: 1次と2次のコマと非点収差
  • Trefoil (common with pinched optics and in image corners with some camera lenses): トレフォイル(矢状収差?) (歪んだ光学系や、いくつかのカメラレンズで出る画面四隅において一般的)
  • Defocus (poor focus and/or field curvature): デフォーカス:  (焦点ズレや、もしくは像面歪曲)
  • Longitudinal and lateral chromatic aberration: (縦方向、横方向の色収差)
  • Motion blur (guiding errors): 動きのブレ(ガイドエラー)
  • Seeing/scatter variation per color channel: 各色ごとのシーイング/散乱の違い
  • Drizzle upsampling artifacts (2x only): ドリズルのアップサンプリング時の偽模様(2倍時のみ)
とのことです。

ちなみに、BXT1の時に修正できたのは以下のようなものなので、BXT2では圧倒的に進化しています。
  • limited amounts of motion blur (guiding errors): ある一定量までの動きのブレ(ガイドエラー)
  • astigmatism: 非点収差
  • primary and secondary coma: 1、2次のコマ収差
  • unequal FWHM in color channels: 各色のFWHM (星像の大きさ) の違い
  • slight chromatic aberration: 多少の色収差
  • asymmetric star halos: 非対称なハロ

なので、まずは星雲部分を補正する前に、一度Correct Olnyをチェックして収差などによって歪んで写った恒星がどれだけ改善されるのかを、十分に味わうべきでしょう!星雲部の模様出しとかは他のツールでも似たようなことはできますが、上に挙げたような収差補正をここまでやってくれるツールはBXTだけです。画面全体を見ている限りは一見このありがたさに気づかないかもしれませんが、拡大すればするほど、こんなに違うのか!というのを実感することと思います。

では実際に比較してみましょう。全て前回のクワガタ星雲の処理途中のリニアな段階での比較です。

1. オリジナル画像
まずはオリジナルの画像です。
Image13_mosaic_original
ε130Dは、スポットダイアグラムを見る限り非常に優秀な光学系です。同系列のε160EDやTOA-130N+TOA-645フラットナーといったスーパーな鏡筒には流石に負けますが、FSQ-130EDとコンパラくらいでしょうか。反射型なので光軸調整さえ安定してできれば、間違いなく最強の部類の鏡筒と言えると思います。上の画像は四隅でもかなり星像は小さくなっていますが、まだ少し流れが残っています。

2. BXT1相当 (BXT AI2)
ここにまずは、BXT1相当の、BXT2に従来のAI Ver.2を適用します。ここではCorrect onlyでの比較です。
Image13_mosaic01_BXT

四隅の星の流れは明らかに改善されていることがわかりますが、星の大きさなどは大きく変わることがなく、これだけ見てもε130Dの光学性能の優秀さが伺えるかと思います。

3. BXT2 AI4
では上の画像で十分で、高性能鏡筒に今回のAI4をかけても意味がないかというと、そんなことはありません。BXT1では微恒星を救いきれていない場合が多々ありました。このページの「もう少しL画像を評価」の2のところ以降に、

「BXTはかなり暗い最微恒星については恒星と認識するのは困難で、deconvolutionも適用できないようです。そうすると逆転現象が起きてしまうことも考えられ、より暗い星の方がそれより明るい星よりも(暗いけれど)大きくなってしまうなどの弊害も考えられます。」

と当時書いていました。そして暫定的な結論として

「この逆転現象とかはかなり拡大してみないとわからないこと、収差の補正や星雲部の分解能出しや明るい恒星のシャープ化など、現段階ではBXTを使う方のメリットがかなり大きいことから、今のところは私はこの問題を許容してBXTを使う方向で進めたいと思います。シンチレーションの良い日を選ぶなどでもっとシャープに撮影できるならこの問題は緩和されるはずであること、将来はこういった問題もソフト的に解決される可能性があることなども含んでの判断です。」 

と書いていますが、今回は実際にソフト的に改善されたと考えて良さそうです。

実際に見てみましょう。BXT2 AI4を適用したものです。
Image13_mosaic02_BXT2_4
一見BXT1との違いがわからないと思うかもしれませんが、少しぼやけて写っているような最微恒星に注目してみてください。BXT1では取りこぼしてぼやけたままに写っているものがBXT2ではきちんと取りこぼされずに星像が改善されています。

このことはリリース次のアナウンスの「Direct linear image processing」に詳しく書いてあります。

One of the most significant “under the hood” features of AI4 is that it processes linear images directly. Earlier versions performed an intermediate stretch prior to neural network processing, then precisely reversed this stretch afterwards to restore the image to a linear state. This was done because neural networks tend to perform best when their input values lie within a well-controlled statistical distribution.

While this worked well for most images, it introduced distortions that compromised performance. Flux was not well conserved, particularly for faint stars, and the network could not handle certain very high dynamic range objects (e.g., M42, Cat Eye nebula). These compromises have been eliminated with AI4, resulting in much more accurate flux conservation and extreme dynamic range handling.

要約すると、

BXT2では直にリニアデータを処理することができるようになった。BXT1ではニューラルネットワークの処理過程の制限から、一旦ストレッチした上で処理し、その後リニアデータに戻していた。そのため恒星の光量が変わってしまったり、特に淡い恒星では広いダイナミックレンジを扱うことが難しかった。BXT2ではこのような妥協を排除し、その結果より正確に光量を保つことができ、大きなダイナミックレンジを扱うことができるようになった。

というようなことが書かれています。これは大きな進化で、実際に自分の画像でも微恒星に関しては違いが確認できたことになります。


Nonsteller

Niwaさんが恒星の締まり具合から判断して、PSFを測定してその値を入れた方がいいという動画を配信していました。その後訂正され、PSFの設定はオートでいいとなりましたが、一方、私はこのPSFの設定は星雲部分の解像度をどれだけ出すかの自由度くらいにしか思っていないので、測定なんていう手間のかかることをしたことがなかったです。

BXTのパネルは上が「Steller Adjustments」となっていて、「Sharpen Stars」とか「Adjust Star Halos」とかあるので、こちらは恒星のためのパラメータで、恒星の評価はこちらを変えて判断すべきかと思います。とすると真ん中の「Nonsteller Adjustments」は恒星でない星雲部などのパラメータで、星雲部を見て判断すべきかと思われます。このPSFが星雲部にどう働くかはユーザーにとっては結構なブラックボックスですが、必ずしも測定値を入れなくても、星雲部の出具合を見て好きな値を入れればいいのかと思っていました(BXT2ではここが大きく変わっています)。

というわけで、いくつかのパラメータを入れてどう変わるかを見てみましたが、これまた興味深い結果になりました。

1. まずはオリジナルのBXTをかける前の画像です。こちらも前回のクワガタ星雲の画像の中のバブル星雲部分拡大していて、リニア処理時の画像になります。まだ、バブル星雲もかなりボケてますね。
Image13_ABE1_RGB_ABE4_SPCC_SCNR1_Preview01

2. 次は右下のリセットボタンを押して、すべてデフォルトの状態でどうなるかです。
Image13_ABE1_RGB_ABE4_SPCC_SCNR_BXTdefault_Preview01
恒星は上で書いた収差補正などが入り、さらに星を小さくする効果(0.5)で実際に星が小さくなっているのがわかります。そして確かに星雲部の分解能が上がっているのがわかります。今回の画像は全てBin2で撮影しDrizzle x2をかけてあることに注意で、これにBXTをかけたことになるので、相当な解像度になっています。

3. さてここで、PSFの効果を見てみます。パラメータはSharpen Stars: 0.70, Adjust Star Halos: 0.00, Sharpen Nonsteller: 1.00で、PSF Diameterだけ変えてみます。極端な場合のみ比べます。まずはPSFが最小の0の場合です。
Image13_ABE1_RGB_ABE4_SPCC_SCNR_BXTSS07PD0_Preview01

次にPSFが最大の8の場合です。
Image13_ABE1_RGB_ABE4_SPCC_SCNR_BXTSS07PD8_Preview01

あれ?恒星は確かに少し変わっていますが、星雲部が全く同じに見えます。このことは、PSFを1から7まで変えて比較しても確認しました。


4. BXT1時代にはPSFを変えたら星雲部が大きく変わっていたはずです。念のためAI2にして確認しました。

PSFが4.0の場合。
Image13_ABE1_RGB_ABE4_SPCC_SCNR_BXTSS05PD4_Preview01

PSFが8.0の場合です。
Image13_ABE1_RGB_ABE4_SPCC_SCNR_BXTSS05PD8_Preview01

他のパラメータは全て同じなので、やっぱり明らかにPSF Diameterだけで星雲部が大きく変わっています。

5. ここで、再びAI4に戻りもうひとつのパラメータ「Sharpen Nonsteller」をいじってみました。1.0からから0.5に変えています。
Image13_ABE1_RGB_ABE4_SPCC_SCNR_BXTSS07PD8N05_Preview01
これまでのSharpen Nonstellerが1.0の時と比べて、明らかに星雲部の分解能は出にくくなっています。

今回のリリースノートでは星雲部の記述がほとんどありません。ということはPSFに関しては大きな仕様変更?それともバグ?なのでしょうか。ちょっと不思議な振る舞いです。でもBXT1の時のように星雲部の解像度を出すパラメータがPSF DiameterとSharpen Nonstellerの2つあるのもおかしな気もするので、BXT2の方がまともな設計の気もします。いずれにせよ、今回のAI4ではすでに星雲部に関しては最初から最大限で分解能を出してしまっていて、これ以上の分解能は出せないようです。BXT1の時には星雲部の解像度出しが大きく扱われていたので、これを期待して購入すると、もしかしたら期待はずれになってしまうかもしれません。

でもちょっと待った、もう少しリリースノートを読んでみると、BXTの2度掛けについての記述が最後の方にあることに気づきます。

The “Correct First” convenience option is disabled for AI4 due to the new way it processes image data. It is also generally no longer necessary. If desired, the same effect can still be accomplished by applying BlurXTerminator twice: once in the Correct Only mode, and then again with the desired sharpening settings. The same is true for the “nonstellar then stellar” option: it is generally not needed anymore with AI4, but can be accomplished manually if desired.

Correct Firstとnonstellar then stellarはAI4では使えなくしたとのことで、その代わりに一度Correct Onlyをかけて、その後にCorrect Onlyを外して好きな効果をかければいいとのことです。

実際に試してみましたが、いくつか注意点が必要そうです。下の画像は、上で使ったオリジナルの画像から
  1. Correct Only
  2. Sharpen Stars: 0.70, Adjust Star Halos: 0.00, Automatic PSF: on, Sharpen Nonsteller: 1.00
  3. Sharpen Stars: 0.00, Adjust Star Halos: 0.00, Automatic PSF: on, Sharpen Nonsteller: 1.00
  4. Sharpen Stars: 0.00, Adjust Star Halos: 0.00, Automatic PSF: on, Sharpen Nonsteller: 1.00
4回かけています

Image13_ABE1_RGB_ABE4_SPCC_SCNR1_BXTCO_SS07auto_SS0auto_SS0auto

まず、星雲部の解像度出しを後ろ3回でかけていることになりますが、その効果は回数分きちんと出ていて、複数掛けで効果を増すことができるのがわかります。その一方、Sharpen Starsは2回目のみにかけ、それ以降はかけていません。これは繰り返しかけると恒星がどんどん小さくなっていき、すぐに破綻するからです。3回目のみにかけるとか、4回目のみにかける、もしくは小さい値で複数回かけてもいいかと思いますが、恒星が破綻しないように注意してチェックする必要があると思います。

最も重要なのが、PSFの設定です。BXT1時代にはここをマニュアルで数値を入れてやることで、星雲部の解像度が調整できましたが、ここまでの検証でBXT2ではその効果は無くなってしまっています。しかも、ここで試しているようなBXT2の複数回掛けで固定PSFにすると、小さくなっていく恒星に対して間違った値のPSFが適用されてしまい明らかに恒星が破綻していくので、Automatic PSFを必ずオンにしておく必要がありそうです。

というわけで、ここまでの検証でまとめておくと、
  • BXT2は星雲部の解像度出しの効果が弱いので、複数回がけで効果を強くすることができる。
  • 複数掛けは作者がOKを出している。
  • Sharpen Stars(と、今回は検証してませんが多分Adjust Star Halosも)は無理をしない。
  • PSFはオートにしておいた方が楽で変なことが起きないのでいい。
と言うことがわかりました。PSFはNiwaさんの言うようにBXT2をかけるたびに毎回きちんと測定してからその値を入れるのでもいいかもしれませんが、私の方では今回は検証していません。


BXTの中身について推測

BXTですが、まだまだブラックボックスなところはたくさんあります。ここからはあくまで個人的にですが、どんなことが行われているのか色々推測してみようと思います。

最初に、AIと言っていますがどこに使っているのか?です。自分だったらここに使うとだろうという意味も込めて推測しています。

まずは「恒星とその他の天体の区別」にAIを使っているのではないかと思います。これはStarXterminatorで既に実装されているのでおそらく確実でしょう。画像の中にはものすごい数の星があります。全てまともな形をしていればいいのですが、収差などで崩れた形の(元)恒星もきちんと恒星と認識しなければいけません。ここはAIの得意とする分野だと思います。でも、恒星の認識率も100%にするのはかなり難しいと思います。リリースノートで示されているような種類の収差を膨大な画像から学習しているものと思われ、逆にそうでないものは恒星でないと判断すると思います。ハッブルの画像などから学習したと書いていますが、ハッブルの画像は逆に収差は比較的小さいと思いますので、これと収差があるアマチュアクラスの画像を比べたりしたのでしょうか。それでも現段階でのAIなので、学習も判別も当然完璧では中々ないはずなのですが、例えば銀河などはかなりの精度で見分けているのかと思います。

個別に恒星が認識できたら、恒星にのみdeconvoutionを適用することが可能になるはずです。上での検討のように、BXT1では超微恒星は星像改善がなかったものが、BXT2では無事に恒星として認識できて星像改善されているので、このことは認識できた恒星にのみdeconvoutionを適用していることを示唆しているのかと思います。従来のdeconvolutionは効果を画面全体に一度に適用せざるを得ないので、恒星部と星雲部に同様にかかってしまいます。恒星が星雲を含む背景から分離でき、そこにのみdeconvolutionをかけられるなら、個別に効果を調整できるので、従来に比べてかなり有利になるでしょう。

ただし、恒星が小さくなった後に残る空白の部分は、従来のdeconvolutionでは黒いリング状になりがちなのですが、BXTはかなりうまく処理しているようです。説明を読んでも「リンギングなしでうまく持ち上げる」くらいしか書いていないのでわからないのですが、ここでもAIを使っているのかもしれません。例えば、簡単には周りの模様に合わせるとかですが、もう少し考えて、恒星の周りの中心よりは暗くなっているところの「背景天体の形による輝度差」をうまく使うとかも考えられます。輝度を周りに合わせるようにオフセット値を除いてやり、模様を出しやすくしてから、それを恒星が小さくなったところの背景にするなどです。S/Nは当然不利なのですが、そこをAIをつかってうまくノイズ処理するとかです。本当にこんな処理がされているかどうかは別にして、アイデアはいろいろ出てくるのかと思います。

あとBXTの優れているところが、画像を分割して処理しているところでしょう。512x512ピクセルを1つのタイルと処理しているとのことで、その1タイルごとにPSFを決めているとのことです。収差処理もおそらく1タイルごとにしているのでしょう。現在のAI処理はそれほど大きなピクセル数の画像を扱っていないので、どうしても一回の処理のための画像の大きさに制限が出るはずです。でもこのことは画像の各部分の個々の収差を、それぞれ別々のパラメータで扱うことにつながります。四隅の全然別の収差がどれも改善され、恒星が真円になっていくのは、見事というしかありません。これをマニュアルでやろうとしたら、もしくは何かスクリプトを書いて個々のタイルにdeconvolutionをかけようとしたら、それこそものすごい手間になります。画面全体に同じ処理をする従来のdeconvolutionなどとは、原理が同じだけで、もう全く違う処理といってもいいかもしれません。


微恒星の補正について

もう一つ、極々小さい微恒星がさらにdeconvolutionされたらどうなるか考えてみましょう。

もともと時間で変動する1次元の波形の周波数解析によく用いられるFFTでは、サンプリング周波数の半分の周波数以下でしか解析できません。この半分の周波数をナイキスト周波数と言います。要するに2サンプル以上ないと波として認識できず、周波数が決まらないということです。ではこの2サンプルのみに存在するインパルス的な波を、無理矢理時間軸で縮めるような処理をしてみたらどうなるでしょうか?元々あった2サンプルで表現されていた波が2サンプル以下で表現され、より高周波成分が存在するようになります。

これと同じことを2次元の画像で考えます。上のFFTの時間が、画像のドットに置き換わり、縦と横で2次元になったと考えます。周波数と言っているのは画面の細かさになり、「空間周波数」という言葉に置き換わります。細かい模様ほど空間周波数が高く、荒い模様ほど空間周波数が低いと言ったりします。

1ドットのみの恒星は、本当に恒星なのか単なるノイズなのか区別のしようがありません。少なくとも各辺2ドット、すなわち4ドットあって初めて広がりのある恒星だと認識できます。この各辺2ドットがナイキスト周波数に相当します。超微恒星に対するdeconvolution処理はこの4ドットで表されている恒星を、4ドット以下で表現しようとすることになります。その結果、この画像はナイキスト周波数以上の高周波成分を含むことになります。

deconvotionはもともと点像であった恒星と、その点像が光学機器によって広がりを持った場合の差を測定し、その広がりを戻すような処理です。その広がり方がPSFという関数で表されます。広がりは理想的には口径で決まるような回折限界で表されますが、現実的にはさら収差などの影響があり広がります。BXTはあくまでdeconvolutionと言っているので、ここに変なAIでの処理はしていないのかもしれませんし、もしくはAIを利用したdeconvolution「相当」なのかもしれません。

BXT1からBXT2へのバージョンアップで、処理できる収差の種類が増えていて明確に何ができるのか言っているのは注目すべきことかと思います。単なるdeconvolutionなら、どの収差を補正できるのか明確には言えないはずです。でもAIで収差の補正の学習の際、どの収差か区別して学習したとしたら、deconvolution相当でどのような収差に対応したかが言えるのかと思います。そういった意味では、やはりBXTのdeconvolutionは後者の「相当」で、AIで置き換えられたものかと思った方が自然かもしれません。


BXTの利用目的

ここまで書いたことは多分に私自身の推測も入っているので、全く間違っているかもしれません。BXTの中身の実際はユーザーには全部はわからないでしょう。でも中身はどうあれ、実際の効果はもう革命的と言っていいほどのものです。

個人的には「個々のタイルでバラバラな収差をそれぞれのPSFで補正をして、画像の全面に渡って同等な真円に近い星像を結果として出しているところ」が、マニュアルでは絶対にやれそうもないところなのでイチオシです。もちろん今のBXTでは完璧な処理は難しいと思いますが、現在でも相当の精度で処理されていて、BXT1からBXT2のように、今後もさらなる進化で精度が上がることも期待できそうです。

では、このBXTが完璧ではないからと言って、科学的な目的では使えないというような批判は野暮というものでしょう。そもそもBXTは科学的に使うことは目的とはしていないはずです。

それでもBXTを科学的な側面で絶対使えないかというと、使い方次第だと思います。例えば、新星を探すという目的で、BXTでより分解能を増した上で何か見つかったとしましょう。それが本物かフェイクかの「判断」は他のツールも使うなどして今の段階では「人間が」すべきでしょう。判断した上で、偽物ということもあるでしょうし、もし本物だったとしたら、例え判断はBXTだけでできなかったとしても、そのきっかけにBXTが使われたいうことだけで、BXTの相当大きな科学的な貢献になるかと思います。

要するに「ツールをどう使うか」ということだと思います。今の天文研究でもAIが盛んに使われようとしていますが、主流は人間がやるにはあまりに手間がかかる大量のデータを大まかに振り分けるのを得意としているようです。ある程度振り分けたら、最終的な判断はAIに任せるようなことはせず、やはり人の目を入れているのが現実なのかと思います。AIは完璧ではないことはよくわかっているのだと思います。


まとめ

BXTはどんどんすごいことになっていますね。今後はBXT以外にもさらに優れたツールも出てくるでしょう。将来が楽しみでなりません。

何年か前にDenoise AIが出た時も否定する意見はありましたし、今回のBXT2も推測含みで否定するケースも少なからずあったようです。デジカメが出た時も否定した人が当時一定数いたことも聞いていますし、おそらく惑星撮影でWavelet変換を利用した時も同じように否定した人はいたのかと思います。新しいものが出た時の人の反応としてはごく自然なのかもしれませんが、私は個人的にはこのような新しいツールは大歓迎です。新しいものが出たときに否定だけするような人から、新しい革新的なツール作られるようなことなどほぼあり得ないでしょう。新しいツールはその時点では未熟でも、将来に発展する可能性が大きく、その可能性にかけるのが正しい方向かなと思っています。

実際私も、電視観望をしていて頭ごなしに否定されたことが何度がありました。でも今では電視観望は、眼視と撮影の間の手法として確立してきているはずです。当時否定された方達に、改めて今電視観望についてどう思っているのかお聞きしてみたかったりします(笑)。

BXT素晴らしいです!!!

今回はクワガタ星雲のナローバンド撮影です。私自身ナローバンドはまだよくわからないことが多くて、これまでも結構迷走していました。今回ハッブルパレットについて考えてみて、やっと納得できてきました。


撮影

11月20日からの晴れの日の数日間、自宅の庭でε130Dを使って撮影しています。午前0時くらいを境に一晩に前半、後半で2対象、同じものを何日か続けての撮影です。この前のスパゲティ星雲も、今回の記事のクワガタ星雲もその内の一つです。他にもダイオウイカさんや、イルカさんなどが未処理で残ってますが、ダイオウイカさんは露光時間が全然時間が足りていなくて、イルカさんはOIIIはいいのですがHαが強風で全滅だったのでさらに撮り直しです。



平日なので撮影を開始したらあとは寝てしまいます。NINAの自動導入とプレートソルブで放っておいても勝手に対象に向けてくれますし、EAFでピント合わせもしてくれます。天気さえ良ければ、しかもナローなら月夜でも撮影できます。

今回のクワガタさんはスパゲティ星雲が上がってくるまでの前半の、全て月が出ている時間帯での撮影です。そのためナローバンド撮影としましたが、実際どこまで写るのでしょうか?

クワガタ星雲はSh2-157という番号がついています。HαがメインなのでAOO撮影で処理されている場合が多いようですが、SAOでのハッブルパレットで撮影されることも多いようです。今回はせっかくなので象の鼻星雲以来のSIIも撮影しました。今回の結果を見る限りナローバンドなら、月などでかなり明るい状況でも十分炙り出せるようです。




ハッブルパレットの理由

俗にハッブルパレットと呼ばれる画像を見てみると、オレンジと濃い青に寄っているものが主流に見えます。ハッブル望遠鏡オリジナルの創造の柱の場合はまだ緑が残っていますが、JWST(James Webb Space Telescope)の画像になると、さらにオレンジ青ベースが顕著になり、緑が消えていく方向のようです。

この手の色を出すには、これまでの経験上SAO(SIIをred、Hαをgreen、OIIIをblue)で1:1:1で合成をして、PixInsightのSCNRでGreenを1.0で抜いてやると、かなり近い色になります。このことを少し考えてみます。 

まず、 SII、Hα、OIIIの中で一番明るいのはHαです。これを最終的に一番出ていないgreenに持っていくのは一見無駄なように思えますが、SCNRの働きを考えると理にかなっているようです。SCNRは「緑の天体というものが実在しないために、画像から緑を除去する」というような説明をされることが多いようです。

そこで、SCNRの定義を探したのですが、いまいち見つかりません。プロテクションの定義はすぐに見つかるのですが、 これはGをどう置き換えるかについてのみの記述で、RとBをどう置き換えているかの記述がどこにも見当たりません。SCNR変換後のRとBを見てみると、両方とも明らかに変換前よりも明るくなっているので、元のG成分がRとBに行っているのは確実です。SCNRは、もう少し正確には余分なG成分をRとBに割り振ると考えた方がよさそうです。

SCNRでGを抜いた画像は以下のようになります。赤とか青にならずに白くなっている部分も多いので、Gを全く無くしているというよりは、RGBのバランスが取れるようにGをRとBに配分したと考えてよさそうです。
Image68_ABE_SCNR_ABE

試しに、PixelMathで
  • R: A*0.33+O*1
  • G: A*0.33
  • B: A*0.33+O*1
として変換してみた画像が以下になります。
Image71_ABE_PM_ABE

恒星の赤ハロがSCNRとPixelMathのなぜこんなに違うのか理由はわかりませんが、星雲自体の色の傾向は正しそうです。念の為StarNet2で背景だけ分離してみます。上がSCNR、下がPixelMathです。まだ少し赤系が違うところはありますが、大まかにはオレンジと青で傾向はあっていそうです。
Image68_ABE_SCNR_ABE_SN2

Image71_ABE_PM_ABE_SN2_CT_HT

途中、StarNet2が消えていたのに気づいたので再インストールしました。再インストール方法はこのページの中くらいを見てください。 PixInsightをアップデートした際か、BXT2をインストールした際に消えてしまったのかと思いますが、MacのM1ですが、今の所StarNet2の再インストールで、問題なくBXT2とAI2もAI4も共存できています。

ハッブルパレット、もしくはJWST画像の2極の色の「オレンジ」はRとGが混ざった「黄色」と「R」を混ぜたものと考えると、反対側の「濃い青」はBとGが混ざった「Cyan(明るい水色)」と「B」を混ぜたものと考えることができます。こう考えると、一番明るいHαをSAOとして最初Gに置いてやって、そのHαを余すことなくRにもBにも配分して、しかもカラーバランスが取れるようにGにも残すというやり方は、一番情報の多いHαを余すことなく使っているという点において、かなり理に適っているといえるのかと思います。ところで、Rを消すように最初HαをRに置くこともできますし、Bを消すように最初HαをBに置くこともできるはずです。ハッブルパレットが「Gを消す」方向としているのは、やはり緑の天体は基本存在しないということなのでしょうか。

あ、当然ですが本物のハッブル望遠鏡は我々アマチュアが使うフィルターとは全然別のフィルターを使っています。ですが、コンセプトとしてはそこまで間違っていない気はしますし、少なくとも我々アマチュア天文の範囲では上のように考えてハッブルパレットをまねるのは、持てるリソースを最大限利用するという観点からはそれほどおかしいことではないのかと思います。

さて、これまでずーっといまいち納得できなくて迷走してきた3波ナローバンド合成ですが、

今回の検証で自分的には色々納得ができてきたので、今後はSAOで合成して、SCNRで緑を抜くという方向で進め、撮影もどんどんしていきたいと思います。PixelMathの方は恒星の色がうまく出なかったので、ここからはSCNRの方を標準とします。


バブル星雲、でも小さい!

画像処理中に気づいたのですが、下の方の真ん中少し右のところに、なんとバブル星雲が入っているではありませんか!

ただし、さすがにε130Dの焦点距離430mmだとかなり小さいです。今回bin2で撮っていたので、解像度的には少し不利です。そのため、Drizzleのx2で処理し直して、そこにBXTをかけてみました。BXTは新しいAI4も検証したのですが、これは別記事で書きたいと思います。以前の検証で、Bin2でもDrizzleなどで解像度を増し、そこにBXTをかけることで、BXTのまだ残っている余地を引き出すようなことができることがわかっています。BXT2のAI4バージョンでの効果はまだわからないので、少し試してみました。

comp

左がdrizzle x1、右がdrizzle x2にそれぞれBXT2のAI4をかけたものになります。ただし、左のdrizzle x1は元画像が小さいので、Photoshopで同じ大きさにしたときに再サンプリングされていますので、意図せずして解像度が上がっています。それでもこの程度です。これだけ見てもdrizzle x2にBTX2でも解像度をさらに引き出しているように見えます。


画像処理と結果

画像処理ですが、ハッブルパレットの検証に時間がかかったこと以外は、それ以降特に困ることはありませんでした。淡いモクモクを引き出すためにABEなどを使ってのフラット化に気をつけて処理し、途中BXTを注意深くかけ細部を出します。今回は色を出すために ArcsinhStretchでストレッチして、あとは仕上げでPhotoshopにひきわたしてさらに彩度を上げていくだけです。結果は以下のようになりました。

「Sh2-157: クワガタ星雲」
Image13_rot_cut
  • 撮影日: 2023年11月21日19時5分-21時22分、11月22日18時27分-22時5分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm、SII6.5nm、
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 28枚、OIII: 24枚、SII: 23枚の計75枚で総露光時間6時間15分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 1秒、OIII: 1秒、SII: 1秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

今回もっとオレンジと濃い青になるかと思ったのですが、思ったより緑成分も残っていますし、オレンジもどちらかというと金色に近く、また濃い青もシアンに近い青になりました。これはSII成分やOIII成分が比較的強かったからなのでしょうか?色バランスはもう少し場数を踏む必要がありそうです。

淡い部分については、月明かりといえどさすがナローバンド撮影、かなり出ているかと思います。クワガタという名前ですが、牙が2本以上あるように見えてあまりクワガタっぽくならないところが残念です。星雲本体だけでなく、周りにもたくさんのHαが広がっていて、非常に面白い領域かと思います。

下部の真ん中より少し左に、マジェンタの小さな天体が見えています。最初これ何か失敗したのかと思ったのですが、どうも本当に存在している天体のようです。拡大してみると、マジェンタとシアン色に分かれているのですが、これはSIIとOIII画像にのみ存在していて、Hαでは何も見えていないことに起因するみたいです。でもなんの天体か調べても全然分かりませんでした。もしかしたら撮影ミスの可能性もまだあるのですが、どなたか同じ領域を撮影した方とかいらっしゃいますでしょうか?

NINAで自動導入した際にSh2-157で指定すると、左牙の根元の明るい部分が中心になるようです。そのため、画角として星雲本体が少し上に行き過ぎている印象を受けます。もう少し下に移動してもよかったかもしれません。drizzleで2倍の解像度になっていて分解能だけは十分にあるので、下の画像のようにクワガタ星雲本体が中心となるようにトリミングしてみました。「クワガタ星雲」とあらわにいう場合はこちらの方がいいのかもしれません。
Image13_trim1

ついでにいつものアノテーションです。他のシャープレス天体もたくさん写っていますね。Sh2-152,  153, 156, 158, 159, 162, 163くらいでしょうか。Sh2-157は確かに牙の根元の明るい部分を指すようなので、Sh2-157がクワガタ星雲というよりは、Sh2-157の周りにクワガタ星雲があると言った方がいいのでしょうか?英語だとLobster claw nebulaと言うそうですが、StellariumでもSh2-157がLobster claw nebulaそのものと出ています。
Image13_rot_cut_Annotated

うーん、この左下のマジェンタの天体、アノテーションでも出てきません。何なのでしょうか?ゴミとかと判明するまでは撮れたものなので残しておくことにします。

あと、上部真ん中より左のバブル星雲部分を切り出して、もう少し見えやすくなるように処理しました。
Image13_bubble_cut

まだ拡大できますが、下くらいが限界でしょうか。
Image13_bubble_cut_small

これがどれくらいの領域かというと、下の画像の緑枠で囲ってあるくらいの場所です。
Image13_trim_frame

こんな小さなエリアですが、今回はε130Dの分解能と、Drizzle x2、BXTが相まって、チートクラスの解像度になっています。焦点距離430mmでここまで出るのでびっくりです。でもこれもいつか長焦点で撮ってみたいので、リベンジ案件としておきたいと思います。


まとめ

久しぶりのSAO合成でしたが、やっとハッブルパレットも納得できてきたこともあり、ちょっとおもしろくなってきました。でもまだ色合いが違う気がしていてい、むしろ以前の象の鼻星雲の時の方がよりハッブルパレットに近い気がしています。

それでもかなり淡いところまで出たので、結構満足です。あとクワガタ星雲でメジャーなAOOも時間があればやっておきたいと思いますが、これはまた別の記事に。


日記

最近忙しくて、休前日とか休日にしか画像処理やブログ書きの時間を取ることができません。未処理の画像がまだ溜まっていますし、途中になっているノイズ解析とかもあります。やりたいことは溜まっているので、ブログ記事のネタには困っていませんが、記事自体が最近長くなっているのでもっとシンプルに速く書けないかとも思っています。天気はしばらくあまり期待できなのいので、残っているネタをひとつづつ片づけていこうと思っています。

他にも物書きが溜まっていたり、正月は再び北陸のどこかのスターバックスで天文密会が予定されていたりで、年末年始の休みも予定でいっぱいになりそうです。

最近機材欲は減っている気がします。ε130Dが調子が良さそうなので、しばらくはこのまま続けて、飽きてきたらまたSCA260に戻るのかと思います。現状が430mmでフルサイズ、1300mmでフォーサーズの2種がメインで、ちょっと間が空いていてその中間がないので、もしかしたら手持ちのBKP200を撮影に持ち出すかもしれません。焦点距離800mmとちょうど中間くらいで、F4と明るいので効率よく撮影できそうです。撮影できるまでに時間はかかるかもしれませんが、コマコレはあるのでそこそこの画像にはなるはずです。コマコレがあってもやはり周辺では乱れると思いますが、BXT2の威力がかなりすごいので、その効果込みだと十分実用レベルになる気がします。


週末は二日に渡って愛知県豊田市にある旭高原元気村に行ってきました。


きっかけ

きっかけはonetrickさんのXへの投稿でした。なんでも11月11日に旭高原元気村に「気ままに星空観望仲間」が集まった時、ある高校の天文部の生徒と顧問の先生が来ていたとのことです。そしてその高校は私の母校で、しかもこの日は天文部の合宿の下見ということでした。12月に再び天文部メンバーを連れて合宿に来るそうです。そんな話をしていたら、以前大鹿村の観望会でお世話になったKatoさんから「ちょうど同じ日に元気村で集まりがあるので参加しますか?」とのお誘いが。うまくいくと現役の天文部員とも会えるかもと思い、参加するとの返事を出しました

私は星を始めたのが2016年で、子供の頃の星の思い出というのはほとんどありません。30年以上前の高校の時も天文部があり、クラスの女の子が天文部のメンバーだったのは覚えていますが、当然部の様子なんかは全然知りませんでした。なので、古くから天文をやっている人の高校の時の天文部の思い出の話とかを聞くと、とても羨ましく思ってしまうのです。

今回はもしかしかしたら現役の高校の天文部員と話せるチャンスかもしれません。しかも母校なので、当時に比べて今はどうなっているのかにも興味があります。そんなこんなでXのDMで天文部の公式アカウントに連絡を取ってみました。程なくして返事が来て、実際には合宿は金曜から一泊ということがわかりました。どうやら授業が終わったらそのまま移動するようです。そんなわけで、金曜の夜と、さらに土曜の夜の集まりにも予定通り顔を出すことにしたので、2日連続で元気村に行くことになったのです。


元気村に向けて出発

金曜は富山を夕方に出て、東海北陸自動車道で美濃関JCTで東海感情自動車道に入ります。豊田環八ICで降り、国道153号線を走ります。20時頃に元気村に到着したでしょうか。

駐車場に何人かの若い人たちがいたので、早速声をかけるとやはり母校の天文部の生徒たちでした。しかも部員の皆さんも私のことを聞いていたらしくて、すぐに打ち解けることができました。この時点でも何人かの子と話すことができました。例えば高校の学祭が6日もあるのですが、その伝統もしっかり生き残っていました。生徒会活動が当時からものすごい盛んで、この日も生徒会のメンバーの子がいて、今の様子を色々聞くことができました。この日は22時くらいまでが部としての活動で、あとは有志で好きなことをするとのことです。そもそも有志という言葉もひさしぶりに使われているのを聞いた気がします。高校の頃は有志活動というのもすごく盛んで、例えば当時映画で出てきた「死せる詩人の会」とか有志で作ったりしていました。多分本質的には雰囲気は今もあまり変わっていないみたいで、皆さんとても楽しそうに高校生活を過ごしている雰囲気が伝わってきました。

残念だったのは天気で、目で見て星は何も見えなかったのですが、せめて何か見えないかと、50mmのNIKKORレンズで広角電視観望を試してみました。いろんな方向に向けますが、全く星のかけらも見えず、雨こそ降っていなかったものの、雲がかなり厚かったのかと思われます。それでも広角電視観望セットに興味を持ってくれた部員もいて、詳しいことを聞くきたいというので連絡くれるそうです。もしこのブログを読んでいたら、ぜひ気軽に連絡してきてください。

結局星は見えないので、22時半頃から宿に入って部員の皆さんと天文関係で少しお話ししました。この宿はつつじ屋敷と言って、古民家を手本に現代の大工さんが昔の日本家屋を再現したとのことで、 和室が何部屋もあり、たくさんのに人数が泊まれるようになっています。

IMG_8868
つつじ屋敷を次の日の朝に撮ってみました。

すでに布団が引いてあるところもあったり、トランプなどで各自楽しんでいるようでした。母校であるこの高校、基本的にものすごく自由で、生徒の自主性を限りなく尊重しているのですが、今でもその伝統は続いているようです。私が高校生の時どんなだったかとか、当時と今を比べたりかなり話が盛り上がりました。元々星見で夜遅くまで起きているはずなのですが、あいにくの天気でどうしようもないため夜更かししても大丈夫みたいです。結局0時近くまで話し込んでいました。そういえば、1年生の時に山での合宿があるのですが、その当時も「先生から夜起きている権利を勝ち取ったゾー」と騒いでいたのを思い出しました。その合宿もまだ続いているとのことです。その合宿所は部活でも使うことができて、夏に天文部で合宿するかもしれないので、ぜひ顔を出して欲しいと言ってくれた生徒もいました。私も昔のことをたくさん思い出すことができて、とても楽しむことができました。天文部員の皆さん、顧問の先生、突然の訪問を受け入れてくださり、本当にありがとうございました。


一旦実家へ

その後、機材などを片付け、午前1時頃に元気村をでて名古屋市内の実家に向かいました。実家への道が怖かったです。最初の頃は濃霧で、その後も夜の雨で視界が悪いのと、カーナビの情報が古くて新しい道にあまり対応していないのと、夜だから渋滞はないので下道で実家に向かったら何度か迷ってしまいました。結局午前3時位に実家に着いたので、結構余分な道を走ってしまいました。そのまますぐに寝てしまい、次の日は用事を済ませて、親と一緒に近くの(富山には無い)ブロンコビリーでランチを取り、再び元気村へ出発します。

市内は混むと思い、ガソリンだけ追加して実家近くのICからすぐに高速に乗ります。でも名古屋の高速に全然慣れていなくて、途中一度間違えて高速を降りてしまいました。下道はものすごい渋滞で、高速に戻るだけで結構な時間をロスしてしまいました。しかも今回は猿投グリーンロードを使ってみたのですが、茶臼山の方の出口まで行ってしまい、どうやらかなり遠回りをしてしまったようです。まだ名古屋と元気村でどの道を通ると一番いいのかがいまいちわかっていません。結局元気村に到着したのは17時くらいになってしまいました。


再び元気村

この日も天気は全然ダメでしたが、昨晩も来たつつじ屋敷の中にはすでにたくさんの人がいて、もう宴会も始まっていてかなり盛り上がっていました。私もそのままテーブルにつき、周りの方といろいろお話しさせてもらいました。元々あまり事情を聞いていなかったので、最初普通の観望会と思っていたのですが、どうやら今回の集まりは「気ままに星空観望仲間」の年1回の大合宿みたいなもので、しかもコロナでここ数年できなかったので4年ぶりの大きな集まりということがわかりました。そんな集まりにゲスト参加で参加させて頂いて、とてもありがたかったです。

IMG_8850
囲炉裏があり、炭火でいろいろ焼いたのが出てきます。
右上に見えるのがダッチオーブンで丸焼きにした鴨です。

IMG_8864
鴨に入刀。私もいただきましたが、
ホクホクでジューシーでとてもおいしかったです。

皆さんとても熱心な天文ファンで、18時頃から開会の挨拶がてら自己紹介が始まったのですが、持っている機材がものすごいです。口径40cm以上のドブの話が普通に出てきて、50cm台、60cm台の話も出てきます。ミューロンの30cmなんて話もありました。この会ができた経緯も聞くことができ、最初3人だったのがここまで大きくなったそうです。名古屋勢にドブ勢が多い理由がやっと理解できました。自己紹介は小一時間続いたでしょうか。皆さんそれぞれ、とても濃い天文生活を送られているようです。自己紹介の後は、ビンゴゲームや、ジャンク市、オークションもあり、皆さんすごいテンションです。

IMG_8865
気ままにほしぞら観望仲間の旗を見ながら、ビンゴ大会の様子。

IMG_8851
ジャンク市の一部。こちらはひいひさんの出品です。
この中でNEWERのカラーフィルターセットを頂いてしまいました。

個人的にも、何人かの方とつっこんで話すことができました。遅くまで話していた方もいたようですが、豪華な夕食とお酒、前日の疲れも出てか、私の方は片付けの後は比較的早めに布団に入りそのまま寝てしまいました。夜中過ぎには晴れの予想でしたが、多分ずっと曇っていたようで、外に出て星を見た方はほとんどいなかったようです。

朝起きると、もう味噌汁とご飯が用意されていました。Katoさんが調理担当も兼ねてくれていたのですが、夕食も朝食もとても美味しくいただけました。名古屋の赤味噌のおでんと、朝食の味噌汁は懐かしくとてもおいしかったです。


富山へ帰宅

朝外に出ると小雪が舞っていました。妻に聞くと、富山は暴風雨警報が出ているらしく、午前9時前には元気村を出ることにしました。片付けをほとんど手伝うことができなかったので、非常に申し訳なく思います。帰り道は、明るい昼間の移動と、やっと地理に慣れてきたこともあって、迷うことなく高速ICまでたどり着き、無事に富山まで帰ることができました。雪も全然大したことはなかったです。

星まつり以外では久しぶりの遠征でした。え、遠征じゃあないだろうって?いや、ε130Dを持っていったので、天気がよかたら撮影しようと思ってました。ホントです。たまたま天気が悪かったので飲んだくれてただけです。

母校の天文部員の皆さん、気ままに星空観望仲間の皆さん、二日共とても楽しい時間を過ごすことができました。本当にありがとうございました。星を続けいている限り、どこかでお会いすることもあるかと思います。その際はまたよろしくお願いします。

SharpCapのバージョン4.1.11226 (10月30日) 以降から、独自のビルトインのプレートソルブ機能「SharpSolve」が搭載されました。これでもう、外部のプレートソルブソフトをインストールする必要がなくなります。不安定だと思われていたトラバースを使って試してみたので、記事にしておきます。


設定方法

使い方ですが、 メニューの「ファイル」SharpCapの設定画面を開き、「プレートソルブ」タブを選びます。
01_PS_setting
  1. 「プレート解析エンジン」のところで「SharpSolve(SharpCap's built in plate solver)」を選びます。もしこの選択肢が出てこない場合は、SharpCapのバージョンが古いことが考えられますので、今一度バージョンが4.1.11226より新しいかチェックしてみてください。バージョン番号はSharpCap画面の一番上のところに表示されています。
  2. 焦点距離は自分が使っている望遠鏡の値を正しく入れてください。
  3. 解析範囲が視野角で0.5度以上の場合はもうこれでOKですが、もし0.5度以下の視野で解析したい場合は、インターネットに繋いだ状態で「インデックスファイルのダウンロード」を押してください。ネットの速度にもよりますが、1分程度でダウンロードが終わり、その後「0.25度」が選択できるようになります。
設定はせいぜいこれくらいです。実際に試してみましょう。


SharpSolverのテスト

今回架台は経緯台のトラバースで試しました。以前ASTAPやASPSでプレートソルブ試した時に、AZ-GTiに比べてトラバースだと明らかに不安定なことがあり、その後コントローラーソフトのSynScan Proを最新版にしてAZ-GTiもトラバースもかなり安定になったという経緯があります。このトラバースで動くなら、おそらく他の架台だとほぼ問題なく動くでしょう。

適当に初期アラインメントをします。画面に星が表示されますが、最初の導入なのでおそらく方向は正確ではないはずです。今回もベテルギウスを導入したつもりが、全然画面内には来ていません。試しにまずはここでASTAPを実行してみました。

ASTAPでの恒星の認識はうまくいくときはうまくいくのですが、たまに(方角や、星の見え方によって)全くうまくいかない時があります。こんなときは代わりにプレートソルブエンジンをASPSに切り替えてその場を凌いでいたのですが、ASPSは解析するのに時間がかかってじれったいのと、ASPSでもうまくいかないことがあって、そんな場合は見ている方向をわざと変えてやって認識させたりしていました。

このSharpSolveはかなり優秀みたいで、今回たまたまASTAPでうまく認識できなかったのですが、SharpSolveに変えたら全く問題なく認識できました。しかも認識の速度がかなり速いです。ASTAPもそこそこ速いと思っていましたが、SharpSolverはそれ以上の速度です。

うまくいくと以下のような画面になり、何度くらいずれていたがが出てきます。
02_PS_setting_success

今回は2.23度ずれていたとのこです。赤道儀や経緯台をSharpCapに接続しておいて、このずれを架台にフィードバックして課題の向きを補正することで、架台が今向いていると思っている方向と、実際に向いている方向を自動的に一致させます。

ちなみに、「プレートソルブ」という単語の意味は、「今見いている視野の方向を計算して求める」ということに過ぎず、架台の方向を補正するという意味は含まれていませんが、最近では「方向の補正」まで含めてプレートソルブという単語で表すことが多くなってきていますね。


まとめ

今回はSharpCapの新機能「SharpSolve」でプレートソルブを試しましたが、安定性、速度はこれまでのプレートソルブソフトを凌駕しています。トラバースでも全く問題なく動いたので、かなりのものでしょう。これでトラバースでの電視観望が完全に実用レベルになったのかと思います。

まだSharpSolveを試していない方は是非とも試してみてください。


めだかと暮らすひとさんが、SharpCapでのライブスタック撮影で、縞ノイズに悩まされているようです。



ここではできる限り簡単な解決策の一つとして、ガイド無しのディザー撮影のやり方を示したいと思います。


縞ノイズの原因

 最近電視観望というと、リアルで見ると言うより、ライブスタックを使った簡単な撮影を指すことも多いようです。めだかと暮らすひとさんも、最近やっとAZ-GTiを赤道儀モードにして、視野回転のない追尾を実現したとのことです。でもまだガイド鏡もなく、ノータッチガイド(死語?)での撮影で、電視観望的にライブスタックを利用して、最後にスタックされた画像を処理しているとのことです。問題は、赤道儀の極軸が合っていないとライブスタックをの間に画面が流れていって、縞ノイズができてしまうことです。これは例え極軸が合っていたとしても、またガイド撮影をして画面が流れないように頑張っても、機材のたわみなどがごく普通に存在するので、1時間オーダーの長時間の撮影では縞ノイズが出ることがよくあります。

縞ノイズの原因は、ホットピクセルやクールピクセルなどの、センサーのある点にいつも存在する異常ピクセルが、画面の流れとともに全て同じ方向に動き、縞のようになることです。


縞ノイズの解決策

縞ノイズ軽減する方法の一つは、ダーク補正することです。SharpCapには簡単なダーク補正方法が搭載されていて、右側パネルの「ダーク補正」の「Hot and Cold Pixel Remove」を選び、簡易補正で済ませます。これはホットピクセルとコールドピクセルを簡易的に取り除く機能ですが、つい最近搭載されたもので、これまでは「Hot Pixel Removal Only」とホットピクセルのみの除去しかできませんでした。以前示したSharpCap上でダークファイルを撮影してリアルタイムダーク補正することもできますが、

ダークファイルでの補正だと基本的にコールドピクセルの補正はできないはずなので、簡易的ですが「Hot and Cold Pixel Remove」の方が有利な可能性が高いです。このオプションががある場合とない場合では数のような違いがあります。
comp
左がオプションなし、右がオプションありです。左の画像を見ると、赤とか緑の輝点が下向きに伸びているのがわかります、右もすごくよく見るとまだ輝点が残っているのがわかりますが、ほとんど目立っていないのがわかります。

それでもダーク補正では縞ノイズを軽減するだけで、完全に消すことはできません。一番確実な方法は、ディザー撮影をすること。ディザーというのは、長時間撮影の途中でわざと画面を数ピクセルとかずらして、異常ピクセルの影響を散らしてやることでかなり軽減できます。今回の問題はこのディザー、一般的にはガイド撮影と込で実現されるので、ガイド撮影をしていない限りディザーはできないと認識されているだろうことです。めだかと暮らすひとさんみたいに、ガイドをしていなくても縞ノイズを解決したいという要求はきっとあることでしょう。


ガイド無しディザーの方法

その方法ですが、前提としてSharpCapで経緯台、赤道儀などが接続されていて、SharpCapからコントロールできることです。赤道儀でなくてもコントロールできるなら経緯台でも構いません。今回はトラバースで試しました。トラバースはAZ-GTiのミニチュア版とも言える、自動導入、自動追尾機能がある経緯台です。

設定方法です。まずメニューの「ファイル」の「SharpCapの設定」の中の「ガイディング」タブで、下の画面のように「ガイディングアプリケーション」を3つ目の「ASCOMマウントパルス...」を選びます。

07_guide_setting
「ディザリング」の中の「最大ディザステップ」はある程度大きくしておいた方が効果が大きいです。私は「40」まで増やしました。値が小さいと効いているかどうかもわかりにくいので、最初多少大きめの値をとっておいて効果を確認し、大きすぎたら減らしていくがいいのかと思います。

その後、ライブスタックの下部設定画面の「Guiding」のところで、最初のチェック「Monitor Guideng Application...」をオンにします。「Automatically DIther」をオンにし、「Dither every:」でどの頻度ディザーするのか選びます。撮影の場合は「Frames」を選んで、何枚撮影することにディザーをするかを選んだ方がいいでしょう。実際には数分に1回くらい散らせば十分なので、今回の1回の露光時間が20秒とすると、10枚に1枚、3分ちょっとに1回ずらすことにしました。
05_dither

するとライブスタックで10枚スタックするごとに、下の画面のように上部にの緑色のバーが現れて、ディザーが実行されます。
06_dither

実際にディザーの効果があるか確認してみましょう。30フレーム分を動画にしてみました。輝点が右下に進んでいきますが、その途中で一度カクッと下に降りて、またカクッと上に上がるのがわかると思います。でもまだずれが少ないので、もっと大きな値でも良かったかもしれません。
Blink

実際のSharpCap上のライブスタック画面では、ディーザーが何度が進むと、最初に見えていたミミズが散らされてどんどん薄くなっていきます(すみません、画像を保存するのを忘れてしまいました)。

ただし、今回は雲がすぐに出てきてしまい、実際の長時間で縞ノイズが見えたわけではないので、ディざーなしで縞ノイズが出て、ディザーをオンにして縞ノイズが消えることを確認すべきなのですが、今回はとりあえず手法を書くだけにしました。後日確認ができたら、また結果を追加したいと思います。


ついでの画像処理

最後に、今回撮影した画像2種を仕上げてみました。FMA135にCBPを付け、Uranus-Cで撮ってます。課題はトラバースなので小さくて楽なものです。ただし経緯台なので星が回転もしくは流れてしまうので長時間露光はできず、1フレーム当たり20秒露光の露光で、ゲインは高めの300としています。共に、かなり淡いところまであぶ出していますが、上の動画でもわかりますが、少なくとも経緯台でガイド無しなので、撮影時にかなり流れてはいるのですが、これくらいの露光時間ではかなり炙り出しても縞ノイズは出ていないことがわかるかと思います。


M42: オリオン大星雲
オリオン大星雲はライブスタックで30フレームの計600秒、ちょうど10分経った時に保存したfitsファイルから画像処理しました。SharpCapの時点でスタックまで終わっているので、かなり楽です。星雲本体周りの分子雲も少し写っています。
Stack_16bits_30frames_600s_21_35_52_crop_SPCC_ABE4_BXT_MS2

向きを変えて星雲部分を切り取り。
Stack_16bits_30frames_600s_21_35_52_crop_SPCC_ABE4_BXT_MS_cut2

口径3cmの高々10分でこれならまずまずではないでしょうか。


M31: アンドロメダ銀河
2枚目はM31、アンドロメダ銀河です。こちらは途中雲がかかり、ライブスタック画像ではかすみがかってしまったので、別途1枚1枚保存してあったRAWファイルから、PixInisightでスタックして処理しました。トータル露光時間はM42よりさらに短く、14枚でわずか4分40秒です。
3856x2180_EXPOSURE_20_00s_ABE4_SPCC_BXT_GHT_HT_bg_rot
こんな短い時間でも、情報としてはある程度残っているものです。さすがにかなりギリギリ出しているので、どうしてもノイジーなのは否めません。


まとめ

今回は、ガイド無しでディザーする方法を示しました。まだ実際の長時間撮影はできていないので、またいつか試したいと思います。

曇りがちで十分な撮影時間をかけることができませんでしたが、それでも口径3cmでもそこそこ情報は残っていて、ある程度画像処理すれば十分見えるくらいにはなることがわかりました。途中で気づいたのですが、ライブスタック時にBrightnessフィルターを入れると、雲が入った時の画像のスタックを回避できるので、そういったことも今後試していきたいと思います。

こうやって見ると、小さなトラバースでも撮影に耐え得るくらい、十分に安定していることがわかります。



2年近く前に自宅から撮影したSh2-240、かなり淡く、当時はFS-60CB+CBP+EOS 6Dで12時間越えとかなり頑張ってみたのですが、画像処理で相当無理して出していたのがわかります。

 

結果を見ても明らかですが、これは敗退だったと言えるでしょう。

今年の春にε130Dを購入した最大の理由が、このリベンジです。無理ナントだった、超新星レムナントを自宅でどこまで出すことができるのか?特に前回は全く出なかったOIIIの青が、自宅でも本当に出るのかがポイントです。


Sh2-240の下調べ

今回のターゲット、皆さんなんて呼びますか?Sh2-240という呼び名が多分一番メジャーでしょうか?一方、Sim147(シメイズ147, Simeis 147)という名前も持っています。通称はスパゲティ星雲 (Spaghetti Nebula) と呼ばれていて、これは最初日本語で誰かがつけたと思っていたら、英語のWikidiaとかにも普通に載っているので、どうも世界的に一般にこの通称で呼ばれているようです。

星雲としてはかなり大きくて、見かけの直径は約3度もあります。月が0.5度くらいなので、一辺で6個分、面積だと36倍の大きさです。おうし座からぎょしゃ座にかけて広がるレムナント(超新星残骸)です。約3000光年先にあるとのことで、10万年ほど前に現れてこの大きさにまで広がったようです。一つの超新星爆発がこんな複雑な形を作るのは、まさに宇宙の神秘かと思います。

ちょっと脱線ですが、Sh2はシャープレスカタログ(Sharpless catalog)と呼ばれていて、淡い天体を撮影しようとするとすぐに候補として出てきます。




アメリカの天文学者スチュワート・シャープレスが、パロマー天文台のスカイサーベイからの画像を使用して銀河系のHII領域を調査し、1953年にSh1として142天体をカタログに登録、その後1959年に第2版とのSh2として313の天体を登録しているとのことです。

シャープレスカタログはまだいいのですが、シメイズカタログは調べてもあまりよくわかりませんでした。日本語だとHIROPONさんのページくらいしか引っ掛からなくて、

「クリミアにあるシメイズ天文台で、ソ連の天文学者ヴェラ・ガゼ(Vera Fedorovna Gaze, 1899~1954)とグリゴーリ・シャイン(Grigory Abramovich Shajn, 1892~1956)によって1955年に編集された散光星雲のカタログです。カタログはクリミア天体物理天文台の会報に掲載されており、主に北半球にある306個の散光星雲を一覧にしています。有名な天体としては、おうし座~ぎょしゃ座にかけて存在する超新星残骸Simeis 147(=Sh2-240)があります。」

とあります。「シメイズ」と検索しても、ほぼシメイズ147しか結果が出てこなくて、色々調べてやっとSimbadの中のカタログまで辿り着きました。232個が登録されているようです。


久しぶりのε130D

ε130Dですが、5月にアメペリ星雲網状星雲おとめ座銀河団を撮って以来になります。これまではテスト撮影のようなもので、
  • bin2と分解能とBXTの関係
  • 淡いOIIIがどこまで出るか
  • bin1で系外銀河の描写がどこまで可能か
など、かなり実験的です。いずれも、ε130Dの分解能と口径の大きさを遺憾なく発揮した結果となりました。

その一方で
などが問題点として浮かんできました。今回の撮影の前に、上記二つの問題に対してもある程度解決の目処をつけようとしています。


星像の改善

まず最初の問題、星像についてですが、コリメートアイピースを利用しての光軸調整自身は何度かしてみました。でも、何度調整しても結果として毎回同じようなズレになるので、通常の光軸調整とは別のシステマティックなずれがあるような気がします。

具体的な問題としては、
  • 鏡筒に付いている回転装置を回すと、像が変わる。
  • 四隅の星像が流れる。特に、縦方向に像の上下でピントの内外が違うのがはっきりわかる。
などがあります。これらのことから、光軸というよりはスケアリングがずれているのではないかと考え、K-ASTECのスケアリング調整が可能なテーパーリング接続キットを購入しました。



IMG_8512

オフアキは使わないので、上の写真の右のように12.5mmの延長リングも合わせて購入したのですが、これはカメラ付属の5mm幅のセンサーチルトアダプターを「付けたまま」接続します。最初勘違いしていて、このセンサーチルトアダプターを外して組んでしまい、星像が改善しないと悩んでいました。一度スターベースに遊びに行った時に星像が合わないと相談して、スタッフの方の指摘で気づきました。どうもありがとうございました。

その後、スケアリング調整です。接眼部の鏡筒側の回転装置を回転させて、縦にしても横にしても、きちんと遠方の景色のカメラ中心がずれないように、合わせました。このこともスターベースで話したのですが、カメラ中心基準だとテーパー部のネジの締め具合で中心位置がずれてしまうので、回転させた時に中心が基準にならないかもという指摘をうけました。そのため、ネジの締め具合が毎回均等になるようにして中心の再現性がある程度あることを確認してから、回転させても遠方景色の中心がずれないようにスケアリングを調整しています。

IMG_8659
こんな風に回転装置でフィルターホイールごと回転させて、
遠方を見ながら、カメラ中心がずれないようにスケアリングを調整しました。

今回の撮影での四隅の様子です。
2023_11_21_03_22_49_ASI6200MM_2x2_A_300s_g100_9_80C_mosaic
まだ左下と左真ん中が縦に伸びていて、右上が右斜め方向に伸びています。

それでも調整前の北アメリカ星雲の時などは下のようで、真ん中以外全方向が伸びていたので、かなり改善されています。
_2023_05_04_00_51_54_A_9_90_300_00s_0001_mosaic

下の画像は、RGBを5分9枚づつインテグレートしたものですが、方向が多少散らされるのか、さらに目立たなくなります。
Image04_ABE_DBE1_mosaic01
それでも強拡大すると、完全に伸びがなくなっていないのがわかりますが、私的には許容範囲です。それよりも青が少しずれているのが気になるくらいなので、ここまで調整できればよしとします。

ちなみに、上のものにBXTをかけるとさらに星像は引き締まり、青のずれもなくなり、真円に近づきます。それでもまだ左下は少し縦に伸びています。
Image04_ABE_DBE1_mosaic

これくらなら歪みと言っても微々たるものなので、私的には結構満足です。今後ε130Dでもどんどん撮影していこうと思います。

ところで今回の星像の改善に一番効いたと思われるのは、実はスケアリングではなく、バックフォーカスでした。もともとε130Dにタカハシ純正のCanon用の変換アダプターを付けて、カメラ側にZWOのCanonマウントアダプターを使っていたのですが、これだと指定のバックフォーカス長の56.2mmぴったりで、フィルターの厚みなどを光量すると、微妙に長さが足りないのです。K-ASTECのテーバー接続リングは、あらかじめ1mmほど長く設定して出荷され57.2mm -0.2,+0.8の範囲で調整できます。実際にはもう少し伸ばしましたが、以前より1.5mmほど伸ばしたことが星像の改善に一番貢献したものと思われます。


フードの影響

今回簡易的に鏡筒先端にフードを付けてみました。

IMG_8784

ε130Dでこれまでフラット補正がうまくいかなかった原因の一つが「フードを取り付けていなくて周辺の光が入り込み、その光の入り込み具合が赤道儀の回転とともに変わっていって、単一のマスターフラットファイルでは補正しきれないのでは」と考えたからです。フード自身はまだ仮のもので、福島の星まつりで特価で手に入れたものを使いました。

今回はRGBAOと5種類撮影しましたが、その中でB画像の迷光が一番ひどく見えました。スタック後のBにABEの4次をかけて、オートストレッチの強い方をかけたものです。
masterLight_BIN_2_EXPOSURE_300_00s_FILTER_B_ABE

まだかなり残っていますが、HαやOIIIはこれより大分マシだったので、これがMaxだと思ってください。

下は以前おとめ座銀河団を撮影した際に、フードなしで撮ったスタック後のL画像にABEの4次をかけて、オートストレッチの強い方をかけたものです。

masterLight_BIN_1_EXPOSURE_300_00s_FILTER_L_ABE

L画像とB画像なので直接比較は不公平かもしれませんが、フードで少しマシになったようにも見えます。それでもフードが解というには厳しくて、やはりε130Dと付き合っていくには非対称的な迷光を許容していく必要がありそうです。

というより、この非対称性って接眼部が横についていることからきている可能性が高いと思っていて、ε130Dだけの問題ではなく、そのような形の反射型全般の構造的な問題かと思っています。

「そんなの出てないよ」という方も、フラット画像にABEの4次をかけて、オートストレッチの強い方をかけてみてください。できれば中心だけを見るのではなく、CMOSカメラのAPSCとかフルサイズクラスで見ると外の方に見えるのかと思います。「CMOSカメラ」とあえて書いたのは、一眼レフカメラだとカメラ本体のミラー部のケラレが上下に出てしまう可能性があるからです。そのケラレでの光の落ち方の大きさが、今議論している迷光の模様よりも大きい場合があって、ストレッチで炙り出してもケラレの方で制限されてしまい、迷光の微妙な違いがわからないことがあります。画像処理によっては問題にならないレベルかもしれませんが、今回のように淡いところを強度にあぶり出していく場合は、どうしても問題になってきます。

あ、ブログを書いていて最後に見直した時に思ったのですが、よく考えたら今回のフラット、以前のものを使い回しています。フードのない時に撮ったフラットということです。フードをつけて取り直したらもう少しマシになるかもしれません。休日で、天気のいい昼間に撮り直してみます。
 

撮影時

撮影は11月20日から22日の3日間に渡りました。上弦の月を過ぎた頃で、前半は月も明るくSh2-240自体の高度も低いので、どの日も後半がメインとなります。初日の前半は準備と星像確認に費やし、0時頃から撮影開始でした。

フィルターですが、前回はCBPでした。今回はカメラもモノクロなので、HαもOIIIも個別のです。どちらもBaaderのものになり、バンド幅もかなり小さくなるのでコントラスも向上するはずでが、OIIIが眼視用で青ハロが出ることがわかっているので、少し気になるところです。

2日目と3日目は、前半まだSh2-240の高度が低いので、その間クワガタ星雲を撮影しました。半月越えの月が出ていますが、ナローバンド撮影なのでなんとかなるかどうかのテストも兼ねています。この話はまた別の記事で書こうと思います。

2日目の後半は順調に枚数を稼いだのですが、途中でPCに繋げてあるバッテリーが落ちたようで、残されたファイルを見ると午前3時過ぎのものが最後でした。

3日目前半のクワガタ星雲の撮影後に、急遽Sh2-240のRGBを個別に撮ることにしました。以前の北アメリカ星雲のAOO撮影で赤の淡いところを出すのに無理をして、恒星の色がおかしくなり、恒星の周りに赤ハロのようなものが目立ってしまったからです。短時間ながらもRGBで別撮りしておけば、恒星の色もある程度残るのではとの期待です。各色5分で9枚、45分づつ撮影しました。3日目の後半は途中から風がすごいことになってきたので、午前3次頃に中断して片付けました。

そうそう、Xではつぶやいたのですが、最近自宅の近辺でクマの被害がかなり出ています。歩いて行ける距離の所で一人亡くなっていて、さすがにそのクマは駆除されたのですが、その後も車で5分くらいのところでも二人襲われています。さらに、これも自宅から5分くらいのところですが、いつも仕事に行く時に使う道を横切るクマの映像がニュースで流れていました。

実際の撮影は冗談抜きでクマに怯えながらでした。できる限り外に出ている時間を短縮して、セットしたらあとはプレートソルブやEAFを駆使してリモート撮影に徹底します。それでも反転の時だけは心配で、その場に行ってケーブルとかが引っかからないか見ながら、マニュアルで反転してました。


ビニングについて

元々今回の記事の中でビニングについて書こうとしていましたが、結構な分量になってしまったので、独立した記事としました。詳しくは前回の記事を見てください。

少しだけ書いておくと、富山の自宅でスカイノイズが大きいことを緩和するために、bin2でソフトウェアビニングをかけて撮影し、輝度を上げショットノイズのS/Nを上げようとしました。

 

bin1に比べて4倍の露光時間をかけたことに相当しますが、それでも露光時間がまだ足りないか、もっと暗いところに行くべきなのかと思います。ちなみに、今回の撮影時間がトータル12時間なので、bin1で撮影していたらショットノイズに関しては、48時間撮影したのと同等のS/Nとなります。


画像処理

まず、OIIIの一枚画像を見てみます。ABEの4次をかけ、強い方のオートストレッチをかけます。何か模様は出ているようです。これならスタックさえすればなんとかなりそうです。

2023_11_21_00_34_08_2x2_O_300_00s_g100_10_00C_0005_ABE

次にPixInsightのWBPPが終わった段階のマスターOIII画像を改めて見てみます。ABEの4次をかけ、強い方のオートストレッチをかけます。淡いながらも(この時点では)十分に出ていると思いました。

masterLight_BIN_2_300_00s_FILTER_O_integration_ABE

Hαも同様に見てみますが、OIIIがでているので、Hαは余裕と思っていました。

masterLight_BIN_2_300_00s_FILTER_A_mono_drizzle_1x_ABE

でも、その後の画像処理は困難を極めました。やはり淡い青がつらいのです。青が出てると言っても、そもそも青単独のところは一部で、多くは赤と重なっていて仕上がりで明るい紫になります。単独の青は、もっと淡いところにまだ隠れいているようです。今回の条件ではそこまで届きませんでした。

青は他にも問題があって、そもそも今回使っているOIIIフィルターが眼視用で、どうもUV/IR領域がカットされていないようなのです。そのため、青ハロができてしまったりして強度の炙り出しが難しくなります。無理に出そうとすると、その青ハロが霞を増加しているように見えてしまい、処理を難しくしています。青ハロだけでなく、淡い天体部分と背景の輝度がかなり近い(背景ノイズが大きい)ので、淡いところを出そうとすると無理が出ます。


drizzle x1の効果

Niwaさんが、SPCCをする際は1倍でもいいのでdrizzleをするといいとの記事を書いてくれています。ノイズが少し軽減され、背景が緑化されるのを防ぐこともできるそうです。私は緑化で困ったことはないのですが、1倍なら特にファイルサイズが増えることもないので、ノイズが軽減されるならと試してみました。

drizzleされたマスターライトとものと、されていないマスターライトができあがるので、PixInsightのスクリプトからSNRを比較してみました。結果はdrizzleしたものがSNR = 7.475e+04 、してないものがSNR = 4.222e+04とのことで、2倍近くの向上がみられました。

comp1

上の画像は、左がdrizzleなしの通常の処理、右が1倍のdrizzleです。drizzleをかけると、背景のクールピクセルっぽい黒い穴が少なくなっていることがわかります。SN比の向上と一致していますね。その代わりに、少し星像が肥大しているでしょうか?シャープさがなくなったようにも見えます。

多少の不利さもありそうですが、2倍近くのS/Nの向上はかなり魅力的なので、今後も使っていくことになりそうです。


結果

やっと画像処理の結果です。
Image22_DBE_SPCC_back_BXT_HT1_HT2_NXT_SCNRG6_cut
  • 撮影日: 2023年11月21日0時8分-5時23分、11月21日22時48分-22日2時25分、11月22日22時14分-23日3時14分
  • 撮影場所: 富山県富山市自宅
  • 鏡筒: TAKAHASHI製 ε130D(f430mm、F3.3)
  • フィルター: Baader:Hα 6.5nm、OIII 10nm
  • 赤道儀: Celestron CGEM II
  • カメラ: ZWO ASI6200MM Pro (-10℃)
  • ガイド:  f120mmガイド鏡 + ASI290MM、PHD2によるマルチスターガイドでディザリング
  • 撮影: NINA、bin2、Gain 100、露光時間5分、Hα: 48枚、OIII: 70枚、R: 9枚、G: 9枚、B: 9枚、の計145枚で総露光時間12時間5分
  • Dark: Gain 100、露光時間5分、温度-10℃、117枚
  • Flat, Darkflat: Gain100、露光時間 Hα: 0.2秒、OIII: 0.2秒、R: 0.01秒、G: 0.01秒、B: 0.01秒で全て64枚
  • 画像処理: PixInsight、Photoshop CC

結果を見るに、かなり出たのではないでしょうか!いろいろ苦労はありましたが、今回のレムナント、明らかにリベンジは果たせたと思います。

まず2年前に全く出なかった青は明らかに出ています。赤も無理して出していたものは、かなり複雑な模様まで詳細に出るようになりました。鏡筒だけでなく、ナローバンドフィルター、モノクロ冷却カメラと、機材も総取っ替えで挑んだ甲斐がありました。自宅からでも無理ナントではなかったと言っていいでしょう。

その一方、これで終わりかというと、画像を見てもまだ無理をしている感があるのも事実です。
  • まず、青に関してですが、やはりOIIIフィルターが眼視用のせいか、どうも恒星周りに青ハロっぽいのが出てしまっています。この青ハロの明るさが、淡いところの明るさと同程度になるために、淡いところをこれ以上炙り出すのが難しくなっています。星もとで48mmのOIIIフィルターを特価で見つけた時に、パッと買っておけばと、今でも悔やまれます。
  • 一方、Hαの赤も、よく見るといくつかの大きなリングの中に、ノイズに埋もれそうな淡い構造が明らかに見え始めています。これだけ見てもまだHαの方も露光時間を増やした方がいいいのかと思います。
  • 焦点距離が430mmとまだ微妙に長くて、全景が入っていません。モザイク撮影で周りも少し入れてみたいです。
こうやってみるとまだ不満な点もあるので、できるならもう一度リベンジしたいです。

今回の成果の一つは、ε130Dの星像がしっかりしてきたことです。今後は躊躇せずに、この鏡筒で撮影をどんどんしていきたいと思います。その一方、フードはフラット補正に少しは貢献しましたが、まだ完全な解決までは遠いです。でも他にアイデアもないので、これはもうあるものとして付き合っていくしかないと思います。


ナローバンド撮影と光害の関係

ナローバンドで、明るい月夜や明るい場所と、暗い場所でどれくらいスカイノイズに差が出るのか、今後きちんと実測と計算をしてみたいと思います。もしかしたらナローバンドフィルターの影響が強くて、意外なほど周りの明るさがあっても撮影結果に差が無いのではとも少し思っています。ナローで淡いところを出す場合、光害はあまり関係なく、いかに天体を明るく撮るかにかかっていて、口径、F値、露光時間、ピクセルサイズなどで決まってしまうのではないかという推測です。

もしこれが数値的に示されたとすると、自宅で撮るのは環境的には決して難しいことではなく、あとは機材と露光時間の根性という話になります。あ、ビニングなどの工夫もありますか。

暗いところにいって、ナローバンド撮影をしてみればすぐに判明するので、いつかまた遠征した時にナローで撮影して差を見てみたいと思います。


ビニング x drizzle x BXT

もう一つのアイデアです。

今回bin2で撮影しましたが、いわゆるソフトウェアビニングなので、bin1で撮影してから、画像処理の段階でPC上でbin2にしても同じことになります。しかも、16bitカメラなので後からビニングして32bitファイルに書き込めば、4倍の明るさになるのでダイナミックレンジは2bit得するはずです。

今回は後からのビニングができるのかわからなかったので撮影時にビニングしていますが、元のbin1の解像度が高すぎるので、bin2でもまだ十分な解像度があります。いっそのことここから更にビニングしてbin4相当にして更に4倍の明るさにして、でも流石にそれだと解像度がしょぼくなりすぎるので、drizzleで2倍にするというのもありだと思います。

もちろんそれだけだとS/Nは得しても、解像度に関してはあまり得しないので、この状態でBXTをかけるというアイデアです。drizzleとBXTは相乗効果が非常に高い可能性があることはすでに検証しているので、
 
解像度がほぼ今のままで、更に淡いところを出せるかもしれません。bin4だとすると今回のbin2に比べたら4倍、元のbin1に比べると16倍の露光時間になります。今回トタールで12時間半の撮影時間なので、16倍ならちょうど200時間の撮影時間と同等ということになります。自宅撮影の可能性をさらに広げてくれるかもしれません。分解能がどこまで犠牲になるかも注意しながら、余裕があったら試してみたいと思います。


まとめ

長い記事になってしまいましたが、半年くらいの細々とやっていたε130Dの調整も入っているので、実際にはまだまだ書き足りないくらいです。念願だった自宅レムナントがやっと出てくれたので、かなり満足している一方、まだ十分でないこともわかったので、いつかまたリベンジしたいと思います。

これでε130Dも多少安定して撮影できそうです。今後、どんどん活用していきたいと思います。

次はイカ釣りかな?


日記

コロナの後遺症か、熱がひいてからも数週間体力がなくて、今回やっと望遠鏡を出す気になりました。それでもこのブログを書いている現在もまだ咳が続いていたりします。

この間にも、どんどん試したいことが増えています。SharpCapの惑星ライブスタックとか、SharpCapでガイドなしのdhitherとかです。でももう既に冬型の気圧配置になってしまったのでしょうか、天気が全然ダメです。天気が悪くても、まだノイズ解析は進めたいですし、小海でお借りしたInteractiveの読み込みとかもしたいです。これらもまた、いずれ記事にしたいと思います。時間が全然足りません。


このページのトップヘ